A Model-Based Assessment for the Ability of National Nature Reserves to Conserve the Picea Species in China under Predicted Climate Conditions
Abstract
:1. Introduction
2. Material and Methods
2.1. Data of Species, Climate and National Nature Reserves
2.2. Species Distribution Modeling (SDM)
2.3. Systematic Conservation Planning
2.4. Gap Analysis
3. Results
3.1. Changes in the Species Distribution of Picea Species
3.2. Ability of the National Nature Reserves to Conserve Picea Species
3.3. Conservation Gap
4. Discussion
4.1. Distribution of the Picea Species
4.2. Conservation Ability of the National Nature Reserves
4.3. Conservation Gap Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef] [Green Version]
- Pinedo-Alvarez, C.; Renteria-Villalobos, M.; Aguilar-SotoJose, V.; Vega-Mares, J.H.; Melgoza-Castillo, A. Distribution dynamics of Picea chihuahuana Martínez populations under different climate change scenarios in Mexico. Glob. Ecol. Conserv. 2019, 17, e00559. [Google Scholar] [CrossRef]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000, 15, 56–61. [Google Scholar] [CrossRef]
- Bothe, H.; Turnau, K.; Regvar, M. The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 2010, 20, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Burgman, M.A. Are listed threatened plant species actually at risk? Aust. J. Bot. 2002, 50, 275. [Google Scholar] [CrossRef]
- Nosova, M.B.; Severova, E.E.; Volkova, O.A.; Kosenko, J.V. Representation of Picea pollen in modern and surface samples from Central European Russia. Veg. Hist. Archaeobot. 2015, 24, 319–330. [Google Scholar] [CrossRef]
- Karvonen, P.; Szmidt, A.E.; Savolainen, O. Length variation in the internal transcribed spacers of ribosomal DNA in Picea abies and related species. Theor. Appl. Genet. 1994, 89, 969–974. [Google Scholar] [CrossRef]
- Birks, H.H.; Giesecke, T.; Hewitt, G.M.; Tzedakis, C.; Bakke, J.; Birks, H.J.B. Comment on “Glacial Survival of Boreal Trees in Northern Scandinavia”. Science 2012, 338, 742. [Google Scholar] [CrossRef] [Green Version]
- Groot, A.; Saucierb, J.P. Volume increment efficiency of Picea mariana in northern Ontario, Canada. For. Ecol. Manag. 2008, 255, 1647–1653. [Google Scholar] [CrossRef]
- Büntgen, U.; Frank, D.C.; Kaczka, R.J.; Verstege, A.; Zwijacz-Kozica, T.; Esper, J. Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol. 2007, 27, 689–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klymiuk, A.A.; Stockey, R.A. A Lower Cretaceous (Valanginian) seed cone provides the earliest fossil record for Picea (Pinaceae). Am. J. Bot. 2012, 99, 1069–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Ven, W.T.G.; McNicol, R.J. Microsatellites as DNA markers in Sitka spruce. Theor. Appl. Genet. 1996, 93, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.Y.; Nan, Z.R.; Cheng, G.D.; Zhang, J.H.; Feng, Z.D. GIS-assisted modelling of the spatial distribution of Qinghai spruce (Picea crassifolia) in the Qilian Mountains, northwestern China based on biophysical parameters. Ecol. Model. 2006, 191, 487–500. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; OuYang, F.; Wang, J.H.; Song, L.; Kong, L.S.; Zhang, H.G. Instrinsic relationship among needle morphology, anatomy, gas exchanges and tree growth across 17 Picea species. New For. 2021, 52, 509–535. [Google Scholar] [CrossRef]
- Wang, Y.J.; Lu, R.J.; Gao, S.Y.; Meng, H.W.; Gao, S.Y. Response to climate change of different tree species and NDVI variation since 1923 in the middle arid region of Ningxia, China. Sci. Cold Arid. Reg. 2014, 6, 30–36. [Google Scholar]
- Zhang, A.P. Dynamic Reconstruction of Historical Distribution and Prediction of Future Distribution of Picea Species in China. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2018. [Google Scholar]
- Lv, D.; Zhang, H.B.; Zhan, M.; Zhao, H.; Li, B.X.; Yan, K.; Zhao, X.P. Adaptability of introduced 7 Picea species in arid and semi-arid region. J. Arid. Land Resour. Environ. 2019, 5, 5. [Google Scholar]
- Zou, C.J.; Han, S.J.; Xu, W.D.; Su, B.L. Formation, distribution, and nature of Picea mongolica in China. J. For. Res. 2001, 12, 187–191. [Google Scholar]
- Jiang, Y.; Zhang, W.T.; Wang, M.C.; Kang, M.Y.; Dong, M.Y. Radial Growth of Two Dominant Montane Conifer Tree Species in Response to Climate Change in North-Central China. PLoS ONE 2014, 9, e112537. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.L.; Gu, L.S.; Gu, L.J. Biomass Measures of Picea species and Seed Source. Xinjiang Agric. Sci. 2003, 40, 94–97. [Google Scholar]
- IUCN. The IUCN Red List of Threatened Species. Version 2021-3. 2021. Available online: https://www.iucnredlist.org (accessed on 1 December 2021).
- NAEP (National Administration of Environmental Protection); IBCAS (Institute of Botany, Chinese Academy of Sciences). List of Rare and Endangered Plants Protected in China; Science Press: Beijing, China, 1987. [Google Scholar]
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Quine, C.P.; Sayer, J. Plantation forests and biodiversity: Oxymoron or opportunity? Biodivers. Conserv. 2008, 17, 925–951. [Google Scholar] [CrossRef]
- Braverman, I. Conservation without nature: The trouble with in situ versus ex situ conservation. Geoforum 2013, 51, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Volis, S.; Blecher, M. Quasi in situ: A bridge between ex situ and in situ conservation of plants. Biodivers. Conserv. 2010, 19, 2441–2454. [Google Scholar] [CrossRef]
- Wei, X.Z.; Jiang, M.X. Meta-analysis of genetic representativeness of plant populations under ex situ conservation in contrast to wild source populations. Conserv. Biol. 2020, 35, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, D.J.; Fa, J.E.; Oldfield, S.; Harrop, S.R. Bring the captive closer to the wild: Redefining the role of ex situ conservation. Oryx 2011, 46, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Ni, T.L.; Li, X.Z.; Du, Z.X. Nature reserves and forest tourism. J. Shandong For. Sci. Technol. 2004, 5, 68. [Google Scholar]
- Pressey, R.L.; Humphries, C.J.; Margules, C.R.; Williams, P.H.; Vanewright, R.I. Beyond opportunism: Key principles for systematic reserve selection. Trends Ecol. Evol. 1993, 8, 124–128. [Google Scholar] [CrossRef]
- Voloscuk, I. Ecological stability in the Tatra mountains forests. Ekol. Bratisl. 1998, 17, 39–48. [Google Scholar]
- Yuan, H.; Zhang, Y.B.; Qin, H.N.; Liu, Y.; Yu, M. The in situ conservation of state key protected wild plants in national nature reserves in China. Biodivers. Sci. 2009, 17, 280. [Google Scholar]
- Abdel-Dayem, M.S.; Annajar, B.B.; Hanafi, H.A.; Obenauer, P.J. The potential distribution of Phlebotomus papatasi (Diptera: Psychodidae) in Libya based on ecological niche model. J. Med. Entomol. 2012, 49, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Lyu, L.K.; Wang, D.L.; Li, L.; Zhu, Y.Y.; Jiang, D.C.; Liu, J.Q.; Xu, X.T. Polyphyly and species delimitation of Picea species brachytyla (Pinaceae) based on population genetic data. J. Syst. Evol. 2021, 59, 515–523. [Google Scholar] [CrossRef]
- Ru, D.F.; Mao, K.S.; Zhang, L.; Wang, X.J.; Lu, Z.Q.; Sun, Y.S. Genomic evidence for polyphyletic origins and interlineage gene flow within complex taxa: A case study of Picea species brachytyla in the Qinghai-Tibet Plateau. Mol. Ecol. 2016, 25, 2373–2386. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.C.; Sun, M.; Zhang, W.G.; Yue, H.T.; Zhang, Y.; Tian, K.; Xiao, D.R.; Zhang, Y. Effects of Climate Warming on Radial Growth of Picea species brachytyla in Shangri-La, Southwestern China. J. Northeast. For. Univ. 2019, 47, 1–7. [Google Scholar]
- Li, Z.S.; Zhang, Q.B.; Ma, K.P. Tree-ring reconstruction of summer temperature for A.D. 1475-2003 in the central Hengduan Mountains, Northwestern Yunnan, China. Clim. Chang. 2012, 110, 455–467. [Google Scholar] [CrossRef]
- Li, L.; Abbott, R.J.; Liu, B.B.; Sun, Y.S.; Li, L.L.; Zou, J.B.; Wang, X.; Mie, H.; Liu, J.Q. Data from: Pliocene intraspecific divergence and Plio-Pleistocene range expansions within Picea species likiangensis (Lijiang Picea species), a dominant forest tree of the Qinghai-Tibet Plateau. Mol. Ecol. 2013, 27, 2280–2282. [Google Scholar]
- Zhang, M.; Shi, S.L.; Shi, C.M.; Bai, H.; Li, Z.S.; Peng, P.H. Radial growth responses of four typical coniferous species to climatic factors in the Western Sichuan Plateau, China. Chin. J. Ecol. 2021, 40, 1947–1957. [Google Scholar]
- Tang, X.Q.; Ren, Y.H.; Zang, J.C.; Zhang, Y.H. Biological Characteristics of Dioryctria abietella (Lepidoptera: Pyralidae) on Picea species likiangensis var. linzhiensis Trees. For. Res. 2019, 32, 60–64. [Google Scholar]
- Lin, L.; Luo, J. Variation in Traits of Picea species likiangensis var. linzhiensis Seedlings from Different Provenances. For. Res. 2014, 27, 557–561. [Google Scholar]
- Calvin, K.; Bond-Lamberty, B.; Clarke, L.; Edmonds, J.; Eom, J.; Hartin, C.; Kim, S.; Kyle, P.; Link, R.; Moss, R.; et al. The SSP4: A world of deepening inequality. Glob. Environ. Change 2017, 42, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Kriegler, E.; Bauer, N.; Popp, A.; Humpenöder, F.; Leimbach, M.; Strefler, J.; Baumstark, L.; Bodirsky, B.L.; Hilaire, J.; Klein, D.; et al. Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Glob. Environ. Change 2017, 42, 297–315. [Google Scholar] [CrossRef] [Green Version]
- Hingmire, D.; Vellore, R.; Krishnan, R.; Singh, M.; Metya, A.; Gokul, T.; Ayantika, D.C. Climate change response in wintertime widespread fog conditions over the Indo-Gangetic Plains. Clim. Dyn. 2022, 58, 2745–2766. [Google Scholar] [CrossRef]
- Knutti, R.; Furrer, R.; Tebaldi, C.; Cermak, J.; Meehl, G.A. Challenges in Combining Projections from Multiple Climate Models. J. Clim. 2010, 23, 2739–2758. [Google Scholar] [CrossRef] [Green Version]
- Weiland, F.; Beek, L.; Weerts, A.H.; Bierkens, M.F.P. Extracting information from an ensemble of gcms to reliably assess future global runoff change. J. Hydrol. 2011, 412, 66–75. [Google Scholar]
- Massoud, E.C.; Espinoza, V.; Guan, B.; Waliser, D.E. Global Climate Model Ensemble Approaches for Future Projections of Atmospheric Rivers. Earth’s Future 2019, 7, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Pimm, S.L.; Du, A.; Su, Y.; Ouyang, Z. Transforming protected area management in china. Trends Ecol. Evol. 2019, 34, 762–766. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P. Assessment of impact of climate change on rhododendrons in Sikkim Himalayas using maxent modelling: Limitations and challenges. Biodivers. Conserv. 2012, 21, 1251–1266. [Google Scholar] [CrossRef]
- Yang, X.Q.; Kushwaha, S.P.S.; Saran, S.; Xu, J.C.; Roy, P.S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Wan, J.Z.; Wang, C.J.; Han, S.J.; Yu, J.H. Planning the priority protected areas of endangered orchid species in northeastern China. Biodivers. Conserv. 2014, 23, 1395–1409. [Google Scholar] [CrossRef]
- Adhikari, D.; Barik, S.K.; Upadhaya, K. Habitat distribution modelling for reintroduction of Ilex khasiana Purk: A critically endangered tree species of northeastern India. Ecol. Eng. 2012, 40, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Moilanen, A.; Franco, A.M.A.; Early, R.I.; Fox, R.; Wintle, B.; Thoms, C.D. Prioritizing multiple-use landscapes for conservation: Methods for large multi-species planning problems. Proc. R. Soc. B-Biol. Sci. 2005, 272, 1885–1891. [Google Scholar] [CrossRef] [Green Version]
- Moilanen, A.; Anderson, B.J.; Eigenbrod, F.; Heinemeyer, A.; Roy, D.B.; Gillings, S.; Armsworth, P.R.; Gaston, K.J.; Thomas, C.D. Balancing alternative land uses in conservation prioritization. Ecol. Appl. 2011, 21, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Moilanen, A. Landscape Zonation, benefit functions and target-based planning: Unifying reserve selection strategies. Biol. Conserv. 2007, 134, 571–579. [Google Scholar] [CrossRef]
- Moilanen, A.; Kujala, H.; Leathwick, J. The Zonation Framework and Software for Conservation Prioritization; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Faleiro, F.V.; Machado, R.B.; Loyola, R.D. Conservation priorities in the face of land-use and climate change. Biol. Conserv. 2013, 158, 248–257. [Google Scholar] [CrossRef]
- Klorvuttimontara, S.; McClean, C.J.; Hill, J.K. Evaluating the effectiveness of protected areas for conserving tropical forest butterflies of Thailand. Biol. Conserv. 2011, 144, 2534–2540. [Google Scholar] [CrossRef]
- Ballard, G.; Jongsomjit, D.; Veloz, S.D.; Ainley, D.G. Coexistence of mesopredators in an intact polar ocean ecosystem: The basis for defining a Ross Sea marine protected area. Biol. Conserv. 2012, 156, 72–82. [Google Scholar] [CrossRef]
- Moilanen, A.; Wilson, K.H.; Possingham, H.P. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools; Oxford University Press: Oxford, UK, 2009; Volume 85, pp. 196–210. [Google Scholar]
- Moilanen, A.; Wintle, B.A. The Boundary-Quality Penalty: A Quantitative Method for Approximating Species Responses to Fragmentation in Reserve Selection. Conserv. Biol. 2007, 21, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Moilanen, A.; Wintle, B.A.; Elith, J.; Burgman, M. Uncertainty Analysis for Regional-Cale Reserve Selection. Conserv. Biol. 2007, 20, 1688–1697. [Google Scholar] [CrossRef] [PubMed]
- Moilanen, A.; Leathwick, J.; Elith, J. A method for spatial freshwater conservation prioritization. Freshw. Biol. 2008, 53, 577–592. [Google Scholar] [CrossRef]
- Williams, S.J.; Jones, J.P.; Clubbe, C. Why are some biodiversity policies implemented and others ignored? Lessons from the uptake of the global strategy for plant conservation by botanic gardens. Biol. Conserv. 2012, 21, 175–187. [Google Scholar] [CrossRef]
- Remya, K.; Ramachandran, A.; Jayakumar, S. Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecol. Eng. 2015, 82, 184–188. [Google Scholar] [CrossRef]
- Seidle, K.M.; Kiss, J.; Attanayake, A.U.; Devink, J.M.; Bedard-Haughn, A.; Westwood, R.; Lamb, E.G. Extent of Dakota skipper, Hesperia dacotae, distribution in Southeastern Saskatchewan, Canada. J. Insect Conserv. 2020, 24, 1073–1081. [Google Scholar] [CrossRef]
- Wang, C.; Lin, H.L.; Feng, Q.S.; Jin, C.Y.; Cao, A.C.; He, L. A New Strategy for the Prevention and Control of Eupatorium adenophorum under Climate Change in China. Sustainability 2017, 9, 2037. [Google Scholar] [CrossRef] [Green Version]
- Belote, R.T.; Barnett, K.; Dietz, M.S.; Burkle, L.; Jenkins, C.N.; Dreiss, L.; Aycrigg, J.L.; Aplet, G.H. Options for prioritizing sites for biodiversity conservation with implications for “30 by 30”. Biol. Conserv. 2021, 264, 109378. [Google Scholar] [CrossRef]
- Honeck, E.; Moilanen, A.; Guinaudeau, B.; Wyler, N.; Schlaepfer, M.A.; Martin, P.; Sanguet, A.; Urbina, L.; von Arx, B.; Massy, J.; et al. Implementing Green Infrastructure for the Spatial Planning of Peri-Urban Areas in Geneva, Switzerland. Sustainability 2020, 12, 1387. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Wang, Z.L.; Hou, F.H.; Yang, J.Y.; Guo, X.W. Terrain Evolution of China Seas and Land Since the Indo-China Movement and Characteristics of the Stepped Landform. Chin. J. Geophys. 2015, 58, 54–68. [Google Scholar]
- Sohar, K.; Altman, J.; Leheckova, E.; Dolezal, J. Growth-climate relationships of Himalayan conifers along elevational and latitudinal gradients. Int. J. Climatol. 2017, 37, 2593–2605. [Google Scholar] [CrossRef]
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Huang, L.; Shao, X.M.; Xiao, F.J.; Wilmking, M.; Zhang, Y.X. Warming-Induced Decline of Picea species crassifolia Growth in the Qilian Mountains in Recent Decades. PLoS ONE 2015, 10, e0129959. [Google Scholar] [CrossRef]
- Miyazawa, K.; Lechowicz, M.J. Comparative Seedling Ecology of Eight North American Picea species (Picea species) Species in Relation to their Geographic Ranges. Ann. Bot. 2004, 94, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Huo, Y.X.; Gou, X.H.; Liu, W.H.; Li, J.B.; Zhang, F.; Fang, K.Y. Climate–growth relationships of Schrenk spruce (Picea schrenkiana) along an altitudinal gradient in the western Tianshan mountains, northwest China. Trees 2017, 31, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Wu, C.H.; Hu, B.X. Projected changes of temperature extremes over nine major basins in China based on the CMIP5 multimodel ensembles. Stoch. Environ. Res. Risk Assess. 2019, 33, 321–339. [Google Scholar] [CrossRef]
- Mckenney, D.W.; Pedlar, J.H.; Lawrence, K.; Campbell, K.; Hutchinson, M.F. Potential Impacts of Climate Change on the Distribution of North American Trees. Bioscience 2007, 57, 939–948. [Google Scholar] [CrossRef]
- Akyol, A.; Orucu, O.K.; Arslan, E.S. Habitat suitability mapping of stone pine (Pinus pinea L.) under the effects of climate change. Biologia 2020, 75, 2175–2187. [Google Scholar] [CrossRef]
- Clerici, N.; Bodini, A.; Eva, H.; Gregoire, J.M.; Dulieu, D.; Paolini, C. Increased isolation of two biosphere reserves and surrounding protected areas (WAP ecological complex, West Africa). J. Nat. Conserv. 2007, 15, 26–40. [Google Scholar] [CrossRef]
- Wang, C.L.; Zang, Z.H.; Qiu, Y.; Deng, S.Y.; Feng, C.Y.; Xie, Z.Q.; Xu, W.T.; Liu, L.; Chen, Q.S.; Shen, G.Z. The effectiveness of Shennongjia National Nature Reserve in conserving forests and habitat of Sichuan snub-nosed monkey. Biodivers. Sci. 2017, 25, 504–512. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.F.; Mansur, S.; Zhang, X. Water Conservation Function of Different Vegetation Types in the Upper Tailan River in Mount Tumor Nature Reserve. J. Soil Water Conserv. 2018, 32, 210–216. [Google Scholar]
- Chen, L.; Xie, G.D.; Zhang, C.S.; Gai, L.Q.; Pei, S.; Xu, Z.R. Typical forest ecosystem services in Baimaxueshan National Nature Reserve. Chin. J. Ecol. 2011, 30, 1781–1785. [Google Scholar]
- Wang, B.; Guan, W.B.; Wu, J.A.; Ma, K.M.; Wang, X.L.; Liu, G.H. A Method for Assessing Regional Ecological Security Pattern to Conserve Biodiversity–GAP Analysis. Res. Soil Water Conserv. 2006, 13, 192–196. [Google Scholar]
- Lu, Z.; Sun, Y.; Li, Y.; Yang, Y.; Liu, J.; Wang, G. Species delimitation and hybridisation history of a hazel species complex. Ann. Bot. 2021, 27, 875–886. [Google Scholar] [CrossRef]
- Girard, L.F.; Cerreta, M.; Toro, P.D. Towards a Local Comprehensive Productive Development Strategy: A Methodological Proposal for the Metropolitan City of Naples. Qual. Innov. Prosper. 2016, 21, 223. [Google Scholar] [CrossRef] [Green Version]
- Mathey, A.H.; Krcmar, E.; Dragicevic, S.; Vertinsky, I. An object-oriented cellular automata model for forest planning problems. Ecol. Model. 2008, 212, 359–371. [Google Scholar] [CrossRef]
- Nowakowska, J.A.; Stocki, M.; Stocka, N.; Lusarski, S.; Oszako, T. Interactions between phytophthora cactorum, armillaria gallica and betula pendula seedlings subjected to defoliation. Forests 2020, 11, 1107. [Google Scholar] [CrossRef]
- Berezovska, D.; Oszako, T.; Malewski, T.; Stocki, M.; Nowakowska, J.A. Effect of defoliation on the defense reactions of silver birch (Betula pendula) infected with phytophthora plurivora. Forests 2021, 12, 910. [Google Scholar] [CrossRef]
- Nowakowska, J.A.; Hsiang, T.; Patynek, P.; Stereńczak, K.; Oszako, T. Health Assessment and Genetic Structure of Monumental Norway Spruce Trees during A Bark Beetle (Ips typographus L.) Outbreak in the Biaowiea Forest District, Poland. Forests 2020, 11, 647. [Google Scholar] [CrossRef]
Nature Reserves | Current | ssp2-4.5 | ssp5-8.5 |
---|---|---|---|
White Horse Snow Mountain | 29 | 29 | 29 |
Wuyishan, Fujian | 7 | 4 | 0 |
Annan dam Wild Camel | 0 | 0 | 39 |
Baishuijiang | 27 | 27 | 27 |
Gaoligong Mountain | 50 | 50 | 44 |
Nanling | 6 | 4 | 0 |
Lei Gongshan | 7 | 7 | 2 |
Dong Zhai | 4 | 0 | 0 |
Huping mountain | 9 | 9 | 4 |
Hoh Xil | 3 | 26 | 74 |
Qinghai Lake | 26 | 28 | 28 |
Sanjiangyuan | 336 | 489 | 508 |
Rare and endemic fish in the upper reaches of the Yangtze River | 16 | 15 | 8 |
Qiangtang | 73 | 347 | 1460 |
Selinco | 142 | 142 | 142 |
Yarlung Zangbo Grand Canyon | 77 | 77 | 69 |
Mount Qomolangma | 65 | 65 | 65 |
Altun Mountain | 0 | 4 | 63 |
Lop Nur Wild Camel | 0 | 0 | 118 |
Huanglianshan | 7 | 6 | 0 |
Nangunhe | 6 | 6 | 0 |
Xishuangbanna | 12 | 0 | 0 |
Changsha Gongma | 7 | 17 | 22 |
Taohe River | 22 | 22 | 22 |
Qaidam Haloxylon ammodendron Forest | 2 | 33 | 54 |
The First Song of the Yellow River | 21 | 21 | 21 |
Qilian Mountain, Gansu | 57 | 80 | 112 |
Dawei Mountain, Yunnan | 8 | 8 | 0 |
Picea Species | Nature Reserve Code | |||
---|---|---|---|---|
Sp1 | 276 | 287 | - | - |
Sp2 | 276 | 287 | - | - |
Sp3 | 182 | 200 | 350 | 228 |
Sp4 | 182 | 200 | 350 | 228 |
Sp5 | 182 | 200 | 350 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Wang, C.-J.; Wan, J.-Z. A Model-Based Assessment for the Ability of National Nature Reserves to Conserve the Picea Species in China under Predicted Climate Conditions. Sustainability 2022, 14, 7406. https://doi.org/10.3390/su14127406
Wang Q, Wang C-J, Wan J-Z. A Model-Based Assessment for the Ability of National Nature Reserves to Conserve the Picea Species in China under Predicted Climate Conditions. Sustainability. 2022; 14(12):7406. https://doi.org/10.3390/su14127406
Chicago/Turabian StyleWang, Qian, Chun-Jing Wang, and Ji-Zhong Wan. 2022. "A Model-Based Assessment for the Ability of National Nature Reserves to Conserve the Picea Species in China under Predicted Climate Conditions" Sustainability 14, no. 12: 7406. https://doi.org/10.3390/su14127406