# Heat Dissipation Enhancement Structure Design of Two-Stage Electric Air Compressor for Fuel Cell Vehicles Considering Efficiency Improvement

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. TSEAC Flow Field Simulation and Experimental Verification

## 3. Analysis of Influence of Heat Dissipation on TSEAC Efficiency

_{1}and W

_{2}are the compression work of the first and second stages of the TSEAC, respectively.

_{1}is the gas pressure at the TSEAC inlet, T

_{in}is the TSEAC inlet temperature, q

_{m}is the air mass flow, and C

_{p}is the air constant. Specific heat capacity, T

_{1}, T

_{2}, T

_{3}are the gas temperatures at the first-stage outlet, the second-stage inlet and the second-stage outlet under the adiabatic compression process, respectively, Q

_{1}, Q

_{2}, Q

_{3}are the heat dissipation of the first-stage volute, the first-stage volute The heat dissipation of the first-stage volute and elbow, and the heat dissipation of the entire TSEAC housing.

## 4. Heat Dissipation Enhancement Method based on Field Synergy Theory

_{p}is the specific heat capacity, k is the thermal conductivity, u and v are the velocity components, x and y are the Cartesian coordinates, and T is the temperature.

_{t}is the thermal boundary layer thickness.

## 5. Micro-Fin Tube Strengthens Heat Dissipation Structure Design

_{d}is the pressure drop in the tube.

## 6. Strengthening the Heat Dissipation Structure to Verify the Efficiency Improvement

## 7. Conclusion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Tao, Y.; Qiu, J.; Lai, S.; Zhang, X.; Wang, G. Collaborative Planning for Electricity Distribution Network and Transportation System Considering Hydrogen Fuel Cell Vehicles. IEEE Trans. Transp. Electrif.
**2020**, 6, 1211–1225. [Google Scholar] [CrossRef] - Ma, R.; Li, Z.; Breaz, E.; Liu, C.; Bai, H.; Briois, P.; Gao, F. Data-Fusion Prognostics of Proton Exchange Membrane Fuel Cell Degradation. IEEE Trans. Ind. Appl.
**2019**, 55, 4321–4331. [Google Scholar] [CrossRef] - Hu, D.; Wang, Y.; Li, J.; Yang, Q.; Wang, J. Investigation of optimal operating temperature for the PEMFC and its tracking control for energy saving in vehicle applications. Energy Convers. Manag.
**2021**, 249, 114842. [Google Scholar] [CrossRef] - Zhao, D.; Xu, L.; Huangfu, Y.; Dou, M.; Liu, J. Semi-physical modeling and control of a centrifugal compressor for the air feeding of a PEM fuel cell. Energy Convers. Manag.
**2017**, 154, 380–386. [Google Scholar] [CrossRef] - Zhou, J.; He, H.; Li, J.; Yi, F.; Hu, D.; Yi, J. Stability Expansion Control Method of Ultra-High Speed Electric Air Compressor for Hydrogen-Oxygen Fuel Cell Vehicle. CN Patent 112582646A, 19 October 2021. [Google Scholar]
- Yi, F.; Lu, D.; Wang, X.; Pan, C.; Tao, Y.; Zhou, J.; Zhao, C. Energy Management Strategy for Hybrid Energy Storage Electric Vehicles Based on Pontryagin’s Minimum Principle Considering Battery Degradation. Sustainability
**2022**, 14, 1214. [Google Scholar] [CrossRef] - Zhang, H.; Li, X.; Liu, X.; Yan, J. Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management. Appl. Energy
**2019**, 241, 483–490. [Google Scholar] [CrossRef] - Wan, Y.; Guan, J.; Xu, S. Improved empirical parameters design method for centrifugal compressor in PEM fuel cell vehicle application. Int. J. Hydrogen Energy
**2016**, 42, 5590–5605. [Google Scholar] [CrossRef] - Tirnovan, R.; Giurgea, S.; Miraoui, A.; Cirrincione, M. Modelling the characteristics of turbocompressors for fuel cell systems using hybrid method based on moving least squares. Appl. Energy
**2009**, 86, 1283–1289. [Google Scholar] [CrossRef] - Kim, J.-H.; Choi, J.-H.; Husain, A.; Kim, K.-Y. Multi-objective optimization of a centrifugal compressor impeller through evolutionary algorithms. Proc. Inst. Mech. Eng. Part A J. Power Energy
**2010**, 224, 711–721. [Google Scholar] [CrossRef] - Yagi, M.; Kishibe, T.; Shibata, T.; Nishida, H.; Kobayashi, H. Performance Improvement of Centrifugal Compressor Impellers by Optimizing Blade-Loading Distribution. In Proceedings of the 53rd ASME Turbo Expo, Berlin, Germany, 9–13 June 2008; pp. 1639–1648. [Google Scholar]
- Li, D.; Yang, C.; Zhou, M.; Zhu, Z.; Wang, H. Numerical and experimental research on different inlet configurations of high speed centrifugal compressor. Sci. China Technol. Sci.
**2011**, 55, 174–181. [Google Scholar] [CrossRef] - Kim, S.; Park, J.; Ahn, K.; Baek, J. Improvement of the Performance of a Centrifugal Compressor by Modifying the Volute Inlet. J. Fluids Eng.
**2010**, 132, 091101. [Google Scholar] [CrossRef] - Milburn, S.; Cronin, J.; Cohen, B. A Variable Displacement Compressor/Expander for Vehicular Fuel Cell Air Management; Sae Technical Papers; SAE: Boulder, CO, USA, 1996. [Google Scholar] [CrossRef]
- Cho, L.; Lee, S.; Cho, J. Use of CFD Analyses to Predict Disk Friction Loss of Centrifugal Compressor Impellers. Trans. Jpn. Soc. Aeronaut. Space Sci.
**2012**, 55, 150–156. [Google Scholar] [CrossRef] [Green Version] - Dragan, V. Centrifugal Compressor Efficiency Calculation with Heat Transfer. IIUM Eng. J.
**2017**, 18, 225–237. [Google Scholar] [CrossRef] - Gu, L.; Zemp, A.; Abhari, R.S. Numerical study of the heat transfer effect on a centrifugal compressor performance. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
**2014**, 229, 2207–2220. [Google Scholar] [CrossRef] - Hu, D.; Liu, J.; Yi, F.; Yang, Q.; Zhou, J. Enhancing heat dissipation to improve efficiency of two-stage electric air compressor for fuel cell vehicle. Energy Convers. Manag.
**2021**, 251, 115007. [Google Scholar] [CrossRef] - Hu, D.; Yang, L.; Yi, F.; Hu, L.; Yang, Q.; Zhou, J. Optimization of speed response of super-high-speed electric air compressor for hydrogen fuel cell vehicle considering the transient current. Int. J. Hydrogen Energy
**2021**, 46, 27183–27192. [Google Scholar] [CrossRef] - Pan, P.; Yuan, C.; Sun, Y.; Yan, X.; Lu, M.; Bucknall, R. Thermo-economic analysis and multi-objective optimization of S-CO2 Brayton cycle waste heat recovery system for an ocean-going 9000 TEU container ship. Energy Convers. Manag.
**2020**, 221, 113077. [Google Scholar] [CrossRef] - Guo, Z.; Tao, W.; Shah, R.K. The field synergy (coordination) principle and its applications in enhancing single phase con-vective heat transfer. Int. J. Heat Mass Transf.
**2005**, 48, 1797–1807. [Google Scholar] [CrossRef] - Carnavos, T.C. Heat Transfer Performance of Internally Finned Tubes in Turbulent Flow. Heat Transf. Eng.
**1980**, 1, 32–37. [Google Scholar] [CrossRef] - Celen, A.; Dalkilic, A.S.; Wongwises, S. Experimental analysis of the single phase pressure drop characteristics of smooth and microfin tubes. Int. Commun. Heat Mass Transf.
**2013**, 46, 58–66. [Google Scholar] [CrossRef] - Mann, G.W.; Eckels, S. Multi-objective heat transfer optimization of 2D helical micro-fins using NSGA-II. Int. J. Heat Mass Transf.
**2018**, 132, 1250–1261. [Google Scholar] [CrossRef]

**Figure 4.**Comparison of experimental and simulation results. (

**a**) Temperature-flow curve, (

**b**) pressure ratio-flow curve.

**Figure 7.**(

**a**) Nusselt number at different micro-fin heights, (

**b**) Intra-pipe pressure drop at different micro-fin heights.

Type | Model | Measuring Range | Error Range |
---|---|---|---|

Temperature sensor | WZPKB-336 | −200 °C~500 °C | ±0.3 °C |

Pressure sensor | PTX 5072-TC-A1-CA-H1-PA | 0~350 kpa | ±0.2% |

Air flow sensor | PTX 5072-TC-A1-CA-H1-PA | 0~350 kpa | ±0.2% |

Digital indicator | NHR-1100A-55-X/X/P-A | 4~20 mA | ±0.3% |

Parameter | Helix Angle α | Fin Angle θ | Fin Height ε | Number of Fins n_{f} | Fin Spacing p | Inner Diameter of Elboe d |
---|---|---|---|---|---|---|

Numerical value | 25.5° | 66.5° | 0.3 mm | 86 | 0.67 mm | 42 mm |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhou, J.; Liu, J.; Su, Q.; Feng, C.; Wang, X.; Hu, D.; Yi, F.; Jia, C.; Fan, Z.; Jiang, S.
Heat Dissipation Enhancement Structure Design of Two-Stage Electric Air Compressor for Fuel Cell Vehicles Considering Efficiency Improvement. *Sustainability* **2022**, *14*, 7259.
https://doi.org/10.3390/su14127259

**AMA Style**

Zhou J, Liu J, Su Q, Feng C, Wang X, Hu D, Yi F, Jia C, Fan Z, Jiang S.
Heat Dissipation Enhancement Structure Design of Two-Stage Electric Air Compressor for Fuel Cell Vehicles Considering Efficiency Improvement. *Sustainability*. 2022; 14(12):7259.
https://doi.org/10.3390/su14127259

**Chicago/Turabian Style**

Zhou, Jiaming, Jie Liu, Qingqing Su, Chunxiao Feng, Xingmao Wang, Donghai Hu, Fengyan Yi, Chunchun Jia, Zhixian Fan, and Shangfeng Jiang.
2022. "Heat Dissipation Enhancement Structure Design of Two-Stage Electric Air Compressor for Fuel Cell Vehicles Considering Efficiency Improvement" *Sustainability* 14, no. 12: 7259.
https://doi.org/10.3390/su14127259