Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Global Overview of AI Research and Application in Biodiversity Conservation and the Forest Sector
3.2. The Growth of AI-Based Start-Ups and Non-Profits in Biodiversity Conservation and the Forest Sector
3.3. AI and ML Application in Managing Forests and Their Resources, and Biodiversity Conservation
3.3.1. Addressing Challenges of Deforestation and Illegal Felling
3.3.2. Forest Inventory, Mapping, Carbon, and Biomass Estimation
3.3.3. Automated Reforestation and Afforestation
3.3.4. Hazard Assessment and Prediction
3.3.5. Tracking Illegal Wood Trafficking
3.3.6. Monitoring Ecosystem Health and Biodiversity Conservation
3.3.7. Solving Supply and Demand Problem
3.3.8. Forest Hydrology
3.3.9. Aquatic and Marine Biodiversity and Water Resource Conservation
3.4. Status of Indian Forests and Need of AI Technology
- About 85% of forest area is publicly owned and 15% privately owned [19]. Most of the public forests are administered by the government, and some of them by communities and indigenous groups, and only around 27% of publicly owned forest is protected in 2019, compared to 31.63% in 2003. Further, 14% of tree cover assumes unclassified status (Table 1), indicating that Indian forests suffer from low protection status.
- Of the approximately 81 Mha of forest, 9928 Mha are dense primary forests, 30.847 Mha are moderately dense forests, 40,775 Mha are open forests, and 9503 Mha consists of agroforestry, social forestry, and plantations [185]. The forest cover data from 2003 to 2019 suggests that there is a consistent increasing trend in open forest and a decrease of dense forest cover with the gain of 1,917 Mha of open forest and loss of 2599 Mha of moderately dense forest (Table 1), indicating a continuous degradation of dense forest in India.
- Further, Indian forests suffer from low growing stock. The data from 2003 to 2019 suggest that there is an loss of 507,944 million cubic meters of growing stock in forests, whereas trees outside forests show a gain of 0.61 million cubic meter, suggesting that Indian forests are poorly managed (Table 1).
- Illegal logging and trade of high-value timber is a major problem in many parts of the country. In 2009, the Ministry of Environment and Forests estimated that 2 million m3 of logs were illegally felled per year. Underlying this logging are several uncertainties relating to legal rights to harvest, tax, perform timber harvesting activities, third parties’ rights, and trade and transport.
- As India is one of the world’s largest importers of wood-based products, it is also a major consumer of illegal timber. The volume of illegal imports has increased, and in 2012, almost 20% of timber imports were estimated to be illegal [189].
- India’s population and economic growth in the last several years has raised several concerns in terms of its present and future resource demands for timber and non-timber material and energy needs from the forest. With 18% of global livestock and 17% of the human population on 2.4% of the world’s land area, the Indian forest faces immense biotic pressure. Around 30% of fodder needs for cattle and 40% of domestic fuel wood needs directly come from these forests. Despite protection status, 87% of national parks experience grazing. Further, in eastern and northeastern India, around 1.2 Mha of forest land is under shifting cultivation. Therefore, there is high anthropogenic and other biotic pressure on Indian forests.
- Moreover, the Indian forest sector still depends on resource-intensive and time-consuming traditional forestry practices to manage and protect forests. Compared to the wildlife sector, the forestry sector in India has been slow in adapting innovative technology, which can bring transformative change in conservation and management of forests and their resources.
3.5. Barriers to Adoption of AI-Based Systems for India’s Forests and Biodiversity Conservation
3.5.1. Inadequate Awareness
3.5.2. Lack of Ethical Standards and Safeguards
3.5.3. Limited Suitability to Harsh Field Conditions
3.5.4. Limited Commercial Scalability
3.6. Uncertainties Associated with AI
4. Conclusions
- Interdisciplinary collaborations between forestry practitioners, forest ecologists, conservation practitioners, forestry officials, academicians working in the forestry sector, and technologists will be important in facilitating long-term adoption of AI technology for forestry sector applications (for example, corporations like Microsoft and Google initiative’s “AI for earth innovation” bringing together researchers and conservationists to incorporate AI solutions into nature conservation by providing technical support, infrastructure, and training [190]),
- Cheap and cost-effective computational resources for both data analysis and storage (e.g., cheaper cloud-based options for online data analysis and storage) will have an advantage of minimal investment and hardware maintenance [191].
- Continued expansion of data collection capabilities (for example, emerging technologies such as the wireless sensor networks, digital recording devices, drones and camera technology, and crowd-sourced data approaches like citizen science, development of algorithms to extract data from social media, and other online sources), and
- Development of computationally less intensive, fast processing algorithms to analyze big data.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ML | Machine learning |
CNN | Convolutional Neural Network |
FSI | Forest Survey of India |
FAO | Food and Agriculture Organization |
IoT | Internet of Things |
UAVs | Unmanned Aerial Vehicles |
GIS | Geographic Information System |
SCM | Supply Chain Management |
FSOS | Forest Simulation Optimization System |
UNFCCC | United Nations Framework Convention on Climate Change |
REDD+ | Reducing Emissions from Deforestation and Forest Degradation |
CARPE | Central Africa Regional Program for the Environment |
NDCs | Nationally Determined Contributions |
DRC | Democratic Republic of Congo |
LiDAR | Light Detection and Ranging |
OCR | Optical Character Recognition |
NLP | Natural Language Processing |
References
- Kim, K.S.; Park, J.H. A survey of applications of artificial intelligence algorithms in eco-environmental modelling. Environ. Eng. Res. 2009, 14, 102–110. [Google Scholar] [CrossRef]
- Gomes, C.; Dietterich, T.; Barrett, C.; Conrad, J.; Dilkina, B.; Ermon, S.; Fang, F.; Farnsworth, A.; Fern, A.; Fern, X.; et al. Computational sustainability: Computing for a better world and a sustainable future. Commun. ACM 2019, 62, 56–65. [Google Scholar] [CrossRef]
- Shi, Z.R.; Wang, C.; Fang, F. Artificial Intelligence for Social Good: A Survey. arXiv 2020, arXiv:2001.01818. [Google Scholar]
- Christin, S.; Hervet, E.; Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 2019, 10, 1632–1644. [Google Scholar] [CrossRef]
- Jha, K.; Doshi, A.; Patel, P.; Shah, M. A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agric. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Lamba, A.; Cassey, P.; Segaran, R.R.; Koh, L.P. Deep learning for environmental conservation. Curr. Biol. 2019, 29, R977–R982. [Google Scholar] [CrossRef] [PubMed]
- Imada, A. A literature review: Forest management with neural network and artificial intelligence. In International Conference on Neural Networks and Artificial Intelligence; Springer: Cham, Switzerland, 2014; pp. 9–21. [Google Scholar]
- Liu, Z.; Peng, C.; Xiang, W.; Tian, D.; Deng, X.; Zhao, M. Application of artificial neural networks in global climate change and ecological research: An overview. Chin. Sci. Bull. 2010, 55, 3853–3863. [Google Scholar] [CrossRef]
- Khan, S.; Gupta, P.K. Comparative study of tree counting algorithms in dense and sparse vegetative regions. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 5, 801–808. [Google Scholar] [CrossRef]
- Fromm, M.; Schubert, M.; Castilla, G.; Linke, J.; McDermid, G. Automated Detection of Conifer Seedlings in Drone Imagery Using Convolutional Neural Networks. Remote Sens. 2019, 11, 2585. [Google Scholar] [CrossRef]
- Metcalf, O.C.; Ewen, J.G.; McCready, M.; Williams, E.M.; Rowcliffe, J.M. A novel method for using ecoacoustics to monitor post-translocation behaviour in an endangered passerine. Methods Ecol. Evol. 2019, 10, 626–636. [Google Scholar] [CrossRef]
- Nay, J.; Burchfield, E.; Gilligan, J. A machine-learning approach to forecasting remotely sensed vegetation health. Int. J. Remote Sens. 2018, 39, 1800–1816. [Google Scholar] [CrossRef]
- Burivalova, Z.; Game, E.T.; Butler, R.A. The sound of a tropical forest. Science 2019, 363, 28–29. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.M.; Gutierrez, R.J.L.; Peery, M.Z. Acoustic monitoring reveals a diverse forest owl community, illustrating its potential for basic and applied ecology. Ecology 2019, 100, e02764. [Google Scholar] [CrossRef]
- Coulson, R.N.; Folse, L.J.; Loh, D.K. Artificial intelligence and natural resource management. Science 1987, 237, 262–267. [Google Scholar] [CrossRef]
- Novotny, V.; Drozd, P.; Miller, S.E.; Kulfan, M.; Janda, M.; Basset, Y.; Weiblen, G.D. Why Are There So Many Species of Herbivorous Insects in Tropical Rainforests? Science 2006, 313, 1115–1118. [Google Scholar] [CrossRef]
- Schmitt, C.B.; Burgess, N.D.; Coad, L.; Belokurov, A.; Besançon, C.; Boisrobert, L.; Campbell, A.; Fish, L.; Gliddon, D.; Humphries, K.; et al. Global analysis of the protection status of the world’s forests. Biol. Conserv. 2009, 142, 2122–2130. [Google Scholar] [CrossRef]
- Bellassen, V.; Luyssaert, S. Carbon sequestration: Managing forests in uncertain times. Nature 2014, 506, 153–155. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020. Synthesis Report. Available online: https://www.fao.org/forest-resources-assessment/2020/en/ (accessed on 15 June 2021).
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Dahe, Q.; Dasgupta, P.; Dubash, N.K.; et al. Synthesis Report: Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; pp. 151–165. [Google Scholar]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Sharma, J.V. Forestry sector in India is Net Source of Green House Gases (GHGS). J. Environ. Eng. Sci. 2017, 5, 2–7. [Google Scholar]
- Innes, J.L. The promotion of ‘innovation’ in forestry: A role for government or others? Environ. Sci. 2009, 6, 201–215. [Google Scholar] [CrossRef]
- Näyhä, A.; Pelli, P.; Hetemäki, L. Services in the forest-based sector—Unexplored futures. Foresight 2015, 17, 378–398. [Google Scholar] [CrossRef]
- Garske, B.; Bau, A.; Ekardt, F. Digitalization and AI in European Agriculture: A Strategy for Achieving Climate and Biodiversity Targets? Sustainability 2021, 13, 4652. [Google Scholar] [CrossRef]
- Peng, C.; Wen, X. Recent applications of artificial neural networks in forest resource management: An overview. Transfer 1999, 1, W1. [Google Scholar]
- Norouzzadeh, M.S.; Nguyen, A.; Kosmala, M.; Swanson, A.; Palmer, M.S.; Packer, C.; Clune, J. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. USA 2018, 115, E5716–E5725. [Google Scholar] [CrossRef] [PubMed]
- Isabelle, D.A.; Westerlund, M.A. Review and Categorization of Artificial Intelligence-Based Opportunities in Wildlife, Ocean and Land Conservation. Sustainability 2022, 14, 1979. [Google Scholar] [CrossRef]
- Silvestro, D.; Goria, S.; Sterner, T.; Antonelli, A. Improving biodiversity protection through artificial intelligence. Nat. Sustain. 2022, 24, 1–10. [Google Scholar] [CrossRef]
- Tuia, D.; Kellenberger, B.; Beery, S.; Costelloe, B.R.; Zuffi, S.; Risse, B.; Mathis, A.; Mathis, M.W.; van Langevelde, F.; Burghardt, T.; et al. Perspectives in machine learning for wildlife conservation. Nat. Commun. 2022, 13, 1–5. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; De Bellis, L.; Luvisi, A. iPathology: Robotic applications and management of plants and plant diseases. Sustainability 2017, 9, 1010. [Google Scholar] [CrossRef]
- Kourtz, P. Artificial intelligence: A new tool for forest management. Can. J. For. Res. 1990, 20, 428–437. [Google Scholar] [CrossRef]
- Rana, P.; Miller, D.C. Machine learning to analyze the social-ecological impacts of natural resource policy: Insights from community forest management in the Indian Himalaya. Environ. Res. Lett. 2019, 14, 024008. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, C.; Work, T.; Candau, J.N.; DesRochers, A.; Kneeshaw, D. Application of machine-learning methods in forest ecology: Recent progress and future challenges. Environ. Rev. 2018, 26, 339–350. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Deb, D.; Singh, J.P.; Deb, S.; Datta, D.; Ghosh, A.; Chaurasia, R.S. An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India. Environ. Monit. Assess. 2017, 189, 576. [Google Scholar] [CrossRef] [PubMed]
- Dao, D.; Cang, C.; Fung, C.; Zhang, M.; Pawlowski, N.; Gonzales, R.; Beglinger, N.; Zhang, C. GainForest: Scaling Climate Finance for Forest Conservation using Interpretable Machine Learning on Satellite Imagery. In Proceedings of the ICML Climate Change AI Workshop, Long Beach, CA, USA, 14 June 2019. [Google Scholar]
- Dou, X.; Yang, Y.; Luo, J. Estimating Forest carbon fluxes using machine learning techniques based on eddy covariance measurements. Sustainability 2018, 10, 203. [Google Scholar] [CrossRef]
- He, T. Image Monitoring and Artificial Intelligence Recognition Technology for Rare Animal Protection. Rev. Cient. Fac. Cienc. Vet. Univ. Zulia 2020, 30, 2390–2399. [Google Scholar]
- Padovese, B.T.; Padovese, L.R. Machine Learning for Identifying an Endangered Brazilian Psittacidae Species. J. Environ. Inform. Lett. 2019, 2, 19–27. [Google Scholar]
- Harrison, J.R.; Roberts, D.L.; Hernandez-Castro, J. Assessing the extent and nature of wildlife trade on the dark web. Conserv. Biol. 2016, 30, 900–904. [Google Scholar] [CrossRef]
- Lavorgna, A.; Middleton, S.E.; Pickering, B.; Neumann, G. FloraGuard: Tackling the online illegal trade in endangered plants through a cross-disciplinary ICT-enabled methodology. J. Contemp. Crim. Justice 2020, 36, 428–450. [Google Scholar] [CrossRef]
- Di Minin, E.; Fink, C.; Hiippala, T.; Tenkanen, H. A framework for investigating illegal wildlife trade on social media with machine learning. Conserv. Biol. 2019, 33, 210. [Google Scholar] [CrossRef]
- Di Minin, E.; Fink, C.; Tenkanen, H.; Hiippala, T. Machine learning for tracking illegal wildlife trade on social media. Nat. Ecol. Evol. 2018, 2, 406–407. [Google Scholar] [CrossRef]
- Brust, C.A.; Burghardt, T.; Groenenberg, M.; Kading, C.; Kuhl, H.S.; Manguette, M.L.; Denzler, J. Towards automated visual monitoring of individual gorillas in the wild. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 2820–2830. [Google Scholar]
- Guirado, E.; Tabik, S.; Rivas, M.L.; Alcaraz-Segura, D.; Herrera, F. Automatic whale counting in satellite images with deep learning. bioRxiv 2018. [Google Scholar] [CrossRef]
- Borowicz, A.; Le, H.; Humphries, G.; Nehls, G.; Höschle, C.; Kosarev, V.; Lynch, H.J. Aerial-trained deep learning networks for surveying cetaceans from satellite imagery. PLoS ONE 2019, 14, e0212532. [Google Scholar] [CrossRef] [PubMed]
- Atanbori, J.; Duan, W.; Murray, J.; Appiah, K.; Dickinson, P. Automatic classification of flying bird species using computer vision techniques. Pattern Recognit. Lett. 2016, 81, 53–62. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Wang, G.; Zhang, H. Deep learning for plant identification in natural environment. Comput. Intell. Neurosci. 2017. [Google Scholar] [CrossRef]
- Wäldchen, J.; Rzanny, M.; Seeland, M.; Mäder, P. Automated plant species identification—Trends and future directions. PLoS Comput. Biol. 2018, 14, e1005993. [Google Scholar] [CrossRef]
- Willi, M.; Pitman, R.T.; Cardoso, A.W.; Locke, C.; Swanson, A.; Boyer, A.; Veldthuis, M.; Fortson, L. Identifying animal species in camera trap images using deep learning and citizen science. Methods Ecol. Evol. 2019, 10, 80–91. [Google Scholar] [CrossRef]
- Nuñez, G.B.; Lemus, G.; Wolf, M.M.; Rodales, A.L.; González, E.M.; Crisci, C. The first artificial intelligence algorithm for identification of bat species in Uruguay. Ecol. Inform. 2018, 46, 97–102. [Google Scholar] [CrossRef]
- Azlah, M.A.F.; Chua, L.S.; Rahmad, F.R.; Abdullah, F.I.; Wan Alwi, S.R. Review on Techniques for Plant Leaf Classification and Recognition. Computers 2019, 8, 77. [Google Scholar] [CrossRef]
- Ahmadi, V. Using GIS and Artificial Neural Network for Deforestation Prediction. Preprints 2018. [Google Scholar] [CrossRef]
- Arekhi, S.; Jafarzadeh, A.A. Forecasting areas vulnerable to forest conversion using artificial neural network and GIS (case study: Northern Ilam forests, Ilam province, Iran). Arab. J. Geosci. 2014, 7, 1073–1085. [Google Scholar] [CrossRef]
- Larrea-Gallegos, G.; Vázquez-Rowe, I. Exploring machine learning techniques to predict deforestation to enhance the decision-making of road construction projects. J. Ind. Ecol. 2022, 26, 225–239. [Google Scholar] [CrossRef]
- Mayfield, H.; Smith, C.; Gallagher, M.; Hockings, M. Use of freely available datasets and machine learning methods in predicting deforestation. Environ. Model. Softw. 2017, 187, 17–28. [Google Scholar] [CrossRef]
- Mayfield, H.J.; Smith, C.; Gallagher, M.; Hockings, M. Considerations for selecting a machine learning technique for predicting deforestation. Environ. Model. Softw. 2020, 131, 104741. [Google Scholar] [CrossRef]
- Dominguez, D.; del Villar, L.D.; Pantoja, O.; González-Rodríguez, M. Forecasting Amazon Rain-Forest Deforestation Using a Hybrid Machine Learning Model. Sustainability 2022, 14, 691. [Google Scholar] [CrossRef]
- Carreiras, J.; Pereira, J.; Shimabukuro, Y.E. Land-cover mapping in the Brazilian Amazon using SPOT-4 vegetation data and machine learning classification methods. Photogramm. Eng. Remote Sens. 2006, 72, 897–910. [Google Scholar] [CrossRef]
- Giannetti, F.; Barbati, A.; Mancini, L.D.; Travaglini, D.; Bastrup-Birk, A.; Canullo, R.; Nocentini, S.; Chirici, G. European forest types: Toward an automated classification. Ann. For. Sci. 2018, 75, 1–4. [Google Scholar] [CrossRef]
- Lin, P.; Lu, Q.; Li, D.; Chen, Y.; Zou, Z.; Jiang, S. Artificial intelligence classification of wetland vegetation morphology based on deep convolutional neural network. Nat. Resour. Model. 2020, 33, e12248. [Google Scholar] [CrossRef]
- Watanabe, S.; Sumi, K.; Ise, T. Automatic vegetation identification in Google Earth images using a convolutional neural network: A case study for Japanese bamboo forests. bioRxiv 2018. [Google Scholar] [CrossRef]
- Bastin, J.F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- da Rocha, S.J.; Torres, C.M.; Jacovine, L.A.; Leite, H.G.; Gelcer, E.M.; Neves, K.M.; Schettini, B.L.; Villanova, P.H.; da Silva, L.F.; Reis, L.P.; et al. Artificial neural networks: Modeling tree survival and mortality in the Atlantic Forest biome in Brazil. Sci. Total Environ. 2018, 645, 655–661. [Google Scholar] [CrossRef]
- Adikari, K.E.; Shrestha, S.; Ratnayake, D.T.; Budhathoki, A.; Mohanasundaram, S.; Dailey, M.N. Evaluation of artificial intelligence models for flood and drought forecasting in arid and tropical regions. Environ. Model. Softw. 2021, 144, 105136. [Google Scholar] [CrossRef]
- Jaafari, A.; Zenner, E.K.; Panahi, M.; Shahabi, H. Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric. For. Meteorol. 2019, 266, 198–207. [Google Scholar] [CrossRef]
- Satir, O.; Berberoglu, S.; Donmez, C. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomat. Nat. Hazards Risk 2016, 7, 1645–1658. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, M.; Liu, K. Forest Fire Susceptibility Modeling Using a Convolutional Neural Network for Yunnan Province of China. Int. J. Disaster Risk Sci. 2019, 10, 386–403. [Google Scholar] [CrossRef]
- Golhani, K.; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 2018, 5, 354–371. [Google Scholar] [CrossRef]
- Rammer, W.; Seidl, R. Harnessing deep learning in ecology: An example predicting bark beetle outbreaks. Front. Plant Sci. 2019, 10, 1327. [Google Scholar] [CrossRef]
- Wiesner-Hanks, T.; Wu, H.; Stewart, E.; DeChant, C.; Kaczmar, N.; Lipson, H.; Gore, M.A.; Nelson, R.J. Millimeter-level plant disease detection from aerial photographs via deep learning and crowdsourced data. Front. Plant Sci. 2019, 10, 155010. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, Z.; Liu, J.; Yassin, B.; Nan, Z.; Luo, J. AI for earth: Rainforest conservation by acoustic surveillance. arXiv 2019, arXiv:1908.07517. [Google Scholar]
- Backs, J.A.J.; Nychka, J.; St. Clair, C.C. Warning systems triggered by trains increase flight-initiation times of wildlife. Transp. Res. Part D Transp. Environ. 2020, 87, 102502. [Google Scholar] [CrossRef]
- Karanth, K.U.; Nichols, J.D. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 1998, 79, 2852–2862. [Google Scholar] [CrossRef]
- Shi, C.; Liu, D.; Cui, Y.; Xie, J.; Roberts, N.J.; Jiang, G. Amur tiger stripes: Individual identification based on deep convolutional neural network. Integr. Zool. 2020, 15, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Milovanović, M.B.; Antić, D.S.; Rajić, M.N.; Milosavljević, P.M.; Pavlović, A.; Fragassa, C. Wood resource management using an endocrine NARX neural network. Eur. J. Wood Wood Prod. 2018, 76, 687–697. [Google Scholar] [CrossRef]
- Anandhi, V.; Chezian, R.M.; Parthiban, K.T. Forecast of demand and supply of pulpwood using artificial neural network. Int. J. Comput. Sci. Telecommun. 2012, 3, 35–38. [Google Scholar]
- Amatya, D.M.; Douglas-Mankin, K.R.; Williams, T.M.; Skaggs, R.W.; Nettles, J.E. Advances in forest hydrology: Challenges and opportunities. Trans. ASABE 2011, 54, 2049–2056. [Google Scholar] [CrossRef]
- Guswa, A.J.; Tetzlaff, D.; Selker, J.S.; Carlyle-Moses, D.E.; Boyer, E.W.; Bruen, M.; Cayuela, C.; Creed, I.F.; van de Giesen, N.; Grasso, D.; et al. Advancing ecohydrology in the 21st century: A convergence of opportunities. Ecohydrology 2020, 13, e2208. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O.; Sibanda, M.; Shoko, C.; Chemura, A. Evaluating the influence of the Red Edge band from RapidEye sensor in quantifying leaf area index for hydrological applications specifically focussing on plant canopy interception. Phys. Chem. Earth Parts A/B/C 2017, 100, 73–80. [Google Scholar] [CrossRef]
- Stravs, L.; Brilly, M.; Sraj, M. Precipitation interception modelling using machine learning methods—The Dragonja River basin case study. In Practical Hydroinformatics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 347–358. [Google Scholar]
- Trombetti, M.; Riaño, D.; Rubio, M.A.; Cheng, Y.B.; Ustin, S.L. Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA. Remote Sens. Environ. 2008, 112, 203–215. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, S.; Liu, J.; Wang, C.; Guo, Z.; Xu, A.; Pan, K.; Pan, X. Predicting soil moisture content over partially vegetation covered surfaces from hyperspectral data with deep learning. Soil Sci. Soc. Am. J. 2021, 85, 989–1001. [Google Scholar] [CrossRef]
- Lee, C.S.; Sohn, E.; Park, J.D.; Jang, J.D. Estimation of soil moisture using deep learning based on satellite data: A case study of South Korea. GISci. Remote Sens. 2019, 56, 43–67. [Google Scholar] [CrossRef]
- de Oliveira, V.A.; Rodrigues, A.F.; Morais, M.A.V.; Terra, M.D.C.N.S.; Guo, L.; de Mello, C.R. Spatiotemporal modelling of soil moisture in an Atlantic forest through machine learning algorithms. Eur. J. Soil Sci. 2021, 72, 1969–1987. [Google Scholar] [CrossRef]
- Pan, S.; Pan, N.; Tian, H.; Friedlingstein, P.; Sitch, S.; Shi, H.; Arora, V.K.; Haverd, V.; Jain, A.K.; Kato, E.; et al. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci. 2020, 24, 1485–1509. [Google Scholar] [CrossRef]
- Panda, S.; Amatya, D.M.; Jackson, R.; Sun, G.; Noormets, A. Automated geospatial models of varying complexities for pine forest evapotranspiration estimation with advanced data mining. Water 2018, 10, 1687. [Google Scholar] [CrossRef]
- Lu, X.; Zhuang, Q. Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sens. Environ. 2010, 114, 1924–1939. [Google Scholar] [CrossRef]
- Luo, X.R.; Li, S.D.; Liu, L.; Yang, W.N.; Zhang, Y.H.; Chen, G.; Qiu, S.Y.; Tang, Q.L.; Tang, X.L. Quantifying aboveground vegetation water storage combining Landsat 8 OLI and Sentinel-1 imageries. Geocarto Int. 2020, 12, 1–22. [Google Scholar] [CrossRef]
- Irrgang, C.; Saynisch-Wagner, J.; Dill, R.; Boergens, E.; Thomas, M. Self-Validating Deep Learning for Recovering Terrestrial Water Storage From Gravity and Altimetry Measurements. Geophys. Res. Lett. 2020, 47, e2020GL089258. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Malakar, P.; Mukherjee, A.; Rodell, M.; Mitra, P.; Sarkar, S. Using satellitebased vegetation cover as indicator of groundwater storage in natural vegetation areas. Geophys. Res. Lett. 2019, 46, 8082–8092. [Google Scholar] [CrossRef]
- Kamarudin, M.H.; Ismail, Z.H.; Saidi, N.B. Deep learning sensor fusion in plant water stress assessment: A comprehensive review. Appl. Sci. 2021, 11, 1403. [Google Scholar] [CrossRef]
- Pal, S.; Sharma, P. A review of machine learning applications in land surface modeling. Earth 2021, 2, 174–190. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Pathways and challenges of the application of artificial intelligence to geohazards modelling. Gondwana Res. 2020, 100, 290–301. [Google Scholar] [CrossRef]
- Levia, D.F.; Carlyle-Moses, D.E.; Iida, S.; Michalzik, B.; Nanko, K.; Tischer, A. Forest-Water Interactions; Ecological Studies Series, No. 240; Springer: Cham, Switzerland, 2020; p. 628. [Google Scholar]
- Mao, J.; Wang, Y.; Ricciuto, D.; Mahajan, S.; Hoffman, F.; Shi, X.; Prakash, G. AI-Based Integrated Modeling and Observational Framework for Improving Seasonal to Decadal Prediction of Terrestrial Ecohydrological Extremes (No. AI4ESP-1089); Artificial Intelligence for Earth System Predictability (AI4ESP) Collaboration (United States): Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Chang, N.B.; Mohiuddin, G.; Crawford, A.J.; Bai, K.; Jin, K.R. Diagnosis of the artificial intelligence-based predictions of flow regime in a constructed wetland for stormwater pollution control. Ecol. Inform. 2018, 28, 42–60. [Google Scholar] [CrossRef]
- Fathian, F.; Mehdizadeh, S.; Sales, A.K.; Safari, M.J.S. Hybrid models to improve the monthly river flow prediction. Integrating artificial intelligence and non-linear time series models. J. Hydrol. 2019, 575, 1200–1213. [Google Scholar] [CrossRef]
- Mohiuddin, G. Remote Sensing with Computational Intelligence Modelling for Monitoring the Ecosystem State and Hydraulic Pattern in a Constructed Wetland. Master’s Thesis, University of Central Florida, Orlando, FL, USA, 2015. [Google Scholar]
- Pereira, G.C.; Ebecken, N.F. Combining in situ flow cytometry and artificial neural networks for aquatic systems monitoring. Expert Syst. Appl. 2011, 38, 9626–9632. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Kisi, O.; Demir, V. Enhancing long-term streamflow forecasting and predicting using periodicity data component: Application of artificial intelligence. Water Resour. Manag. 2016, 30, 4125–4151. [Google Scholar] [CrossRef]
- Toro, C.H.F.; Meire, S.G.; Gálvez, J.F.; Fdez-Riverola, F. A hybrid artificial intelligence model for river flow forecasting. Appl. Soft. Comput. 2013, 13, 3449–3458. [Google Scholar] [CrossRef]
- Barzegar, R.; Adamowski, J.; Moghaddam, A.A. Application of wavelet-artificial intelligence hybrid models for water quality prediction: A case study in Aji-Chay River, Iran. Stoch. Env. Res. Risk A 2016, 30, 1797–1819. [Google Scholar] [CrossRef]
- Ceccaroni, L.; Velickovski, F.; Blaas, M.; Wernand, M.R.; Blauw, A.; Subirats, L. Artificial intelligence and earth observation to explore water quality in the Wadden Sea. Earth Obs. Open Sci. Innov. 2018, 15, 311–320. [Google Scholar]
- Chau, K.W. A review on integration of artificial intelligence into water quality modelling. Mar. Pollut. Bull. 2006, 52, 726–733. [Google Scholar] [CrossRef]
- Elkiran, G.; Nourani, V.; Abba, S.I. Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J. Hydrol. 2019, 577, 123962. [Google Scholar] [CrossRef]
- Fijani, E.; Barzegar, R.; Deo, R.; Tziritis, E.; Skordas, K. Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters. Sci. Total Environ. 2019, 648, 839–853. [Google Scholar] [CrossRef]
- Gharibi, H.; Mahvi, A.H.; Nabizadeh, R.; Arabalibeik, H.; Yunesian, M.; Sowlat, M.H. A novel approach in water quality assessment based on fuzzy logic. J. Environ. Manag. 2012, 112, 87–95. [Google Scholar] [CrossRef]
- Gunda, N.S.K.; Gautam, S.H.; Mitra, S.K. Artificial intelligence based mobile application for water quality monitoring. J. Electrochem. Soc. 2019, 166, B3031. [Google Scholar] [CrossRef]
- Hameed, M.; Sharqi, S.S.; Yaseen, Z.M.; Afan, H.A.; Hussain, A.; Elshafie, A. Application of artificial intelligence (AI) techniques in water quality index prediction: A case study in tropical region, Malaysia. Neural Comput. Appl. 2017, 28, 893–905. [Google Scholar] [CrossRef]
- Hatzikos, E.V.; Bassiliades, N.; Asmanis, L.; Vlahavas, I. Monitoring water quality through a telematic sensor network and a fuzzy expert system. Expert Syst. 2007, 24, 143–161. [Google Scholar] [CrossRef]
- Hatzikos, E.V.; Tsoumakas, G.; Tzanis, G.; Bassiliades, N.; Vlahavas, I. An empirical study on sea water quality prediction. Knowl.-Based Syst. 2008, 21, 471–478. [Google Scholar] [CrossRef]
- Khaki, M.; Yusoff, I.; Islami, N. Application of the Artificial Neural Network and Neuro-fuzzy System for Assessment of Groundwater Quality. CLEAN–Soil Air Water 2015, 43, 551–560. [Google Scholar] [CrossRef]
- Li, R.; Zou, Z.; An, Y. Water quality assessment in Qu River based on fuzzy water pollution index method. J. Environ. Sci. 2016, 50, 87–92. [Google Scholar] [CrossRef]
- Najah, A.; Elshafie, A.; Karim, O.A.; Jaffar, O. Prediction of Johor River water quality parameters using artificial neural networks. Eur. J. Sci. Res. 2009, 28, 422–435. [Google Scholar]
- Najah, A.; El-Shafie, A.; Karim, O.A.; Jaafar, O.; El-Shafie, A.H. An application of different artificial intelligences techniques for water quality prediction. Int. J. Phys. Sci. 2011, 6, 5298–5308. [Google Scholar]
- Rajaee, T.; Khani, S.; Ravansalar, M. Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review. Chemometr. Intell. Lab. 2020, 200, 103978. [Google Scholar] [CrossRef]
- Sakizadeh, M. Artificial intelligence for the prediction of water quality index in groundwater systems. Modeling Earth Syst. Environ. 2016, 2, 8. [Google Scholar] [CrossRef]
- Sengorur, B.; Koklu, R.; Ates, A. Water quality assessment using artificial intelligence techniques: SOM and ANN—A case study of Melen River Turkey. Water Qual. Expos. Health 2015, 7, 469–490. [Google Scholar] [CrossRef]
- Sharaf El Din, E.; Zhang, Y.; Suliman, A. Mapping concentrations of surface water quality parameters using a novel remote sensing and artificial intelligence framework. Int. J. Remote Sens. 2017, 38, 1023–1042. [Google Scholar] [CrossRef]
- Strobl, R.O.; Robillard, P.D. Artificial intelligence technologies in surface water quality monitoring. Water Int. 2006, 31, 198–209. [Google Scholar] [CrossRef]
- Tsai, W.P.; Huang, S.P.; Cheng, S.T.; Shao, K.T.; Chang, F.J. A data-mining framework for exploring the multi-relation between fish species and water quality through self-organizing map. Sci. Total Environ. 2017, 579, 474–483. [Google Scholar] [CrossRef]
- Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol. 2020, 585, 124670. [Google Scholar]
- Zhu, X.; Li, D.; He, D.; Wang, J.; Ma, D.; Li, F. A remote wireless system for water quality online monitoring in intensive fish culture. Comput. Electron. Agric. 2010, 71, S3–S9. [Google Scholar] [CrossRef]
- Awad, M. Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network. Ecol. Inform. 2014, 24, 60–68. [Google Scholar] [CrossRef]
- Coad, P.; Cathers, B.; Ball, J.E.; Kadluczka, R. Proactive management of estuarine algal blooms using an automated monitoring buoy coupled with an artificial neural network. Environ. Model. Softw. 2014, 61, 393–409. [Google Scholar] [CrossRef]
- Franceschini, S.; Mattei, F.; D’Andrea, L.; Di Nardi, A.; Fiorentino, F.; Garofalo, G.; Scardi, M.; Cataudella, S.; Russo, T. Rummaging through the bin: Modelling marine litter distribution using Artificial Neural Networks. Mar. Pollut. Bull. 2019, 149, 110580. [Google Scholar] [CrossRef]
- Sengar, N.; Dutta, M.K.; Sarkar, B. Computer vision based technique for identification of fish quality after pesticide exposure. Int. J. Food Prop. 2017, 20, 2192–2206. [Google Scholar] [CrossRef]
- Singh, K.P.; Gupta, S.; Rai, P. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches. Ecotoxicol. Environ. Saf. 2013, 95, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yao, J.; Wang, G.; Hao, F.; Shrestha, S.; Xue, B.; Xie, G.; Peng, Y. Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants. Sci. Total Environ. 2019, 693, 133440. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Fu, L.; Liu, Z.; Liu, H.; Chen, L.; Liu, Y. Aquatic toxic analysis by monitoring fish behavior using computer vision: A recent progress. J. Toxicol. 2018, 2018, 2591924. [Google Scholar] [CrossRef] [PubMed]
- Brey, T. A multi-parameter artificial neural network model to estimate macrobenthic invertebrate productivity and production. Limnol. Oceanogr.-Methods 2012, 10, 581–589. [Google Scholar] [CrossRef]
- Brosse, S.; Lek, S.; Townsend, C.R. Abundance, diversity, and structure of freshwater invertebrates and fish communities: An artificial neural network approach. N. Zeal. J. Mar. Freshw. 2001, 35, 135–145. [Google Scholar] [CrossRef]
- Cheng, L.; Lek, S.; Lek-Ang, S.; Li, Z. Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin. Limnologica 2012, 42, 127–136. [Google Scholar] [CrossRef]
- Cheung, W.W.; Pitcher, T.J.; Pauly, D. A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biol. Conserv. 2005, 124, 97–111. [Google Scholar] [CrossRef]
- Kroodsma, D.A.; Mayorga, J.; Hochberg, T.; Miller, N.A.; Boerder, K.; Ferretti, F.; Wilson, A.; Bergman, B.; White, T.D.; Block, B.A.; et al. Tracking the global footprint of fisheries. Science 2018, 359, 904–908. [Google Scholar] [CrossRef]
- Lachkar, Z.; Gruber, N. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network. Biogeosciences 2012, 9, 293–308. [Google Scholar] [CrossRef]
- Yoo, J.W.; Lee, Y.W.; Lee, C.G.; Kim, C.S. Effective prediction of biodiversity in tidal flat habitats using an artificial neural network. Mar. Environ. Res. 2013, 83, 1–9. [Google Scholar] [CrossRef]
- Schletterer, M.; Füreder, L.; Kuzovlev, V.V.; Beketov, M.A. Testing the coherence of several macroinvertebrate indices and environmental factors in a large lowland river system (Volga River, Russia). Ecol. Indic. 2010, 10, 1083–1092. [Google Scholar] [CrossRef]
- Feio, M.J.; Poquet, J.M. Predictive models for freshwater biological assessment: Statistical approaches, biological elements and the Iberian Peninsula experience: A review. Int. Rev. Hydrobiol. 2011, 96, 321–346. [Google Scholar] [CrossRef]
- Hu, J.H.; Tsai, W.P.; Cheng, S.T.; Chang, F.J. Explore the relationship between fish community and environmental factors by machine learning techniques. Environ. Res. 2020, 184, 109262. [Google Scholar] [CrossRef]
- Goethals, P.L.; Dedecker, A.P.; Gabriels, W.; Lek, S.; De Pauw, N. Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquat. Ecol. 2007, 41, 491–508. [Google Scholar] [CrossRef]
- Olaya-Marín, E.J.; Martínez-Capel, F.; Vezza, P. A comparison of artificial neural networks and random forests to predict native fish species richness in Mediterranean rivers. Knowl. Manag. Aquat. Ecosyst. 2013, 409, 7. [Google Scholar] [CrossRef]
- Park, Y.S.; Céréghino, R.; Compin, A.; Lek, S. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol. Modelling 2003, 160, 265–280. [Google Scholar] [CrossRef]
- Penczak, T.; Kruk, A.; Galicka, W. Implementation of a self-organizing map for investigation of impoundment impact on fish assemblages in a large, lowland river: Long-term study. Ecol. Modelling 2012, 227, 64–71. [Google Scholar] [CrossRef]
- Recknagel, F. ANNA–Artificial Neural Network model for predicting species abundance and succession of blue-green algae. Hydrobiologia 1997, 349, 47–57. [Google Scholar] [CrossRef]
- Russo, T.; Franceschini, S.; D’Andrea, L.; Scardi, M.; Parisi, A.; Cataudella, S. Predicting fishing footprint of trawlers from environmental and fleet data: An application of artificial neural networks. Front. Mar. Sci. 2019, 6, 670. [Google Scholar] [CrossRef]
- Volf, G.; Atanasova, N.; Kompare, B.; Precali, R.; Oani, N. Descriptive and prediction models of phytoplankton in the northern adriatic. Ecol. Modelling 2011, 222, 2502–2511. [Google Scholar] [CrossRef]
- Zarkami, R.; Sadeghi, R.; Goethals, P. Use of fish distribution modelling for river management. Ecol. Modelling 2012, 230, 44–49. [Google Scholar] [CrossRef]
- Berberoglu, S.; Yilmaz, K.T.; Özkan, C. Mapping and monitoring of coastal wetlands of Cukurova Delta in the Eastern Mediterranean region. Biodivers. Conserv. 2004, 13, 615–633. [Google Scholar] [CrossRef]
- Flombaum, P.; Gallegos, J.L.; Gordillo, R.A.; Rincón, J.; Zabala, L.L.; Jiao, N.; Karl, D.M.; Li, W.K.; Lomas, M.W.; Veneziano, D.; et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. USA 2013, 110, 9824–9829. [Google Scholar] [CrossRef]
- Gillard, M.; Thiébaut, G.; Deleu, C.; Leroy, B. Present and future distribution of three aquatic plants taxa across the world: Decrease in native and increase in invasive ranges. Biol. Invasions 2017, 19, 2159–2170. [Google Scholar] [CrossRef]
- Guénard, G.; Morin, J.; Matte, P.; Secretan, Y.; Valiquette, E.; Mingelbier, M. Deep learning habitat modeling for moving organisms in rapidly changing estuarine environments: A case of two fishes. Estuar. Coast. Shelf Sci. 2020, 238, 106713. [Google Scholar] [CrossRef]
- Knudby, A.; Brenning, A.; LeDrew, E. New approaches to modelling fish–habitat relationships. Ecol. Modelling 2010, 221, 503–511. [Google Scholar] [CrossRef]
- Kocev, D.; Naumoski, A.; Mitreski, K.; Krstic, S.; Dzeroski, S. Learning habitat models for the diatom community in lake Prespa. Ecol. Modelling 2010, 221, 330–337. [Google Scholar] [CrossRef]
- Muñoz-Mas, R.; Martinez-Capel, F.; Alcaraz-Hernández, J.D.; Mouton, A.M. Can multilayer perceptron ensembles model the ecological niche of freshwater fish species? Ecol. Modelling 2015, 309, 72–81. [Google Scholar] [CrossRef]
- Nunes, J.A.C.; Cruz, I.C.; Nunes, A.; Pinheiro, H.T. Speeding up coral reef conservation with AI-aided automated image analysis. Nat. Mach. Intell. 2020, 2, 292. [Google Scholar] [CrossRef]
- Olden, J.D.; Jackson, D.A. Fish–habitat relationships in lakes: Gaining predictive and explanatory insight by using artificial neural networks. Trans. Am. Fish. Soc. 2001, 130, 878–897. [Google Scholar] [CrossRef]
- Palaniswami, M.; Rao, A.S.; Bainbridge, S. Real-time monitoring of the great barrier reef using internet of things with big data analytics. ITU J. ICT Discov. 2017, 1, 1–10. [Google Scholar]
- Palialexis, A.; Georgakarakos, S.; Karakassis, I.; Lika, K.; Valavanis, V.D. Prediction of marine species distribution from presence–absence acoustic data: Comparing the fitting efficiency and the predictive capacity of conventional and novel distribution models. Hydrobiologia 2011, 670, 241. [Google Scholar] [CrossRef]
- Park, Y.S.; Tison, J.; Lek, S.; Giraudel, J.L.; Coste, M.; Delmas, F. Application of a self-organizing map to select representative species in multivariate analysis: A case study determining diatom distribution patterns across France. Ecol. Inform. 2006, 1, 247–257. [Google Scholar] [CrossRef]
- Pittman, S.J.; Brown, K.A. Multi-scale approach for predicting fish species distributions across coral reef seascapes. PLoS ONE 2011, 6, e20583. [Google Scholar] [CrossRef] [PubMed]
- Watts, M.J.; Li, Y.; Russell, B.D.; Mellin, C.; Connell, S.D.; Fordham, D.A. A novel method for mapping reefs and subtidal rocky habitats using artificial neural networks. Ecol. Modelling 2011, 222, 2606–2614. [Google Scholar] [CrossRef]
- Allken, V.; Handegard, N.O.; Rosen, S.; Schreyeck, T.; Mahiout, T.; Malde, K. Fish species identification using a convolutional neural network trained on synthetic data. ICES J. Mar. Sci. 2019, 76, 342–349. [Google Scholar] [CrossRef]
- Álvarez-Ellacuría, A.; Palmer, M.; Catalán, I.A.; Lisani, J.L. Image-based, unsupervised estimation of fish size from commercial landings using deep learning. ICES J. Mar. Sci. 2020, 77, 1330–1339. [Google Scholar] [CrossRef]
- Bedoya, C.; Isaza, C.; Daza, J.M.; López, J.D. Automatic recognition of anuran species based on syllable identification. Ecol. Inform. 2014, 24, 200–209. [Google Scholar] [CrossRef]
- Bevan, E.; Wibbels, T.; Najera, B.M.; Martinez, M.A.; Martinez, L.A.; Martinez, F.I.; Cuevas, J.M.; Anderson, T.; Bonka, A.; Hernandez, M.H.; et al. Unmanned aerial vehicles (UAVs) for monitoring sea turtles in near-shore waters. Mar. Turt. Newsl. 2015, 145, 19–22. [Google Scholar]
- dos Santos, A.A.; Gonçalves, W.N. Improving Pantanal fish species recognition through taxonomic ranks in convolutional neural networks. Ecol. Inform. 2019, 53, 100977. [Google Scholar] [CrossRef]
- Gray, P.C.; Fleishman, A.B.; Klein, D.J.; McKown, M.W.; Bézy, V.S.; Lohmann, K.J.; Johnston, D.W. A convolutional neural network for detecting sea turtles in drone imagery. Methods Ecol. Evol. 2019, 10, 345–355. [Google Scholar] [CrossRef]
- Hodgson, A.; Kelly, N.; Peel, D. Unmanned aerial vehicles (UAVs) for surveying marine fauna: A dugong case study. PLoS ONE 2013, 8, e79556. [Google Scholar] [CrossRef]
- Labao, A.B.; Naval, P.C., Jr. Cascaded deep network systems with linked ensemble components for underwater fish detection in the wild. Ecol. Inform. 2019, 52, 103–121. [Google Scholar] [CrossRef]
- Mandal, R.; Connolly, R.M.; Schlacher, T.A.; Stantic, B. Assessing fish abundance from underwater video using deep neural networks. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–6. [Google Scholar]
- Marini, S.; Corgnati, L.; Mantovani, C.; Bastianini, M.; Ottaviani, E.; Fanelli, E.; Aguzzi, J.; Griffa, A.; Poulain, P.M. Automated estimate of fish abundance through the autonomous imaging device GUARD1. Measurement 2018, 126, 72–75. [Google Scholar] [CrossRef]
- Mastrorillo, S.; Lek, S.; Dauba, F.; Belaud, A. The use of artificial neural networks to predict the presence of small-bodied fish in a river. Freshw. Biol. 1997, 38, 237–246. [Google Scholar] [CrossRef]
- Moitinho-Silva, L.; Steinert, G.; Nielsen, S.; Hardoim, C.C.; Wu, Y.C.; McCormack, G.P.; López-Legentil, S.; Marchant, R.; Webster, N.; Thomas, T.; et al. Predicting the HMA-LMA status in marine sponges by machine learning. Front. Microbiol. 2017, 8, 752. [Google Scholar] [CrossRef]
- Mosleh, M.A.; Manssor, H.; Malek, S.; Milow, P.; Salleh, A. A preliminary study on automated freshwater algae recognition and classification system. BMC Bioinform. 2012, 13, S17–S25. [Google Scholar] [CrossRef] [PubMed]
- Salman, A.; Siddiqui, S.A.; Shafait, F.; Mian, A.; Shortis, M.R.; Khurshid, K.; Ulges, A.; Schwanecke, U. Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system. ICES J. Mar. Sci. 2020, 77, 1295–1307. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Salman, A.; Malik, M.I.; Shafait, F.; Mian, A.; Shortis, M.R.; Harvey, E.S. Automatic fish species classification in underwater videos: Exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J. Mar. Sci. 2018, 75, 374–389. [Google Scholar] [CrossRef]
- Song, H.; Xu, F.; Zheng, B.; Xiang, Y.; Yang, J.; An, X. An artificial intelligence recognition algorithm for Yangtze finless porpoise. In Proceedings of the OCEANS 2015—MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015; pp. 1–6. [Google Scholar]
- Tang, M.; Jiao, Y.; Jones, J.W. A hierarchical Bayesian approach for estimating freshwater mussel growth based on tag-recapture data. Fish. Res. 2014, 149, 24–32. [Google Scholar] [CrossRef]
- Villon, S.; Mouillot, D.; Chaumont, M.; Darling, E.S.; Subsol, G.; Claverie, T.; Villéger, S. A deep learning method for accurate and fast identification of coral reef fishes in underwater images. Ecol. Inform. 2018, 48, 238–244. [Google Scholar] [CrossRef]
- Xu, L.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F. Deep learning for marine species recognition. In Handbook of Deep Learning Applications; Springer: Cham, Switzerland, 2019; pp. 129–145. [Google Scholar] [CrossRef]
- Sharma, V.; Chaudhry, S. An overview of Indian forestry sector with REDD. Int. Sch. Res. Not. 2013, 2013, 298735. [Google Scholar] [CrossRef]
- India State of Forest Report 2019. Available online: https://fsi.nic.in/forest-report (accessed on 15 June 2021).
- Pisupati, B. Safeguarding India’s Biological Diversity: The Biological Diversity Act; Farmer’s Forum; India’s Agriculture Magazine: Mumbai, India, 2011. [Google Scholar]
- Sinha, B.; Kala, C.P.; Katiyar, A.S. Enhancing Livelihoods of Forest Dependent Communities through Synergizing FDA Activities with Other Development Programs; RCNAEB Sponsored Project; Indian Institute of Forest Management (IIFM): Bhopal, India, 2010. [Google Scholar]
- Ravindranath, N.H.; Somshekhar, B.S.; Gadgil, M. Carbon flows in Indian forests. Clim. Change 1997, 35, 297–320. [Google Scholar] [CrossRef]
- Gan, J.; Cerutti, P.O.; Masiero, M.; Pettenella, D.; Andrighetto, N.; Dawson, T. Quantifying illegal logging and related timber trade. IUFRO World Ser. 2016, 35, 37–59. [Google Scholar]
- Joppa, L.N. The case for technology investments in the environment. Nature 2017, 552, 325. [Google Scholar] [CrossRef]
- Kehoe, B.; Patil, S.; Abbeel, P.; Goldberg, K. A survey of research on cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. 2015, 12, 398–409. [Google Scholar] [CrossRef]
Forest Resource Variable | 2003 | 2005 | 2009 | 2011 | 2013 | 2015 | 2017 | 2019 | Net Change between 2003 to 2019 (In Million ha) | % Change between 2003 to 2019 |
---|---|---|---|---|---|---|---|---|---|---|
Very dense forest (in million ha) | 5.452 | 5.457 | 8.351 | 8.347 | 8.35 | 8.59 | 9.816 | 9.928 | 4.476 | 45.08 |
Moderately dense forest (in million ha) | 33.406 | 33.265 | 31.901 | 32.074 | 31.875 | 31.537 | 30.832 | 30.847 | −2.599 | −8.43 |
Open forest (in million ha) | 38.858 | 38.722 | 40.252 | 40.421 | 40.225 | 31.54559 | 40.648 | 40.775 | 1.917 | 4.7 |
Tree cover (in million ha) | 9.99 | 9.166 | 9.277 | 9.084 | 9.127 | 9.257 | 9.382 | 9.503 | 0.487 | 4.87 |
Growing stock in forest (million cubic meter) | 4781.414 | 4602.04 | 4498.66 | 4498.731 | 4173.362 | 4195.057 | 4218.38 | 4273.47 | −507.944 | −10.62 |
Growing stock in trees outside forest (million cubic meter) | 1632.338 | 1616.24 | 1599.57 | 1548.427 | 1484.684 | 1573.34 | 1603.997 | 1642.29 | 9.952 | 0.61 |
Reserve forest (in million ha) | 39.99 | 41.903 | 43.05 | 42.25 | 42.9 | 42.5 | 43.47 | 43.49 | 3.5 | 8.60% |
Protected forest (in million ha) | 23.84 | 21.661 | 20.62 | 21.39 | 22.66 | 20.94 | 21.94 | 21.9 | −1.94 | 8.80% |
Unclassified forest (in million ha) | 13.63 | 13.4 | 13.27 | 13.3 | 13.4 | 13.01 | 11.39 | 11.37 | −2.26 | 19.80% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shivaprakash, K.N.; Swami, N.; Mysorekar, S.; Arora, R.; Gangadharan, A.; Vohra, K.; Jadeyegowda, M.; Kiesecker, J.M. Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India. Sustainability 2022, 14, 7154. https://doi.org/10.3390/su14127154
Shivaprakash KN, Swami N, Mysorekar S, Arora R, Gangadharan A, Vohra K, Jadeyegowda M, Kiesecker JM. Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India. Sustainability. 2022; 14(12):7154. https://doi.org/10.3390/su14127154
Chicago/Turabian StyleShivaprakash, Kadukothanahally Nagaraju, Niraj Swami, Sagar Mysorekar, Roshni Arora, Aditya Gangadharan, Karishma Vohra, Madegowda Jadeyegowda, and Joseph M. Kiesecker. 2022. "Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India" Sustainability 14, no. 12: 7154. https://doi.org/10.3390/su14127154