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Abstract: The rise of CO2 concentration on Earth is a major environmental problem that causes global
warming. To solve this issue, carbon capture and sequestration technologies are becoming more and
more popular. Among them, cyanobacteria can efficiently sequestrate CO2, which is an eco-friendly
and cost-effective way of reducing carbon dioxide, and algal biomass can be harvested as valuable
products. In this study, the hydrodynamic parameters of an airlift photobioreactor such as gas holdup,
mean bubble diameter and liquid circulation velocity were measured to investigate CO2 biofixation by
Spirulina sp. The total gas holdup was found to increase linearly with the increase in the gas velocity
from 0.185 to 1.936 cm/s. The mean bubble velocities in distilled water only and in the cyanobacterial
culture on the first and sixth days of cultivation were 109.97, 87.98, and 65.89 cm/s, respectively. It
was found that shear stress at gas velocities greater than 0.857 cm/s led to cyanobacterial death.
After 7 days of batch culture, the maximum dry cell weight reached 1.62 g/L at the gas velocity
of 0.524 cm/s, whereas the highest carbon dioxide removal efficiency by Spirulina sp. was 55.48%
at a gas velocity of 0.185 cm/s, demonstrating that hydrodynamic parameters applied in this study
were suitable to grow Spirulina sp. in the airlift photobioreactor and remove CO2.

Keywords: airlift photobioreactor; carbon sequestration; CO2 biofixation; gas holdup; liquid circula-
tion velocity; Spirulina sp.

1. Introduction

Global warming caused by human activities is one of the significant environmental
problems that has received much attention in the last two decades. One of the reasons
for the increase in temperature and global warming is the presence of greenhouse gases,
especially the high concentration of carbon dioxide in the Earth’s atmosphere [1]. This
concentration was 260–280 ppm before the industrial revolution, and it has increased
significantly since then, reaching 381 ppm in 2005. In the last 100 years, the air temperature
has increased between 0.18 and 0.74 ◦C [2]. A few researchers reported an annual increase
of 0.2 ◦C in the Earth’s temperature over the last three decades due to CO2 emissions, which
reached a new record (37%) compared to the late 18th century [3].

Among various methods for reducing CO2 such as physical absorption, chemical
fixation, soil carbon sequestration, biochar and CO2-enhanced oil recovery, the biological
fixation of CO2 by photosynthetic cyanobacteria have gained attention as an environ-
mentally friendly and economically competitive technology [4–7]. The process requires
knowledge of cell biology and factors influencing this process such as temperature, pH,
light, cyanobacteria species, cyanobacterial culture density, CO2 concentration, photo-
bioreactor hydrodynamic parameters (reactor configuration, sparging rate, mixing) [8,9].
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However, CO2 fixation by cyanobacteria on a large scale remains challenging due to the
limitation of cyanobacterial growth at high concentrations of CO2 and the need for more nu-
trients and light [10,11]. Therefore, selecting suitable cyanobacteria species to thrive at high
CO2 concentrations is considered an essential step in the biological removal of CO2 [10,12].
Spirulina sp. is an ideal candidate due to its resistance to harsh environmental conditions,
high CO2 fixation ability, and growth rate [13,14]. For instance, the removal efficiency of
CO2 fixation by Spirulina platensis at 5% CO2 in the feed gas was found to be 81% in a
semi-continuous process [15]. Also, using 6% and 12% CO2, the maximum CO2 biofixation
by Spirulina sp. was 53.3% and 45.6%, respectively [16]. Other researchers observed that
the maximum CO2 removal efficiency by S. platensis at 4% and 6% CO2 was 70% and 65%,
respectively, in a tubular photobioreactor [17,18]. Soletto et al. [19] reported that the maxi-
mum carbon dioxide removal efficiency of S. platensis at 80 and 125 mol photons m−2 s−1

reached 50% and 69%, respectively, in a bench-scale helical photobioreactor; however,
at 166 mol photons m−2 s−1, the CO2 biofixation was higher than 90%.

Typical photobioreactors (PBRs) such as vertical column reactors (bubble column and
airlift reactors), flat plate, and tubular reactors have been used to achieve high productivity,
uniform mixing, high area-to-volume ratio, high light utilization efficiency, and adequate
temperature and light control which are desirable characteristics [20,21]. Airlift reactors
(ALRs) are ideal for CO2 biofixation due to good mixing, high mass transfer rate, low shear
stress. They also require lower energy input and can be used in a wide range of inlet gas
flowrates and higher viscosity fluids [22–24]. Like in bubble columns, agitation is achieved
through pumping air which provides low shear stress and high mass transfer [25,26]. ALRs
with an internal loop consist of 4 main parts:

(i) the riser (draft tube) is the most important part of the reactor where most of the mixing
and mass transfer occurs. The gas distributor is located at the bottom of this section
and a directional multiphase flow is created upwards in this area.

(ii) the downcomer works in parallel with the riser and is the external tube. The density
in this part is higher than the riser, which causes the fluid to move.

(iii) the sparger (or gas distributor) is located at the bottom of the reactor where the riser
and the downcomer are connected.

(iv) the gas separator connecting the two sides of the reactor at the top and the gas
separation operation is performed there [24,25]. In airlift reactors, the gas holdup,
which depends on reactor height and the gas-liquid separation area in the reactor
headspace, is one of the key parameters in determining the liquid circulation velocity,
gas residence time, and overall mass transfer coefficient [24,27,28].

Furthermore, gas holdup is affected by the gas velocity, which is known as gas flow rate.
As the gas flow rate increases, the gas holdup in the riser and downcomer increases, and as a
result, the liquid circulation and bubble velocities increase. Larger bubbles move faster and
descend to the downcomer, which results in better light absorption by cyanobacteria [29,30].
However, as the liquid velocity increases at higher gas flow rates, cyanobacteria do not
remain in the downcomer long enough to utilize light efficiently [31] and may suffer from
shear stress. Liquid velocity affects many hydrodynamic and mass transfer parameters,
including average bubble residence time, bubble size, overall mass transfer rate, and mixing
time. In addition, it influences turbulence, mass transfer coefficient, and shear stress [25,29].
As a result, there is a lack of data and studies on the effect of hydrodynamic parameters
of the ALR (gas holdup, bubble diameter, and gas and liquid velocities) on the growth of
cyanobacteria and CO2 biofixation. Therefore, the present study aims at evaluating the
CO2 biofixation by Spirulina sp. through the optimization of gas flowrate, gas holdup, and
liquid velocities in an airlift photobioreactor.

2. Materials and Methods
2.1. Algal Strain and Cultivation Conditions

Spirulina sp. strain was sourced from Science and Technology Park, Bushehr, Iran, and
it was cultivated in BG-11 culture medium [32], which is described in Table 1. The stock
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culture was maintained in a 500 mL Erlenmeyer flask containing 250 mL of the medium
at 27 ◦C under 60 µmol m−2 s−1 of light intensity and a 12/12 h day/night cycle [15].

Table 1. Composition of BG-11 culture medium.

Stock Solution Composition Stock Solution g L−1

NaNO3 1.5 g

Nutrient Solution of BG-11
culture medium

K2HPO4 0.04 g

MgSO4·7H2O 0.075g

CaCl2·2H2O 0.036 g

citric acid 6.0 mg

ferric ammonium citrate 6.0 mg

Na2EDTA 1.0 mg

Na2CO3 0.02 g

Trace metals mix A5 (1 mL for
1 L BG-11)

H3BO3 2.86 g

MnCl2·4H2O 1.81 g

ZnSO4·7H2O 0.222 g

Na2MoO4·2H2O 0.39 g

CuSO4·5H2O 0.079 g

Co(NO3)2·6H2O 49.4 mg

2.2. Airlift Photobioreactor Configuration

The airlift photobioreactor used in this experiment, as shown in Figure 1, was made of
two vertical Plexiglas loops with a stainless-steel circular distributor installed at the bottom
of the reactor. The distributor consisted of eighteen 1-mm holes placed at regular intervals.
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The total volume and working volume of the reactor were 20 L and 16 L, respectively.
To control the temperature at 30 ◦C, a 100-watt heater (Sobo HC-100 model) was fitted
inside the reactor. Also, two gas rotameters were used to measure the air and carbon
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dioxide flow rates. Illumination was provided using four fluorescent lamps, and light
intensity was measured with a lux meter (TES-1339R, TES Taiwan, Taipei, Taiwan).

2.3. Hydrodynamic Tests in Distilled Water

Initially, the hydrodynamic parameters of ALR were investigated by performing gas
holdup tests in distilled water only by varying the inlet gas velocity and measuring the
average bubble size. For this purpose, experiments, which were repeated three times,
conducted at six different gas velocities of (0.185, 0.524, 0.857, 1.176, 1.593, and 1.936 cm/s)
(Table 2), to find out the range of the bubbly flow (homogenous regime) for optimum
cyanobacterial growth.

Table 2. Hydrodynamic parameters tested in the ALR at different gas velocities.

Gas velocity (cm/s) 0.185 0.524 0.857 1.176 1.593 1.936
Gas holdup (cm/cm)

Mean bubble diameter (mm)
Bubble velocity (cm/s)

Liquid circulation velocity in riser (cm/s)
Liquid circulation velocity in downcomer (cm/s)

2.4. Inoculation and Operation of the Photobioreactor

Spirulina sp. growth and CO2 removal efficiency were studied after transferring
1.6 L of an acclimated culture of Spirulina sp. into the ALR and filling it with 14.4 L of
culture medium. A mixture of 95% air and 5% (v/v) CO2 [15,33] was sparged at the
bottom of the reactor. Two separate experiments were carried out for 7 days at gas veloci-
ties of 0.185 and 0.524 cm/s corresponding to flow rates of 0.87 and 2.47 L/min or 0.054
and 0.154 volume of air per medium volume per minute (vvm), respectively. The initial
concentration of cyanobacteria was about 0.5 g L−1. The light intensity was 150 µmol pho-
tons m−2 s−1 with a 12:12 light-dark (LD) cycle, and the temperature was 30 ± 1 ◦C [15,34].
The pH of the culture medium was adjusted to 9.5 ± 0.02 using 6 M NaOH [19,35]. The
pH was measured using a pH meter (Metrohm 827 pH Lab meter). BG-11 medium was
added weekly from the top of the reactor equipped with a small tank with a one-way valve
to compensate for water evaporation from the photobioreactor.

2.5. Gas Holdup and Bubble Size Measurements

The gas holdup is described as a fraction of a gas-filled reactor volume and calculated
from the following Equation (1) [25]:

ε =
H2 − H1

H2
(1)

H2 and H1 are liquid heights after aeration and initial in the reactor, respectively.
This parameter affects the residence time of the gas phase in the liquid phase, and it

influences the gas-liquid interface through bubble size. In this study, the total gas holdup
test was performed using distilled water and air first, then with the cyanobacterial culture
aerated with air and carbon dioxide. Since bubbles with different sizes exist in the dispersed
phase, the Sauter mean bubble diameter (d32), which is a sphere diameter with the same
volume to surface ratio as the whole bubble size, was used in calculations and is determined
by Equation (2) [25,36,37]:

d32 =
∑N

i=1 Nid3
i

∑N
i=1 Nid2

i
(2)
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In which Ni is the occurrence of the bubble with diameter di. Also, the bubble velocity
was calculated using Equation (3) [25]:

Ub =
Ug

ε
(3)

where Ug is the gas velocity.
In this experiment, the average bubble size was analyzed using Image J software.

2.6. Gas Velocity

The gas velocity directly impacts the gas holdup, which is more apparent in bubbly
regimes than in turbulent flow. In the airlift reactor, the gas velocity is equal to the ratio of
the gas inlet volume to the riser cross-section as shown in Equation (4) [36]:

Ug =
Gg

Ar
(4)

where Gg and Ar are the inlet flow rate to the airlift reactor and riser cross-section, respec-
tively.

2.7. Liquid Circulation Velocity

Due to the difference in fluid density between riser and downcomer in reactors,
the fluid reaches a certain velocity [38]. The mean circulation velocity is defined by
Equation (5) [39]:

Ucirc =
Xcirc

tcirc
(5)

where xc and tc are the length of the circulation path and the mean circulation time,
respectively, however, liquid velocity values in riser (Ur) and downcomer (Ud) are more
useful than mean circulation velocity (Ucirc). However, the liquid velocity in the riser
is calculated with Equation (5) and the following correlation (Equation (6)) was used to
determine the liquid velocity in the downcomer in which Ad and Ar are downcomer and
riser cross-sections, respectively [39].

Ud × Ad = Ur × Ar (6)

2.8. Calculation of CO2 Removal Efficiency

To estimate the CO2 removal efficiency, Equation (7) was used;

CO2 removal efficiency (%) =

(
1 − CO2 output

CO2 input

)
× 100 (7)

where CO2 input is the carbon dioxide concentration in the gas injected into the bioreactor,
while CO2 output is the concentration in ppm of carbon dioxide exiting the reactor. To
measure CO2 concentration in the headspace of the reactor, a CO2 meter (Testo, Lenzkirch,
Germany, model 535) was used.

2.9. Biomass Concentration

Each day, a 20 mL sample from the ALR was withdrawn to measure the growth
medium optical density at 680 nm (OD680) [15,40] using a spectrophotometer (DR 5000,
Hach, Loveland, HQ, USA).

To obtain the dry cell weight, the sample was centrifuged at 2000 rpm for 15 min [41]
using a centrifuge (Sigma 3-30KS, Sigma, Burlington, MA, USA). The residue was then
placed in an oven for 72 h to remove moisture completely. Finally, the total dry weight of
Spirulina sp. was measured.
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Specific growth rate (µ, day−1) was calculated according to Equation (8):

µ =
ln(X2)− ln(X1)

∆t
(8)

where X2 and X1 represent biomass concentration (g L−1) during culture days t1 and t2.
To estimate the biomass productivity (p, g L−1 day−1), Equation (9) was used.

p =
X2 − X1

t2 − t1
(9)

3. Results and Discussion
3.1. Gas Holdup and Bubble Behavior in Distilled Water

As shown in Figure 2, it was observed that an increase in the gas velocity from 0.185
to 1.936 cm/s resulted in a relatively small increase in gas holdup compared to other
empirical correlations. To predict gas holdup in the ALR in the rage of gas velocity studied,
theoretical correlations [42–46] which are presented in Table 3, were used. As in this study
Equation (1) was used, factors such as gas and liquid densities (ρg and ρl), the surface
tension of the liquid (σ) gas and liquid viscosities (µg and µl) and gravitational constant
(g) were ignored, and as a result, there is a difference between measured gas holdup and
predicted holdup using empirical correlations [42–45]. However, the experimental data
obtained in this study is consistent with Hikita et al.’s correlation [46]. They confirmed
that total gas holdup increases linearly with the inlet gas velocity in the range of velocity
investigated. The reason for this was the change in the shape and nature of gas bubbles
at a higher velocity of the inlet gas [30,47,48]. As gas velocity increased, bubble size also
increased (larger bubbles were released from the sparger at the bottom), but as these large
bubbles rose in the liquid column, they quickly broke down into small bubbles; as a result,
the number of smaller bubbles increased and the mean bubble diameter decreased, which
is presented in Table 4; also the accumulation of large bubbles in the center and small ones
along the walls of the reactor was observed. Chisti reported that in the total gas holdup,
the percentage of small bubbles is greater than large bubbles [49].
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Table 3. Theoretical correlations used in this study.

Hikita and Kikukaw [42] ε = 0.505u0.47
g

(
0.072

σ

)0.67( 0.001
µl

)0.05

Reilly et al. [43] ε = 0.009 + 296u0.44
g ρ−0.98

l σ−0.16
l ρ0.19

g

Hughmark [44] ε = 1
2+(0.35/ug)(ρl σ/72)0.33

Kumar et al. [45]
ε = 0.728u − 0.485u2 + 0.0975u3

u = ug

[
ρ2

l
σ

(
ρl − ρg

)
g
]1/4

Hikita [46] ε = 0.672
(
ugµl

)0.578
(

µ4
l g

σ3ρl

)−0.131( ρg
ρl

)0.062 ( µg
µl

)0.107

Table 4. Mean bubble diameter at different gas velocities in the airlift photobioreactor.

Gas velocity (cm/s) 0.185 0.524 0.857 1.176 1.593 1.936

Flow rate (L/min) 0.87 2.47 4.03 5.54 7.50 9.12

vvm 0.054 0.154 0.25 0.343 0.468 0.568

Mean bubble diameter in
distilled water (mm) 12.8 ± 0.64 10.4 ± 0.52 9.9 ± 0.49 9.2 ± 0.46 5.9 ± 0.29 4.6 ± 0.23

Mean bubble diameter in
microalgal culture (mm) 11.1 8.6 7.8 7.3 4.2 3.8

In Figure 3, the results of total gas holdup in cyanobacterial solution were compared
with that obtained using distilled water (Figure 2). The mean bubble velocities in distilled
water and cyanobacterial medium on the first and sixth days of cultivation were 109.97,
87.98, and 65.89 cm/s, respectively. Results indicated that the bubble velocity in both
distilled water and cyanobacterial culture increased with increasing gas velocity, and
bubbles were widely distributed. However, as the size of the bubbles directly influences
the bubble velocity, higher bubble velocity was observed in distilled water compared to
cyanobacterial culture due to a lower viscosity. This observation is in agreement with
previous studies [50,51].
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3.2. Gas Holdup in Cyanobacterial Culture

In the experiment using cyanobacterial culture, the total gas holdup was measured
on two different days. The experimental results aligned with Equation (3), which clearly
shows that the total holdup decreases when the bubble velocity increases at a constant
gas velocity [25]. Also, the gas holdup on the first day was higher than in distilled water.
According to Chisti [25], at the beginning of the cell growth, smaller bubbles are formed,
which increase gas holdup. Also, the ions dissolved in the cyanobacterial culture medium
prevented the bubbles from coalescing and forming larger bubbles [25]. As growth took
place in the airlift reactor, the holdup decreased. On the sixth day, when Spirulina sp. was
at its highest density, there was less turbulence in the ALR, resulting in a lower gas holdup,
which is consistent with other works [22,36]. According to some researchers [52], gas
holdup on the first day of microalgal growth was 48.7% higher than the holdup in distilled
water, and with the increase in the liquid viscosity, holdup declined. Another study [53]
investigated the impact of high liquid viscosity on gas holdup in a cylindrical split airlift
photobioreactor. They observed a decline in the holdup with an increase in viscosity.

3.3. Liquid Circulation Velocity

The movement of gas bubbles pushes the liquid upwards in the riser and falls in the
downcomer. As shown in Figure 4, the increase in the gas velocity resulted in an increase
in the liquid velocity of the riser and downcomer, but these changes were faster at low gas
velocities. This observation is in close agreement with other studies [39,54].
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3.4. Cyanobacterial Growth

It was observed that increasing the inlet gas velocity to 1.936 cm/s was detrimental as
it resulted in a major decrease in cyanobacterial growth. The decline began at a flowrate
of 0.857 cm/s when the flow became more turbulent. With the increase in the aeration
rate, the mean bubble diameter gradually decreased from 11.1 to 3.8 mm (Table 4). As
higher velocities caused more turbulence, the average bubble diameter was smaller due
to micro-eddies, which caused small bubbles, and damaged cells which is in agreement
with previous work [30]. It was reported that the mean bubble size is important for better
cyanobacterial growth because with an increase in the bubble size, algal growth can also
decline [25]. Moreover, Sadeghizadeh et al. studied the effect of input gas velocity on
Chlorella vulgaris growth in an ALR, they found that with an increase in the gas velocity
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over 0.74 cm/s biomass concentration declined [55]. As shown in Figures 5–7, the dry cell
weight, specific growth rate and biomass productivity of Spirulina sp. were analyzed daily
during separate experiments carried out at two different gas velocities (0.185, 0.524 cm/s).
As shown in Figure 5, due to some settling in the reactor after the inoculation, the dry cell
weight decreased on day 1 compared to day 0, also some cells got stuck on the reactor
walls. However, the biomass concentration increased steadily during the culture period
and reached a maximum dry cell weight of 1.62 g/L at the gas velocity of 0.524 cm/s,
which is presented in Table 5. Increasing the aeration rate resulted in an increase in the gas
holdup and fluid circulation rate, which improved the mass transfer and cyanobacterial
growth in the bioreactor, which is in line with a previous study [39]. At 0.524 cm/s,
the sedimentation rate reduced, and more cyanobacteria were suspended in the culture
medium. As a result, cells had better exposure to light, which caused better light absorption,
photosynthesis, and growth rate. Thus, 0.524 cm/s was considered a more suitable gas
velocity for Spirulina sp. without damaging cells. It was also observed that there was a
statistically significant difference between group means as determined by one-way ANOVA
(F = 5.28414, p = 0.04029). In a similar study [30], which was carried out in a 50 L airlift
photobioreactor using 5% input CO2 and at a flow rate of 12.0 L/min, the maximum dry
cell of Chlorella protothecoides was reported to be 0.24 g/L after 300 h. They found that
when the aeration rate was 8.0 L/min, the final biomass concentration reached 0.32 g/L
after 500 h (Table 5) highlighting the effect of the aeration rate on cell shear stress. Another
work investigated the impact of increasing aeration rate from 0.145 vvm to 0.29 vvm
with a mixture of 0.038% CO2 and air on the growth rate of C. vulgaris in an ALR with a
working volume of 80 L. The maximum biomass concentration of 1.42 g/L was achieved
at an aeration rate of 0.29 vvm after 14 days (Table 5) [56]. Also, it was reported that
the maximum biomass concentration of Chlorella sp. with a constant CO2 concentration
of 1.75% reached 2.8 g/L in a bubble column reactor after 13 days. They found that with an
increase in the flow rate from 50 to 70 mL/min, the maximum biomass concentration of
Chlorella sp. increased from 2.5 to 2.8 g/L (Table 5) [57].
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30 ± 1 ◦C and pH = 9.5 ± 0.02.

Sustainability 2022, 14, x FOR PEER REVIEW 10 of 15 
 

 
Figure 6. Specific growth rate of Spirulina sp. at two gas velocities (0.185, 0.524 cm/s), temperature 
30 ± 1 °C and pH = 9.5 ± 0.02. 

 
Figure 7. Biomass productivity of Spirulina sp. at two gas velocities (0.185, 0.524 cm/s), temperature 
30 ± 1 °C and pH = 9.5 ± 0.02. 

3.5. CO2 Removal  
Figure 8 shows the carbon dioxide removal efficiency at each gas velocity during 7 

days. The results demonstrated that during the first four days, the CO2 removal efficiency 
for both velocities increased gradually; however, during the last three days, there was a 
sharp rise at the gas velocity of 0.185 cm/s. Although the gas velocity of 0.524 cm/s pro-
vided better gas-liquid mixing, recirculation, and cyanobacterial growth, the highest car-
bon dioxide removal efficiency (55.5%) (Table 5) was achieved at the gas velocity of 0.185 
cm/s and a dry cell weight of 0.86 g/L. The results illustrated that there was a statistically 
significant difference between group means as determined by one-way ANOVA (F = 
6.15675, P = 0.02889). This result indicated that higher CO2 removal efficiency was 
achieved at the lower aeration rate for several reasons. Firstly, CO2 capture efficiency can 
decrease because bubbles interconnect at higher gas velocity. Bubble surface area per unit 
volume of gas decreased, and larger bubbles rose faster than smaller ones [22,58]; as a 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7

Sp
ec

ifi
c g

ro
w

th
 ra

te
 (d

ay
 −1

)

Culture time (day)

Specific growth rate at 0.185 (cm/s) Specific growth rate at 0.524 (cm/s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8Bi
om

as
s p

ro
du

ct
iv

ity
 (g

 L
−1

da
y 

−1
)

Culture time (day)

Biomass Productivity at gas velocity of 0.185 (cm/s)

Biomass Productivity at gas velocity of 0.524 (cm/s)

Figure 7. Biomass productivity of Spirulina sp. at two gas velocities (0.185, 0.524 cm/s), temperature
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3.5. CO2 Removal

Figure 8 shows the carbon dioxide removal efficiency at each gas velocity during 7 days.
The results demonstrated that during the first four days, the CO2 removal efficiency for both
velocities increased gradually; however, during the last three days, there was a sharp rise at
the gas velocity of 0.185 cm/s. Although the gas velocity of 0.524 cm/s provided better gas-
liquid mixing, recirculation, and cyanobacterial growth, the highest carbon dioxide removal
efficiency (55.5%) (Table 5) was achieved at the gas velocity of 0.185 cm/s and a dry cell
weight of 0.86 g/L. The results illustrated that there was a statistically significant difference
between group means as determined by one-way ANOVA (F = 6.15675, p = 0.02889). This
result indicated that higher CO2 removal efficiency was achieved at the lower aeration
rate for several reasons. Firstly, CO2 capture efficiency can decrease because bubbles
interconnect at higher gas velocity. Bubble surface area per unit volume of gas decreased,
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and larger bubbles rose faster than smaller ones [22,58]; as a result, the CO2 uptake from
gas bubbles reduced, which is in agreement with previous research [49]. Secondly, when
the inlet gas velocity increased, CO2 fixation in the high-density culture (at higher viscosity)
declined due to a decrease in gas retention time and CO2 consumption [59]. In a study
carried out at four flow rates (0.145, 0.195, 0.24, and 0.29 vvm) using C. vulgaris in an airlift
reactor, it was found that CO2 removal efficiency decreased from 28% at 0.145 vvm to 2%
at 0.29 vvm (Table 5) due to a shorter residence time at higher gas velocity [56]. Also, it
was reported that at two inlet gas velocities (0.74 and 1.32 cm/s) with 2% CO2 in an ALR,
the maximum CO2 removal efficiency of C. vulgaris was 80% at 0.74 cm/s (Table 5) [55].
A similar work carried out in a bubble column reactor by sparging 4% CO2 indicated
that with the increase in superficial gas velocity from 0.10 to 0.50 cm/s, the CO2 removal
efficiency of C. vulgaris declined from 14.6% to 3.8% (Table 5) [60]. Li et al. [61] also studied
the impact of increasing gas aeration rate on CO2 removal efficiency of Scenedesmus obliquus
WUST4 enriched with 12% CO2 in an airlift photobioreactor and found that the maximum
CO2 removal efficiency was 67%, which was achieved at a flow rate of 0.1 vvm, but it
decreased to 20% when increasing the aeration rate to 0.5 vvm (Table 5). However, some
authors [58] claimed that increasing cell density, which led to an increase in the culture
viscosity, decreased CO2 concentration in the headspace of the reactor due to an increase in
the gas retention time and carbon dioxide consumption. Nevertheless, with the increase
in biomass concentration, the amount of light absorbed by cells diminished due to the
higher viscosity of the culture medium. It means that the available light limits the rate of
photosynthesis, which in turn reduces the CO2 consumed by microalgae [62]. Our results
are consistent with the previous work carried out by Pourjamshidian et al. [57], where the
authors observed that the highest CO2 removal efficiency of Chlorella sp. was 95.45% at a
flow rate of 50 mL/min, and this declined to 88.63% at an aeration rate of 70 mL/min due
to a limited algal photosynthetic capacity (Table 5).
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Figure 8. CO2 removal efficiencies at gas velocities of (0.185 and 0.524 cm/s) during the growth of
Spirulina sp. (temperature 30 ± 1 ◦C; pH = 9.5 ± 0.02).
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Table 5. Summary of present study’s results with other works.

Gas Velocity CO2
Concentration (%) Species

Maximum CO2
Removal

Efficiency (%)

Maximum Dry
Weight (g L−1)

Maximum
Specific Growth

Rate (day−1)

Maximum Biomass
Productivity (g L−1

day−1)
Reference

0.185 cm/s 1

0.524 cm/s 5% Spirulina sp. 55.5%
23%

0.86
1.62 (after 7 days)

0.63
0.50

0.21
0.33

This
study

8.0 L/min
12.0 L/min 5% Chlorella

protothecoides
-
-

0.32 (after 500 h)
0.24 (after 300 h)

-
-

-
- [30]

0.145 vvm
0.29 vvm 0.038% Chlorella vulgaris 28%

2%
-

1.42 (after 14 days)
-

0.16
-
- [56]

50 mL/min
70 mL/min 1.75% Chlorella sp. 95.45%

88.63%
2.5 (after 12 days)
2.8 (after 13 days)

1.11
1.00

-
0.17 [57]

0.74 cm/s
1.32 cm/s 2% C. vulgaris 80%

64%
-
-

0.24
0.18 (after 11

days)

-
- [55]

0.10 cm/s
0.50 cm/s 4% C. vulgaris 14.6%

3.8%
2.7

3.6 (after 10 days)
-
-

0.41
0.47 [60]

0.1 vvm
0.5 vvm 12% Scenedesmus

obliquus WUST4
67%
21%

-
-

-
-

-
- [61]

1 To compare the gas velocity with the flow rate or vvm, the data was collected in Table 4.

3.6. Perspective

Due to the increase in CO2 emissions and demand for better climate policies, this
airlift reactor can be used in large scale. This is a cost-effective, sustainable way to capture
carbon dioxide. Moreover, the results of this research illustrated that this airlift reactor was
suitable for production of Spirulina biomass which is used in wide range.

4. Conclusions

This study demonstrated that the presence of cyanobacteria influenced the bubble
velocity and gas holdup compared to the air-water system. It was observed that with an
increase in the inlet gas velocity in the cyanobacterial culture, holdup and bubble velocity
increased but more slowly than in the air-water system. Also, the inlet gas velocity and
the average bubble size had a major impact on cyanobacterial growth and CO2 uptake. At
higher gas velocity, there was a decrease in cyanobacterial growth due to the interaction
between bubbles and cells; as a result, the optimal gas velocity for Spirulina sp. growth was
achieved at 0.524 cm/s. However, the maximum carbon dioxide efficiency (55.5%) was
observed at the lower gas velocity (0.185 cm/s) due to the higher surface area of bubbles
and longer residence time in the lower viscosity of the culture. Although CO2 removal
efficiency needs more investigation regarding different hydrodynamic parameters in the
airlift photobioreactor, this study showed the feasibility of the CO2 biofixation process
using Spirulina sp.
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