Effect of the Co-Application of Eucalyptus Wood Biochar and Chemical Fertilizer for the Remediation of Multimetal (Cr, Zn, Ni, and Co) Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sample Collection
2.2. Biochar Production and Characterization
2.3. Pot Experiment Using Biochar and Fertilizer as Amending Materials
2.4. Characterization of Soil
Pre- and Post-Soil Physicochemical Characterization
exchangeable K (cmol kg−1) + exchangeable Ca (cmol kg−1) + exchangeable
Mg (cmol kg−1) − exchangeable Al (cmol kg−1)
2.5. Plant Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil and Biochar Physicochemical Characterization
3.1.1. Biochar Characterization Results
3.1.2. Pre-Soil Characterization
3.1.3. Post-Soil Characterization
Effect of Biochar and Fertilizer Amendment on the Physicochemical Properties of the Soil
Effect of Biochar and Fertilizer Amendment on the Availability of the Heavy Metals in the Soil
3.2. Effect of Biochar and Fertilizer Amendment on the Plant’s Physiological and Biochemical Properties
3.2.1. Effect of Biochar and Fertilizer Amendment on Plant’s Growth and Biomass
3.2.2. Effect of Biochar and Fertilizer Amendment on the Heavy Metals Toxicity in the Plant
3.2.3. Effect of Biochar and Fertilizer Amendment on a Plant’s Biochemical Hormones
4. Conclusions
- Incorporation of the biochar in the soil improved its physicochemical properties, such as an increase in pH, available nutrients, organic matter, and soil enzymatic activities.
- An increase in the rate of application of biochar up to 5% (w/w) significantly improved the physicochemical properties of the soil. This can be evinced by the increase in the pH, exchangeable nutrients, organic matter, CEC, and the soil’s enzymatic activities. Simultaneously, it has reduced the plant-available content of the heavy metals in the soil.
- The soil fertility index was significantly increased with the application of both biochar and the biochar–fertilizer mixture compared to the controls. Furthermore, the co-application of the biochar with NPK fertilizer increased its efficacy to be used as a soil-amending material.
- High-temperature biochar (600 EB) showed better sorption of heavy metals in the soil compared to 400 EB indicating better efficacy of the 600 EB in reducing the metal toxicity in the soil.
- Plant analysis results showed that the co-application of biochar with fertilizer substantially reduced metal toxicity and water stress effect in the plants as evidenced by the BAF, TF, proline, and glutathione (GSHt) data of the plant analysis.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Permissible Limits of Heavy Metals in Soil and Plants; WHO: Geneva, Switzerland, 1996.
- Dewangan, P.; Mishra, R.; Jhariya, D. Opencast Coal Mining at Large Depth in India-challenges ahead. World J. Eng. Res. Technol. 2017, 3, 201–211. [Google Scholar]
- Loska, K.; Wiechuła, D.; Barska, B.; Cebula, E.; Chojnecka, A. Assessment of Arsenic Enrichment of Cultivated Soils in Southern Poland. Pol. J. Environ. Stud. 2003, 12, 187–192. [Google Scholar]
- Raj, D.; Kumar, A.; Maiti, S.K. Evaluation of toxic metal(loid)s concentration in soils around an open-cast coal mine (Eastern India). Environ. Earth Sci. 2019, 78, 645. [Google Scholar] [CrossRef]
- Kronbauer, M.A.; Izquierdo, M.; Dai, S.; Waanders, F.B.; Wagner, N.J.; Mastalerz, M.; Hower, J.C.; Oliveira, M.L.S.; Taffarel, S.R.; Bizani, D.; et al. Environment Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view. Sci. Total 2013, 457, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Yenilmez, F.; Kuter, N.; Kemal, M.; Aksoy, A. International Journal of Coal Geology Evaluation of pollution levels at an abandoned coal mine site in Turkey with the aid of GIS. Int. J. Coal Geol. 2011, 86, 12–19. [Google Scholar] [CrossRef]
- Liu, X.; Bai, Z.; Zhou, W.; Cao, Y.; Zhang, G. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China. Ecol. Eng. 2017, 98, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Loupasakis, C.; Angelitsa, V.; Rozos, D.; Spanou, N. Mining geohazards—Land subsidence caused by the dewatering of opencast coal mines: The case study of the Amyntaio coal mine, Florina, Greece. Nat. Hazards 2014, 70, 675–691. [Google Scholar] [CrossRef]
- Bai, Z.K.; Fu, M.C.; Zhao, Z.Q. On soil environmental problems in mining area. Ecol. Environ. 2006, 15, 1122–1125. [Google Scholar]
- Liu, X.; Shi, H.; Bai, Z.; Zhou, W.; Liu, K.; Wang, M.; He, Y. Heavy metal concentrations of soils near the large opencast coal mine pits in China. ECSN 2019, 244, 125360. [Google Scholar] [CrossRef]
- Park, B.; Lee, J.; Ro, H.; Ho, Y. Effects of heavy metal contamination from an abandoned mine on nematode community structure as an indicator of soil ecosystem health. Appl. Soil Ecol. 2011, 51, 17–24. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Yang, R.; Zhang, L.; Ma, J. Assessment of the potential ecological risk of heavy metals in reclaimed soils at an opencast coal mine. Disaster Adv. 2013, 6, 366–377. [Google Scholar]
- Zhai, X.; Li, Z.; Huang, B.; Luo, N.; Huang, M.; Zhang, Q.; Zeng, G. Environment Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization. Sci. Total Environ. 2018, 635, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.K. Bioreclamation of coalmine overburden dumps—With special emphasis on micronutrients and heavy metals. Environ. Monit. Assess. 2007, 125, 111–122. [Google Scholar] [CrossRef]
- Vega, F.A.; Covelo, E.F.; Andrade, M.L. Competitive sorption and desorption of heavy metals in mine soils: Influence of mine soil characteristics. J. Colloid Interface Sci. 2006, 298, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Song, Y.; Yuan, P.; Cui, X.; Qiu, G. The remediation of heavy metals contaminated sediment. J. Hazard. Mater. 2009, 161, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Montinaro, S.; Concas, A.; Pisu, M.; Cao, G. Remediation of heavy metals contaminated soils by ball milling. Chemosphere 2007, 67, 631–639. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheora, A.S.; Poonia, P. Soil Reclamation of Abandoned Mine Land by Revegetation: A Review. Int. J. Soil Sediment Water 2010, 3, 13. [Google Scholar]
- Yang, S.; Liao, B.; Yang, Z.; Chai, L.; Li, J. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China. Sci. Total Environ. 2016, 562, 427–434. [Google Scholar] [CrossRef]
- Wong, M. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 2003, 50, 775–780. [Google Scholar] [CrossRef]
- Novo, L.A.B.; Castro, P.M.L.; Alvarenga, P.; da Silva, E.F. Plant Growth-Promoting Rhizobacteria-Assisted Phytoremediation of Mine Soils; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128129876. [Google Scholar]
- Palutoglu, M.; Akgul, B.; Suyarko, V.; Yakovenko, M.; Kryuchenko, N.; Sasmaz, A. Phytoremediation of Cadmium by Native Plants Grown on Mining Soil. Bull. Environ. Contam. Toxicol. 2018, 100, 293–297. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.A.; Abbaspour, A.; Zornoza, R.; Faz, A.; Abbaspour, A.; Faz, A. Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic amendments: A five-year field case study. Chemosphere 2018, 204, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Wong, V. Remediation and restoration of contaminated soils for plant growth and establishment. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 27 April–2 May 2014; Volume 16, p. 16586. [Google Scholar]
- Hodson, M.E.; Valsami-Jones, E.; Cotter-Howells, J.D. Bonemeal additions as a remediation treatment for metal contaminated soil. Environ. Sci. Technol. 2000, 34, 3501–3507. [Google Scholar] [CrossRef]
- Abbott, D.E.; Essington, M.E.; Mullen, M.D.; Ammons, J.T. Fly Ash and Lime-Stabilized Biosolid Mixtures in Mine Spoil Reclamation: Simulated Weathering. J. Environ. Qual. 2001, 30, 608–616. [Google Scholar] [CrossRef]
- Ciccu, R.; Ghiani, M.; Serci, A.; Fadda, S.; Peretti, R.; Zucca, A. Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Miner. Eng. 2003, 16, 187–192. [Google Scholar] [CrossRef]
- Tandy, S.; Healey, J.R.; Nason, M.A.; Williamson, J.C.; Jones, D.L. Remediation of metal polluted mine soil with compost: Co-composting versus incorporation. Environ. Pollut. 2009, 157, 690–697. [Google Scholar] [CrossRef]
- Singh, S.N.; Kulshreshtha, K.; Ahmad, K.J. Impact of fly ash soil amendment on seed germination, seedling growth and metal composition of Vicia faba L. Ecol. Eng. 1997, 9, 203–208. [Google Scholar] [CrossRef]
- Kiikkilä, O.; Pennanen, T.; Perkiömäki, J.; Derome, J.; Fritze, H. Basic and Applied Ecology Organic material as a copper immobilising agent: A microcosm study on remediation. Basic Appl. Ecol. 2002, 253, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Ma, L.Q.; Martinez, G.A. Comparison of Methods for Evaluating Stability and Maturity of Biosolids Compost. J. Environ. Qual. 2000, 29, 424–429. [Google Scholar] [CrossRef] [Green Version]
- Beecher, N.; Harrison, E.; Goldstein, N.; McDaniel, M.; Field, P.; Susskind, L. Risk Perception, Risk Communication, and Stakeholder Involvement for Biosolids Management and Research. J. Environ. Qual. 2005, 34, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, J.; Liu, R. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 2015, 176, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Khanmohammadi, Z.; Afyuni, M. Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Manag. Res. 2015, 33, 275–283. [Google Scholar] [CrossRef]
- Gai, X.; Wang, H.; Liu, J.; Zhai, L.; Liu, S.; Ren, T.; Liu, H. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE 2014, 9, e113888. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 2013, 116, 653–659. [Google Scholar] [CrossRef]
- Chandra, S.; Medha, I.; Bhattacharya, J. Potassium-iron rice straw biochar composite for sorption of nitrate, phosphate, and ammonium ions in soil for timely and controlled release. Sci. Total Environ. 2020, 712, 136337. [Google Scholar] [CrossRef]
- Abdelhafez, A.A.; Li, J.; Abbas, M.H.H. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere 2014, 117, 66–71. [Google Scholar] [CrossRef]
- Tripti; Kumar, A.; Usmani, Z.; Kumar, V.; Anshumali. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. J. Environ. Manag. 2017, 190, 20–27. [Google Scholar] [CrossRef]
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Effect of biochar on Pb, Cd and Cr availability and maize growth in artificial contaminated soil. Ann. Agric. Sci. 2019, 64, 95–102. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Ćwieląg-Piasecka, I. Effect of Biochar Application on Heavy Metal Mobility in Soils Impacted by Copper Smelting Processes. Pol. J. Environ. Stud. 2020, 29, 1749–1757. [Google Scholar] [CrossRef]
- Lu, K.; Yang, X.; Gielen, G.; Bolan, N.; Ok, Y.S.; Niazi, N.K.; Xu, S.; Yuan, G.; Chen, X.; Zhang, X.; et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manag. 2017, 186, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yang, Z.; Tang, L.; Zeng, G.; Yu, M.; Li, X.; Wu, H.; Qian, Y.; Li, X.; Luo, Y. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 2017, 181, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef]
- Zeng, G.; Wu, H.; Liang, J.; Guo, S.; Huang, L.; Xu, P.; Liu, Y.; Yuan, Y.; He, X.; He, Y. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. RSC Adv. 2015, 5, 34541–34548. [Google Scholar] [CrossRef]
- Karer, J.; Wawra, A.; Zehetner, F.; Dunst, G.; Wagner, M.; Pavel, P.B.; Puschenreiter, M.; Friesl-Hanl, W.; Soja, G. Effects of biochars and compost mixtures and inorganic additives on immobilisation of heavy metals in contaminated soils. Water. Air. Soil Pollut. 2015, 226, 342. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Ellis, N.; Kim, C.S.; Bi, X. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil. Environ. Pollut. 2017, 230, 329–338. [Google Scholar] [CrossRef]
- Gregory, S.J.; Anderson, C.W.N.; Camps Arbestain, M.; McManus, M.T. Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil. Agric. Ecosyst. Environ. 2014, 191, 133–141. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Lee, S.E.; Al-Wabel, M.I.; Tsang, D.C.W.; Ok, Y.S. Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. J. Soils Sediments 2017, 17, 717–730. [Google Scholar] [CrossRef]
- Novak, J.M.; Ippolito, J.A.; Lentz, R.D.; Spokas, K.A.; Bolster, C.H.; Sistani, K.; Trippe, K.M.; Phillips, C.L.; Johnson, M.G. Soil Health, Crop Productivity, Microbial Transport, and Mine Spoil Response to Biochars. Bioenergy Res. 2016, 9, 454–464. [Google Scholar] [CrossRef]
- Qi-Kai, W.; Wen-Juan, G.; Guo-Hong, S.; Da-Song, L.; Ying-Ming, X.; Jing-Ru, L.; Shi-Lei, Y. Combined effects of biochar and fertilizer on cadmium contaminated soil remediation. J. Agric. Resour. Environ. 2015, 32, 583. [Google Scholar]
- Netherway, P.; Reichman, S.M.; Laidlaw, M.; Scheckel, K.; Pingitore, N.; Gascó, G.; Méndez, A.; Surapaneni, A.; Paz-Ferreiro, J. Phosphorus-Rich Biochars Can Transform Lead in an Urban Contaminated Soil. J. Environ. Qual. 2019, 48, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
- Chandra, S.; Bhattacharya, J. Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. J. Clean. Prod. 2019, 215, 1123–1139. [Google Scholar] [CrossRef]
- Cheung, K.C.; Wong, J.P.K.; Zhang, Z.Q.; Wong, J.W.C.; Wong, M.H. Revegetation of lagoon ash using the legume species Acacia auriculiformis and Leucaena leucocephala. Environ. Pollut. 2000, 109, 75–82. [Google Scholar] [CrossRef]
- Kasongo, R.K.; VanRanst, E.; Verdoodt, A.; Kanyankagote, P.; Baert, G. Impact of Acacia auriculiformis on the chemical fertility of sandy soils on the Batéké plateau, DR Congo. Soil Use Manag. 2009, 25, 21–27. [Google Scholar] [CrossRef]
- Dudek, M.; Kloc, S.; Kręt, A. Wheat Straw Biochar and NPK Fertilization Efficiency in Sandy Soil Reclamation. Agronomy 2020, 10, 496. [Google Scholar]
- Pietrzykowski, M.; Krzaklewski, W. Soil organic matter, C and N accumulation during natural succession and reclamation in an opencast sand quarry (southern Poland). Arch. Agron. Soil Sci. 2007, 53, 473–483. [Google Scholar] [CrossRef]
- Maiti, S.K. Ecorestoration of the Coalmine Degraded Lands; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 9788578110796. [Google Scholar]
- Mylavarapu, R.; Bergeron, J.; Wilkinson, N. Soil pH and Electrical Conductivity: A County Extension Soil Laboratory Manual 1 Solubility of Plant Nutrients. 2015. Available online: https://edis.ifas.ufl.edu/pdf/SS/SS11800.pdf (accessed on 25 April 2022).
- Walkley, A.; Black, T.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeny, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Schulte, E.E.; Hopkins, B.G. Estimation of Soil Organic Matter by Weight Loss-On-Ignition. Soil Sci. Soc. Am. 1996, 049, 21–31. [Google Scholar]
- Wright, A.L.; Wang, Y.; Reddy, K.R. Loss-on-Ignition Method to Assess Soil Organic Carbon in Calcareous Everglades Wetlands. Commun. Soil Sci. Plant Anal. 2008, 39, 3074–3083. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Asija, G.L.; Subbiah, B.V. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis. Part 3. Chemical Methods-SSSA Book Series No. 5; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1994; pp. 1201–1229. [Google Scholar]
- Element, C.A.S. Method 3051A microwave assisted acid digestion of sediments, sludges, soils, and oils. Z. Für Anal. Chem. 2007, 111, 362–366. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Equilibrium Relationships of Zn2+, Fe3+, Ca2+, and H+ with EDTA and DTPA in Soils. Soil Sci. Soc. Am. J. 1969, 33, 62–68. [Google Scholar] [CrossRef]
- Roberge, M.R. Methodology of enzymes determination and extraction. In ‘Soil Enzymes’; Burns, R.G., Ed.; Academic Press: New York, NY, USA, 1978; pp. 341–352. [Google Scholar]
- Ouyang, L.; Tang, Q.; Yu, L.; Zhang, R. Effects of amendment of different biochars on soil enzyme activities related to carbon mineralisation. Soil Res. 2014, 52, 706–716. [Google Scholar] [CrossRef]
- Alef, K.; Nannipieri, P. Enzyme activities. In Methods in Applied Soil Microbiology and Biochemistry; Academic Press: London, UK, 1995; pp. 311–373. [Google Scholar]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Panwar, P.; Pal, S.; Reza, S.K.; Sharma, B. Soil fertility index, soil evaluation factor, and microbial indices under different land uses in acidic soil of humid subtropical India. Commun. Soil Sci. Plant Anal. 2011, 42, 2724–2737. [Google Scholar] [CrossRef]
- Lu, D.; Moran, E.; Mausel, P. Linking amazonian secondary succession forest growth to soil properties. Land Degrad. Dev. 2002, 13, 331–343. [Google Scholar] [CrossRef]
- Anderson, M.E.; Orrenius, S.; Holmgren, A.; Mannervik, B.; Press, R. Determination of Glutathione and Glutathione Disulfide in Biological Samples. Methods Enzymol. 1985, 113, 548–555. [Google Scholar] [PubMed]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Dere, Ş.; Güneş, T.; Sivaci, R. Spectrophotometric Determination of Chlorophyll-A, B and Total Carotenoid Contents of Some Algae Species Using Different Solvents. Turk. J. Bot. 1998, 22, 13–17. [Google Scholar]
- Li, Y.; Sun, Y.; Jiang, J.; Liu, J. Spectroscopic determination of leaf chlorophyll content and color for genetic selection on Sassafras tzumu. Plant Methods 2019, 15, 73. [Google Scholar] [CrossRef]
- Tuzen, M. Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem. J. 2003, 74, 289–297. [Google Scholar] [CrossRef]
- Banerjee, R.; Goswami, P.; Pathak, K.; Mukherjee, A. Vetiver grass: An environment clean-up tool for heavy metal contaminated iron ore soil. Ecol. Eng. 2016, 90, 25–34. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, S. Phytostabilization Potential of Jatropha curcas L. in Polymetallic Acid Mine Tailings. Int. J. Phytoremediation 2011, 13, 788–804. [Google Scholar] [CrossRef]
- Ghose, M.K. Land reclamation and protection of environment from the effect of coal mining operation. Mine Technol. 1989, 10, 35–39. [Google Scholar]
- Daily, G.D. Restoring Value to the World’s Degraded Lands. Science 1995, 269, 350–354. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Anwar, M. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Mensah, A.K.; Frimpong, K.A. Biochar and/or Compost Applications Improve Soil Properties, Growth, and Yield of Maize Grown in Acidic Rainforest and Coastal Savannah Soils in Ghana. Int. J. Agron. 2018, 2018, 6837404. [Google Scholar] [CrossRef] [Green Version]
- Khan, W.D.; Ramzani, P.M.A.; Anjum, S.; Abbas, F.; Iqbal, M.; Yasar, A.; Ihsan, M.Z.; Anwar, M.N.; Baqar, M.; Tauqeer, H.M.; et al. Potential of miscanthus biochar to improve sandy soil health, in situ nickel immobilization in soil and nutritional quality of spinach. Chemosphere 2017, 185, 1144–1156. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.X.; Yang, M.; Feng, Q.B.; McGrouther, K.; Wang, H.L.; Lu, H.H.; Chen, Y.X. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 2012, 47, 268–276. [Google Scholar] [CrossRef]
- Harvey, O.R.; Kuo, L.J.; Zimmerman, A.R.; Louchouarn, P.; Amonette, J.E.; Herbert, B.E. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ. Sci. Technol. 2012, 46, 1415–1421. [Google Scholar] [CrossRef]
- Bista, P.; Ghimire, R.; Machado, S.; Pritchett, L. Biochar Effects on Soil Properties and Wheat Biomass vary with Fertility Management. Agronomy 2019, 9, 623. [Google Scholar] [CrossRef] [Green Version]
- Frimpong, K.A.; Amoakwah, E.; Osei, B.A.; Arthur, E. Changes in soil chemical properties and lettuce yield response following incorporation of biochar and cow dung to highly weathered acidic soils. J. Org. Agric. Environ. 2016, 4, 28–39. [Google Scholar]
- Jien, S.H.; Wang, C.S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Troy, S.M.; Lawlor, P.G.; O’Flynn, C.J.; Healy, M.G. The impact of biochar addition on nutrient leaching and soil properties from tillage soil amended with pig manure. Water. Air. Soil Pollut. 2014, 225, 1900. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Guggenberger, G.; Zech, W.; Ruivo, M.D.L. Soil organic matter stability in Amazonian Dark Earths. In Amazonian Dark Earths; Lehmann, J., Kern, D.C., Glaser, B., Wodos, W.I., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 141–158. [Google Scholar]
- Rillig, M.C.; Wagner, M.; Salem, M.; Antunes, P.M.; George, C.; Ramke, H.; Titirici, M.; Antonietti, M. Material derived from hydrothermal carbonization: Effects on plant growth and arbuscular mycorrhiza. Appl. Soil Ecol. 2010, 45, 238–242. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Maiti, S.K.; Masto, R.E. Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study. Ecol. Eng. 2014, 71, 10–20. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef]
- Xiao, Y.; Xue, Y.; Gao, F.; Mosa, A. Sorption of heavy metal ions onto crayfish shell biochar: Effect of pyrolysis temperature, pH and ionic strength. J. Taiwan Inst. Chem. Eng. 2017, 80, 114–121. [Google Scholar] [CrossRef]
- Miles, L.J.; Parker, G.R. DTPA Soil Extractable and Plant Heavy Metal Concentrations with Soil-added Cd Treatments. Plant Soil 1979, 68, 59–68. [Google Scholar] [CrossRef]
- Ren, X.; Sun, H.; Wang, F.; Zhang, P.; Zhu, H. Effect of ageing in field soil on biochar’s properties and its sorption capacity. Environ. Pollut. 2018, 242, 1880–1886. [Google Scholar] [CrossRef]
- Jung, K.W.; Kim, K.; Jeong, T.U.; Ahn, K.H. Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresour. Technol. 2016, 200, 1024–1028. [Google Scholar] [CrossRef]
- Coumar, M.V.; Parihar, R.S.; Dwivedi, A.K.; Saha, J.K.; Rajendiran, S.; Dotaniya, M.L.; Kundu, S. Impact of pigeon pea biochar on cadmium mobility in soil and transfer rate to leafy vegetable spinach. Environ. Monit. Assess. 2016, 188, 31. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, D.; Li, Y.; Pan, Q.; Wang, J.; Xue, L.; Howard, A. Phosphorus and nitrogen adsorption capacities of biochars derived from feedstocks at different pyrolysis temperatures. Water 2019, 11, 1559. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhong, B.; Shafi, M.; Ma, J.; Guo, J.; Wu, J.; Ye, Z.; Liu, D.; Jin, H. Effects of biochar on growth, and heavy metals accumulation of Moso bamboo (Phyllostachy pubescens), soil physical properties, and heavy metals solubility in soil. Chemosphere 2019, 219, 510–516. [Google Scholar] [CrossRef]
- Maiti, S.K.; Nandhini, S. Bioavailability of Metals in Fly Ash and Their Bioaccumulation in Naturally Occurring Vegetation. Environ. Monit. Assess. 2006, 116, 263–273. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, K.; Wang, H.; Shi, B. Remediation of heavy-metal-contaminated soils by biochar: A review. In Envionmental Geotechnics; ICE Publishing: London, UK, 2019; pp. 1–14. ISBN 0000000264. [Google Scholar]
- Koetlisi, A.; Muchaonyerwa, P. Sorption of Selected Heavy Metals with Different Relative Concentrations in Industrial Effluent on Biochar from Human Faecal Products and Pine-Bark. Materials 2019, 12, 1768. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Peng, S.; Lin, X.; Liang, Y.; Lee, S.Z.; Allen, H.E. Predicting Cr(vi) adsorption on soils: The role of the competition of soil organic matter. Environ. Sci. Process. Impacts 2020, 22, 95–104. [Google Scholar] [CrossRef]
- Fendorf, S.; Wielinga, B.W.; Hansel, C.M.; Fendorf, S.; Wielinga, B.W.; Hansel, C.M. Chromium Transformations in Natural Environments: The Role of Biological and Abiological Processes in Chromium (VI) Reduction Chromium Transformations in Natural Environments: The Role of Biological and Abiological Processes. Int. Geol. Rev. 2000, 42, 691–701. [Google Scholar] [CrossRef]
- Richard, F.C.; Bourg, A.C.M. Aqueous Geochemistry of Chromium: A Review. Water Res. 1991, 25, 807–816. [Google Scholar] [CrossRef]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef] [Green Version]
- Quartacci, M.F.; Sgherri, C.; Cardklli, R.; Fantozzi, A. Biochar amendment reduces oxidative stress in lettuce grown under copper excess. Agrochim. Pisa 2015, 59, 188–202. [Google Scholar] [CrossRef]
- Anderson, J.V.; Davis, D.G. Abiotic stress alters transcript profiles and activity of glutathione S -transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiol. Plant. 2004, 120, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Rennenberg, H. Processes involved in glutathione metabolism. In Amino Acids and Their Derivatives in PlantsBiosynthesis and Metabolism; Wallsgrove, R.M., Ed.; Cambridge University Press: Cambridge, UK, 1995; pp. 155–171. [Google Scholar]
- Alam, M.Z.; McGee, R.; Hoque, M.A.; Ahammed, G.J.; Carpenter-Boggs, L. Effect of arbuscular mycorrhizal Fungi, Selenium and biochar on photosynthetic pigments and antioxidant enzyme activity under arsenic stress in Mung Bean (Vigna radiata). Front. Physiol. 2019, 10, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM D5142-09; Standard Test Methods for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental Procedures. ASTM International: West Conshohocken, PA, USA, 2009.
- Zhang, H.; Chen, C.; Gray, E.M.; Boyd, S.E. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass Bioenergy 2017, 105, 136–146. [Google Scholar] [CrossRef]
- Reck, I.M.; Paixão, R.M.; Bergamasco, R.; Vieira, M.F.; Vieira, A.M.S. Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J. Clean. Prod. 2018, 171, 85–97. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Park, J.; Ryu, C.; Lee, Y.H.; Hashimoto, Y.; Huang, L.; Kwon, E.E.; Ok, Y.S.; Lee, S.S. Slow pyrolyzed biochars from crop residues for soil metal(loid) immobilization and microbial community abundance in contaminated agricultural soils. Chemosphere 2017, 177, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; Melo, I.C.N.A.A.; Melo, L.C.A.; Magriotis, Z.M.; Sánchez-Monedero, M.A. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef] [Green Version]
- EBC. Analysis of Biochar. Available online: https://www.european-biochar.org/en/analytical%20methods (accessed on 20 February 2018).
- Yin, Q.; Wang, R.; Zhao, Z. Application of Mg–Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water. J. Clean. Prod. 2018, 176, 230–240. [Google Scholar] [CrossRef]
Soil Parameter | Values | ||
---|---|---|---|
Particle size | Sand | 49.50% | Sandy loam texture |
Silt | 46.79% | ||
Clay | 3.80% | ||
Water holding capacity, WHC (%) | 13.18 ± 1.53 | ||
pH | 5.86 ± 0.17 | ||
Total organic carbon (%) | 0.516 ± 0.12 | ||
Organic Matter (%) | 1.03 ± 0.18 | ||
Exchangeable Na (mg/kg) | 131.45 ± 10.58 | ||
Exchangeable K (mg/kg) | 95.88 ± 7.11 | ||
Exchangeable Ca (mg/kg) | 146.68 ± 6.08 | ||
Exchangeable Mg (mg/kg) | 16.21 ± 3.27 | ||
Available P (mg/kg) | 0.70 ± 0.11 | ||
Available N (mg/kg) | 194.05 ± 8.37 | ||
Cation exchange capacity, CEC (cmol/kg) | 6.16 ± 0.74 | ||
Nickel, Ni (mg/kg) | 40.03 ± 9.25 | ||
Copper, Cu (mg/kg) | 34.60 ± 5.56 | ||
Zinc, Zn (mg/kg) | 52.62 ± 11.16 | ||
Cobalt, Co (mg/kg) | 63.60 ± 11.03 | ||
Chromium, Cr (mg/kg) | 139.66 ± 13.04 | ||
DTPA-extractable Ni (mg/kg) | 11.25 ± 1.38 | ||
DTPA-extractable Cu (mg/kg) | 9.31 ± 1.50 | ||
DTPA-extractable Zn (mg/kg) | 8.55 ± 2.78 | ||
DTPA-extractable Co (mg/kg) | 12.33 ± 1.45 | ||
DTPA-extractable Cr (mg/kg) | 17.89 ± 2.81 | ||
Soil catalase (0.1 mol KMnO4 g-1 of soil) | 0.59 ± 0.05 | ||
β-glucosidase (mol PNF g-1 h-1) | 0.76 ± 0.08 | ||
Urease (µg N-NH4 kg-1 h-1) | 0.30 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandra, S.; Medha, I.; Bhattacharya, J.; Vanapalli, K.R.; Samal, B. Effect of the Co-Application of Eucalyptus Wood Biochar and Chemical Fertilizer for the Remediation of Multimetal (Cr, Zn, Ni, and Co) Contaminated Soil. Sustainability 2022, 14, 7266. https://doi.org/10.3390/su14127266
Chandra S, Medha I, Bhattacharya J, Vanapalli KR, Samal B. Effect of the Co-Application of Eucalyptus Wood Biochar and Chemical Fertilizer for the Remediation of Multimetal (Cr, Zn, Ni, and Co) Contaminated Soil. Sustainability. 2022; 14(12):7266. https://doi.org/10.3390/su14127266
Chicago/Turabian StyleChandra, Subhash, Isha Medha, Jayanta Bhattacharya, Kumar Raja Vanapalli, and Biswajit Samal. 2022. "Effect of the Co-Application of Eucalyptus Wood Biochar and Chemical Fertilizer for the Remediation of Multimetal (Cr, Zn, Ni, and Co) Contaminated Soil" Sustainability 14, no. 12: 7266. https://doi.org/10.3390/su14127266