Investigation of Hydrodynamic Parameters in an Airlift Photobioreactor on CO2 Biofixation by Spirulina sp.
Abstract
:1. Introduction
- (i)
- the riser (draft tube) is the most important part of the reactor where most of the mixing and mass transfer occurs. The gas distributor is located at the bottom of this section and a directional multiphase flow is created upwards in this area.
- (ii)
- the downcomer works in parallel with the riser and is the external tube. The density in this part is higher than the riser, which causes the fluid to move.
- (iii)
- the sparger (or gas distributor) is located at the bottom of the reactor where the riser and the downcomer are connected.
- (iv)
- the gas separator connecting the two sides of the reactor at the top and the gas separation operation is performed there [24,25]. In airlift reactors, the gas holdup, which depends on reactor height and the gas-liquid separation area in the reactor headspace, is one of the key parameters in determining the liquid circulation velocity, gas residence time, and overall mass transfer coefficient [24,27,28].
2. Materials and Methods
2.1. Algal Strain and Cultivation Conditions
2.2. Airlift Photobioreactor Configuration
2.3. Hydrodynamic Tests in Distilled Water
2.4. Inoculation and Operation of the Photobioreactor
2.5. Gas Holdup and Bubble Size Measurements
2.6. Gas Velocity
2.7. Liquid Circulation Velocity
2.8. Calculation of CO2 Removal Efficiency
2.9. Biomass Concentration
3. Results and Discussion
3.1. Gas Holdup and Bubble Behavior in Distilled Water
3.2. Gas Holdup in Cyanobacterial Culture
3.3. Liquid Circulation Velocity
3.4. Cyanobacterial Growth
3.5. CO2 Removal
3.6. Perspective
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Jiang, D.; Lang, X. Future extreme climate changes linked to global warming intensity. Sci. Bull. 2017, 62, 1673–1680. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D.W.; Medina-Elizade, M. Global temperature change. Proc. Natl. Acad. Sci. USA 2006, 103, 14288–14293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasing, T.; Smith, K. Recent Greenhouse Gas Concentrations. Available online: https://cdiac.ess-dive.lbl.gov/pns/current_ghg (accessed on 13 April 2016). [CrossRef] [Green Version]
- Prazeres, A.R.; Rivas, J.; Paulo, Ú.; Ruas, F.; Carvalho, F. Sustainable treatment of different high-strength cheese whey wastewaters: An innovative approach for atmospheric CO2 mitigation and fertilizer production. Environ. Sci. Pollut. Res. 2016, 23, 13062–13075. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.; Sen, R. Microalgal green refinery concept for biosequestration of carbon-dioxide vis-à-vis wastewater remediation and bioenergy production: Recent technological advances in climate research. J. CO2 Util. 2017, 17, 188–206. [Google Scholar] [CrossRef]
- Chaudhary, R.; Dikshit, A.K.; Tong, Y.W. Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environ. Sci. Pollut. Res. 2018, 25, 20399–20406. [Google Scholar] [CrossRef]
- Pires, J.C.M.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Simões, M. Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renew. Sustain. Energy Rev. 2012, 16, 3043–3053. [Google Scholar] [CrossRef]
- Karemore, A.; Ramalingam, D.; Yadav, G.; Subramanian, G.; Sen, R. Photobioreactors for Improved Algal Biomass Production: Analysis and Design Considerations; Springer: Cham, Switzerland, 2015; pp. 103–124. [Google Scholar]
- Almomani, F.; Al Ketife, A.; Judd, S.; Shurair, M.; Bhosale, R.R.; Znad, H.; Tawalbeh, M. Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Sci. Total Environ. 2019, 662, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Su, Y. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renew. Sustain. Energy Rev. 2014, 31, 121–132. [Google Scholar] [CrossRef]
- Sevda, S.; Bhattacharya, S.; Reesh, I.M.A.; Bhuvanesh, S.; Sreekrishnan, T.R. Challenges in the Design and Operation of an Efficient Photobioreactor for Microalgae Cultivation and Hydrogen Production. In Biohydrogen Production: Sustainability of Current Technology and Future Perspective; Singh, A., Rathore, D., Eds.; Springer: New Delhi, India, 2017; pp. 147–162. [Google Scholar]
- Bhola, V.; Swalaha, F.; Ranjith Kumar, R.; Singh, M.; Bux, F. Overview of the potential of microalgae for CO2 sequestration. Int. J. Environ. Sci. Technol. 2014, 11, 2103–2118. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.-Y.; Yang, J.-W.; Kim, K.; Hwang, K.-T.; Jung, S.M.; Kwon, J.-H. Cost-efficient cultivation of Spirulina platensis by chemical absorption of CO2 into medium containing NaOH. Korean J. Chem. Eng. 2015, 32, 2285–2289. [Google Scholar] [CrossRef]
- Morais, E.G.d.; Cassuriaga, A.P.A.; Callejas, N.; Martinez, N.; Vieitez, I.; Jachmanián, I.; Santos, L.O.; Morais, M.G.D.; Costa, J.A.V. Evaluation of CO2 biofixation and biodiesel production by Spirulina (Arthospira) cultivated in air-lift photobioreactor. Braz. Arch. Biol. Technol. 2018, 61. [Google Scholar] [CrossRef]
- Ramirez-Perez, J.C.; Janes, H. Impact of salinity on the kinetics of CO2 fixation by Spirulina platensis cultivated in semi-continuous photobioreactors. Eclética Química J. 2021, 46, 21–34. [Google Scholar] [CrossRef]
- de Morais, M.G.; Costa, J.A.V. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol. 2007, 129, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; de la Noüe, J.; Hall, D.O. Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis. Biotechnol. Bioeng. 1995, 47, 261–269. [Google Scholar] [CrossRef]
- Singh, S.K.; Rahman, A.; Dixit, K.; Nath, A.; Sundaram, S. Evaluation of promising algal strains for sustainable exploitation coupled with CO2 fixation. Environ. Technol. 2016, 37, 613–622. [Google Scholar] [CrossRef]
- Soletto, D.; Binaghi, L.; Ferrari, L.; Lodi, A.; Carvalho, J.; Zilli, M.; Converti, A. Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem. Eng. J. 2008, 39, 369–375. [Google Scholar] [CrossRef]
- Vasumathi, K.K.; Premalatha, M.; Subramanian, P. Parameters influencing the design of photobioreactor for the growth of microalgae. Renew. Sustain. Energy Rev. 2012, 16, 5443–5450. [Google Scholar] [CrossRef]
- Wang, B.; Lan, C.Q.; Horsman, M. Closed photobioreactors for production of microalgal biomasses. Biotechnol. Adv. 2012, 30, 904–912. [Google Scholar] [CrossRef]
- Chisti, Y. Pneumatically Agitated Bioreactors in Industrial and Environmental Bioprocessing: Hydrodynamics, Hydraulics, and Transport Phenomena; ISME: Bangalore, India, 1998. [Google Scholar]
- Pourtousi, M.; Ganesan, P.; Sandaran, S.C.; Sahu, J. Effect of ring sparger diameters on hydrodynamics in bubble column: A numerical investigation. J. Taiwan Inst. Chem. Eng. 2016, 69, 14–24. [Google Scholar] [CrossRef]
- Wadaugsorn, K.; Limtrakul, S.; Vatanatham, T.; Ramachandran, P.A. Hydrodynamic behaviors and mixing characteristics in an internal loop airlift reactor based on CFD simulation. Chem. Eng. Res. Des. 2016, 113, 125–139. [Google Scholar] [CrossRef]
- Chisti, M.Y. Airlift Bioreactors; Elsevier Applied Science: London, UK, 1989. [Google Scholar]
- Ugwu, C.; Aoyagi, H.; Uchiyama, H. Photobioreactors for mass cultivation of algae. Bioresour. Technol. 2008, 99, 4021–4028. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yao, L.; Huang, Q. Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae. Bioresour. Technol. 2015, 190, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, M.; Shaija, A.; Pranshanth, P. Bubble column photobioreactor for Chlorella pyrenoidosa cultivation and validating gas hold up and volumetric mass transfer coefficient. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 1–15. [Google Scholar] [CrossRef]
- Rengel, A.; Zoughaib, A.; Dron, D.; Clodic, D. Hydrodynamic study of an internal airlift reactor for microalgae culture. Appl. Microbiol. Biotechnol. 2012, 93, 117–129. [Google Scholar] [CrossRef]
- Ding, N.; Li, C.; Wang, T.; Guo, M.; Mohsin, A.; Zhang, S. Evaluation of an enclosed air-lift photobioreactor (ALPBR) for biomass and lipid biosynthesis of microalgal cells grown under fluid-induced shear stress. Biotechnol. Biotechnol. Equip. 2021, 35, 139–149. [Google Scholar] [CrossRef]
- Sánchez Mirón, A.; García Camacho, F.; Contreras Gómez, A.; Grima, E.M.; Chisti, Y. Bubble-column and airlift photobioreactors for algal culture. AIChE J. 2000, 46, 1872–1887. [Google Scholar] [CrossRef]
- Mohadi, R.; Mohadi, R.; Hermansyah, H.; Mavala, H.; Zulkifli, H. The effect of metal ion Cd(II) concentration on the growth of Spirulina sp. cultured on BG-11 medium. IOP Conf. Ser. Earth Environ. Sci. 2020, 530, 012036. [Google Scholar] [CrossRef]
- Liu, H.; Chen, H.; Wang, S.; Liu, Q.; Li, S.; Song, X.; Huang, J.; Wang, X.; Jia, L. Optimizing light distribution and controlling biomass concentration by continuously pre-harvesting Spirulina platensis for improving the microalgae production. Bioresour. Technol. 2018, 252, 14–19. [Google Scholar] [CrossRef]
- Mousavi, S.; Najafpour, G.D.; Mohammadi, M. CO2 bio-fixation and biofuel production in an airlift photobioreactor by an isolated strain of microalgae Coelastrum sp. SM under high CO2 concentrations. Environ. Sci. Pollut. Res. 2018, 25, 30139–30150. [Google Scholar] [CrossRef]
- Sánchez-Luna, L.D.; Bezerra, R.P.; Matsudo, M.C.; Sato, S.; Converti, A.; de Carvalho, J.C. Influence of pH, temperature, and urea molar flowrate on Arthrospira platensis fed-batch cultivation: A kinetic and thermodynamic approach. Biotechnol. Bioeng. 2007, 96, 702–711. [Google Scholar] [CrossRef]
- Zhang, W.; Yumei, Y.; Zhang, G.; Chao, Y.; Zaisha, M. Mixing characteristics and bubble behavior in an airlift internal loop reactor with low aspect ratio. Chin. J. Chem. Eng. 2014, 22, 611–621. [Google Scholar] [CrossRef]
- Dejaloud, A.; Vahabzadeh, F.; Habibi, A. Hydrodynamics and oxygen transfer characterization in a net draft tube airlift reactor with water-in-diesel microemulsion. Fuel Processing Technol. 2018, 171, 265–276. [Google Scholar] [CrossRef]
- Doran, P.M. Chapter 14—Reactor Engineering. In Bioprocess Engineering Principles, 2nd ed.; Doran, P.M., Ed.; Academic Press: London, UK, 2013; pp. 761–852. [Google Scholar]
- Chisti, M.; Halard, B.; Moo-Young, M. Liquid circulation in airlift reactors. Chem. Eng. Sci. 1988, 43, 451–457. [Google Scholar] [CrossRef]
- Cadondon, J.G.; Ong, P.M.B.; Vallar, E.A.; Shiina, T.; Galvez, M.C.D. Chlorophyll-a Pigment Measurement of Spirulina in Algal Growth Monitoring Using Portable Pulsed LED Fluorescence Lidar System. Sensors 2022, 22, 2940. [Google Scholar] [CrossRef]
- Karthikeyan, D.; Muthukumaran, M.; Balakumar, B. Mass cultivation of microalgae in open raceway pond for biomass and biochemicals production. Int. J. Adv. Res. Biol. Sci. 2016, 3, 247–260. [Google Scholar]
- Hikita, H.; Kikukawa, H. Liquid-phase mixing in bubble columns: Effect of liquid properties. Chem. Eng. J. 1974, 8, 191–197. [Google Scholar] [CrossRef]
- Reilly, I.G.; Scott, D.S.; Bruijn, T.J.W.D.; Jain, A.K.; Piskorz, J. A correlation for gas holdup in turbulent coalescing bubble columns. Can. J. Chem. Eng. 1986, 64, 705–717. [Google Scholar] [CrossRef]
- Hughmark, G. Holdup and mass transfer in bubble columns. Ind. Eng. Chem. Process Des. Dev. 1967, 6, 218–220. [Google Scholar] [CrossRef]
- Kumar, A.; Degaleesan, T.E.; Laddha, G.S.; Hoelscher, H.E. Bubble swarm characteristics in bubble columns. Can. J. Chem. Eng. 1976, 54, 503–508. [Google Scholar] [CrossRef]
- Hikita, H.; Asai, S.; Tanigawa, K.; Segawa, K.; Kitao, M. Gas hold-up in bubble columns. Chem. Eng. J. 1980, 20, 59–67. [Google Scholar] [CrossRef]
- Choi, K.H.; Kim, J.W.; Lee, W.K. Bubble properties and mixing characteristics in an airlift bubble column with redistributor. Korean J. Chem. Eng. 1986, 3, 127–134. [Google Scholar] [CrossRef]
- Tao, F.; Ning, S.; Zhang, B.; Jin, H.; He, G. Simulation Study on Gas Holdup of Large and Small Bubbles in a High Pressure Gas–Liquid Bubble Column. Processes 2019, 7, 594. [Google Scholar] [CrossRef] [Green Version]
- Blažej, M.; Kiša, M.; Markoš, J. Scale influence on the hydrodynamics of an internal loop airlift reactor. Chem. Eng. Proc. Proc. Intensif. 2004, 43, 1519–1527. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, T.; Zhang, N.; Wang, Z. Gas holdup, bubble behavior and mass transfer in a 5m high internal-loop airlift reactor with non-Newtonian fluid. Chem. Eng. J. 2010, 160, 729–737. [Google Scholar] [CrossRef]
- Ojha, A. Advancing Microalgae Culturing via Bubble Dynamics, Mass Transfer, and Dynamic Growth Investigations; Missouri University of Science and Technology: Park Hall, MI, USA, 2016. [Google Scholar]
- Ojha, A.; Al-Dahhan, M. Local gas holdup and bubble dynamics investigation during microalgae culturing in a split airlift photobioreactor. Chem. Eng. Sci. 2018, 175, 185–198. [Google Scholar] [CrossRef]
- Sabri, L.S.; Sultan, A.J.; Al-Dahhan, M.H. Investigating the cross-sectional gas holdup distribution in a split internal-loop photobioreactor during microalgae culturing using a sophisticated computed tomography (CT) technique. Chem. Eng. Res. Des. 2019, 149, 13–33. [Google Scholar] [CrossRef]
- Kilonzo, P.M.; Margaritis, A.; Bergougnou, M. Hydrodynamics and mass transfer characteristics in an inverse internal loop airlift-driven fibrous-bed bioreactor. Chem. Eng. J. 2010, 157, 146–160. [Google Scholar] [CrossRef]
- Sadeghizadeh, A.; Farhad dad, F.; Moghaddasi, L.; Rahimi, R. CO2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor. Bioresour. Technol. 2017, 243, 441–447. [Google Scholar] [CrossRef]
- Alhaboubi, N. CO2 sequestration using a novel Belt Conveyor Reactor with rotating sieve trays compared with Airlift Bubble Column as photobioreactors. J. King Saud Univ. Eng. Sci. 2021, in press. [CrossRef]
- Pourjamshidian, R.; Abolghasemi, H.; Esmaili, M.; Amrei, H.D.; Parsa, M.; Rezaei, S. Carbon dioxide biofixation by Chlorella sp. In a bubble column reactor at different flow rates and CO2 concentrations. Braz. J. Chem. Eng. 2019, 36, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Chiu, S.-Y.; Kao, C.-Y.; Chen, C.-H.; Kuan, T.-C.; Ong, S.-C.; Lin, C.-S. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour. Technol. 2008, 99, 3389–3396. [Google Scholar] [CrossRef] [PubMed]
- Pichler, T.; Stoppacher, B.; Kaufmann, A.; Siebenhofer, M.; Kienberger, M. Continuous Neutralization of NaOH Solution with CO2 in an Internal-Loop Airlift Reactor. Chem. Eng. Technol. 2021, 44, 38–47. [Google Scholar] [CrossRef]
- Hulatt, C.J.; Thomas, D.N. Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresour. Technol. 2011, 102, 5775–5787. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-F.; Yang, Z.-H.; Zeng, R.; Yang, G.; Chang, X.; Yan, J.-B.; Hou, Y.-L. Microalgae Capture of CO2 from Actual Flue Gas Discharged from a Combustion Chamber. Ind. Eng. Chem. Res. 2011, 50, 6496–6502. [Google Scholar] [CrossRef]
- Contreras, A.; García, F.; Molina, E.; Merchuk, J. Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol. Bioeng. 1998, 60, 317–325. [Google Scholar] [CrossRef]
Stock Solution | Composition | Stock Solution g L−1 |
---|---|---|
NaNO3 | 1.5 g | |
Nutrient Solution of BG-11 culture medium | K2HPO4 | 0.04 g |
MgSO4·7H2O | 0.075g | |
CaCl2·2H2O | 0.036 g | |
citric acid | 6.0 mg | |
ferric ammonium citrate | 6.0 mg | |
Na2EDTA | 1.0 mg | |
Na2CO3 | 0.02 g | |
Trace metals mix A5 (1 mL for 1 L BG-11) | H3BO3 | 2.86 g |
MnCl2·4H2O | 1.81 g | |
ZnSO4·7H2O | 0.222 g | |
Na2MoO4·2H2O | 0.39 g | |
CuSO4·5H2O | 0.079 g | |
Co(NO3)2·6H2O | 49.4 mg |
Gas velocity (cm/s) | 0.185 | 0.524 | 0.857 | 1.176 | 1.593 | 1.936 |
Gas holdup (cm/cm) | ||||||
Mean bubble diameter (mm) | ||||||
Bubble velocity (cm/s) | ||||||
Liquid circulation velocity in riser (cm/s) | ||||||
Liquid circulation velocity in downcomer (cm/s) |
Gas velocity (cm/s) | 0.185 | 0.524 | 0.857 | 1.176 | 1.593 | 1.936 |
Flow rate (L/min) | 0.87 | 2.47 | 4.03 | 5.54 | 7.50 | 9.12 |
vvm | 0.054 | 0.154 | 0.25 | 0.343 | 0.468 | 0.568 |
Mean bubble diameter in distilled water (mm) | 12.8 ± 0.64 | 10.4 ± 0.52 | 9.9 ± 0.49 | 9.2 ± 0.46 | 5.9 ± 0.29 | 4.6 ± 0.23 |
Mean bubble diameter in microalgal culture (mm) | 11.1 | 8.6 | 7.8 | 7.3 | 4.2 | 3.8 |
Gas Velocity | CO2 Concentration (%) | Species | Maximum CO2 Removal Efficiency (%) | Maximum Dry Weight (g L−1) | Maximum Specific Growth Rate (day−1) | Maximum Biomass Productivity (g L−1 day−1) | Reference |
---|---|---|---|---|---|---|---|
0.185 cm/s 1 0.524 cm/s | 5% | Spirulina sp. | 55.5% 23% | 0.86 1.62 (after 7 days) | 0.63 0.50 | 0.21 0.33 | This study |
8.0 L/min 12.0 L/min | 5% | Chlorella protothecoides | - - |
0.32 (after 500 h) 0.24 (after 300 h) | - - | - - | [30] |
0.145 vvm 0.29 vvm | 0.038% | Chlorella vulgaris | 28% 2% | - 1.42 (after 14 days) | - 0.16 | - - | [56] |
50 mL/min 70 mL/min | 1.75% | Chlorella sp. | 95.45% 88.63% | 2.5 (after 12 days) 2.8 (after 13 days) | 1.11 1.00 | - 0.17 | [57] |
0.74 cm/s 1.32 cm/s | 2% | C. vulgaris | 80% 64% | - - | 0.24 0.18 (after 11 days) | - - | [55] |
0.10 cm/s 0.50 cm/s | 4% | C. vulgaris | 14.6% 3.8% | 2.7 3.6 (after 10 days) | - - | 0.41 0.47 | [60] |
0.1 vvm 0.5 vvm | 12% | Scenedesmus obliquus WUST4 | 67% 21% | - - | - - | - - | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarei, Z.; Malekshahi, P.; Trzcinski, A.P.; Morowvat, M.H. Investigation of Hydrodynamic Parameters in an Airlift Photobioreactor on CO2 Biofixation by Spirulina sp. Sustainability 2022, 14, 7503. https://doi.org/10.3390/su14127503
Zarei Z, Malekshahi P, Trzcinski AP, Morowvat MH. Investigation of Hydrodynamic Parameters in an Airlift Photobioreactor on CO2 Biofixation by Spirulina sp. Sustainability. 2022; 14(12):7503. https://doi.org/10.3390/su14127503
Chicago/Turabian StyleZarei, Zahra, Peyman Malekshahi, Antoine P. Trzcinski, and Mohammad Hossein Morowvat. 2022. "Investigation of Hydrodynamic Parameters in an Airlift Photobioreactor on CO2 Biofixation by Spirulina sp." Sustainability 14, no. 12: 7503. https://doi.org/10.3390/su14127503