# Harmonics Minimisation in Non-Linear Grid System Using an Intelligent Hysteresis Current Controller Operated from a Solar Powered ZETA Converter

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{*}

## Abstract

**:**

_{upper}and U

_{lower}) are selected using the ANN with respect to the actual value compared with the calculated current error. The vector shifts to the next based on the previous vector applied, and thereby the process repeats following the same pattern. The back propagation (BP)-based neural network is trained using the currents’ non-linear and differential functions to generate the current error. The neural structure ends when the value hits the hysteresis band. Simultaneously, the PWM control waveform is tracked by the neural network output. The proposed system is mathematically modelled using MATLAB/Simulink. An experimental setup of a similar prototype model is designed. The voltage and the current harmonics are measured using a Yokogawa CW240 power quality meter and the results are discussed.

## 1. Introduction

## 2. Proposed Model

#### 2.1. Modelling of the Solar PV

#### 2.2. Modelling of ZETA Embedded Three-Phase Inverter

_{1}and L

_{2}) with an intermediate capacitor (C

_{1}). The design of the ZETA converter is estimated from the duty cycle $\left(\delta \right)$.

_{1}, L

_{2}) and capacitor (C

_{1}) is estimated as

#### 2.3. ANN-Based HCC Model

_{upper}and U

_{lower}). When the phase current exceeds the reference current, the lower switch is closed and, when it falls short, the upper switch is closed.

_{lower}and U

_{upper}) is within the range.

## 3. Simulation Results

_{peak}= 60 A and V

_{peak}= 500 V, respectively (Figure 6a,b). The system is connected to the non-linear load that injects the harmonics into the grid. The load side peak value of grid current is I

_{load}= 60 A (Figure 6c). The inverter current obtained from the solar interfacing is injected back into the grid. The inverter current was measured as I

_{inv}= 15 A (Figure 6d). The dc-link capacitor is designed to produce a voltage of about V

_{dc}= 300 V (Figure 6e).

_{ph}= 30 A, V

_{ph}= 300 V, respectively (Figure 7a,b).

## 4. Experimental Validation

_{dc}= 120 V and shown in Figure 9d.

## 5. Comparative Analysis

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Venkatesan, C.; Kannadasan, R.; Alsharif, M.; Kim, M.-K.; Nebhen, J. Assessment and Integration of Renewable Energy Resources Installations with Reactive Power Compensator in Indian Utility Power System Network. Electronics
**2021**, 10, 912. [Google Scholar] [CrossRef] - Venkatesan, C.; Kannadasan, R.; Alsharif, M.; Kim, M.-K.; Nebhen, J. A Novel Multiobjective Hybrid Technique for Siting and Sizing of Distributed Generation and Capacitor Banks in Radial Distribution Systems. Sustainability
**2021**, 13, 3308. [Google Scholar] [CrossRef] - Venkatesan, C.; Kannadasan, R.; Ravikumar, D.; Loganathan, V.; Alsharif, M.H.; Choi, D.; Hong, J.; Geem, Z.W. Re-Allocation of Distributed Generations Using Available Renewable Potential Based Multi-Criterion-Multi-Objective Hybrid Technique. Sustainability
**2021**, 13, 13709. [Google Scholar] [CrossRef] - Rajalakshmi, M.; Chandramohan, S.; Kannadasan, R.; Alsharif, M.; Kim, M.-K.; Nebhen, J. Design and Validation of BAT Algorithm-Based Photovoltaic System Using Simplified High Gain Quasi Boost Inverter. Energies
**2021**, 14, 1086. [Google Scholar] [CrossRef] - Vora, S.; Bhatt, D. A Comprehensive Review of Harmonics Effects on Electrical Power Quality. Int. J. Eng. Dev. Res.
**2014**, 1, 15–21. [Google Scholar] - Du, Q.; Gao, L.; Li, Q.; Li, T.; Meng, F. Harmonic Reduction Methods at D.C. Side of Parallel-Connected Multipulse Rectifiers: A Review. IEEE Trans. Power Electron.
**2021**, 36, 2768–2782. [Google Scholar] - Hintz, A.; Prasanna, U.R.; Rajashekara, K. Comparative Study of the Three-Phase Grid-Connected Inverter Sharing Unbalanced Three-Phase and/or Single-Phase systems. IEEE Trans. Ind. Appl.
**2016**, 52, 5156–5164. [Google Scholar] [CrossRef] - Sinvula, R.; Abo-Al-Ez, K.M.; Kahn, M.T.E. Harmonic Source Detection Methods: A Systematic Literature Review. IEEE Access
**2019**, 7, 74283–74299. [Google Scholar] [CrossRef] - McBee, K.D.; Simoes, M. Evaluating the Long-Term Impact of a Continuously Increasing Harmonic Demand on Feeder-Level Voltage Distortion. IEEE Trans. Ind. Appl.
**2013**, 50, 2142–2149. [Google Scholar] [CrossRef] - Garcia-Torres, F.; Vazquez, S.; Moreno-Garcia, I.; Gil-De-Castro, A.; Roncero-Sanchez, P.; Moreno-Munoz, A. Microgrids Power Quality Enhancement Using Model Predictive Control. Electronics
**2021**, 10, 328. [Google Scholar] [CrossRef] - Alshehri, J.; Khalid, M. Power Quality Improvement in Microgrids Under Critical Disturbances Using an Intelligent Decoupled Control Strategy Based on Battery Energy Storage System. IEEE Access
**2019**, 7, 147314–147326. [Google Scholar] [CrossRef] - Mosaad, M.I.; Ramadan, H. Power quality enhancement of grid-connected fuel cell using evolutionary computing techniques. Int. J. Hydrog. Energy
**2018**, 43, 11568–11582. [Google Scholar] [CrossRef] - Kaushal, J.; Basak, P. Power quality control based on voltage sag/swell, unbalancing, frequency, THD and power factor using artificial neural network in P.V. integrated A.C. microgrid. Sustain. Energy Grids Netw.
**2020**, 23, 100365. [Google Scholar] - Barik, P.K.; Shankar, G.; Sahoo, P.K. Power quality assessment of microgrid using fuzzy controller aided modified SRF based designed SAPF. Int. Trans. Electr. Energy Syst.
**2019**, 30, e12289. [Google Scholar] [CrossRef] - Esmaeili, M.; Shayeghi, H.; Valipour, K.; Safari, A.; Sedaghati, F. Power quality improvement of multi-microgrid using improved custom power device called as distributed power condition controller. Int. Trans. Electr. Energy Syst.
**2020**, 30, e12259. [Google Scholar] [CrossRef] - Salem, A.E.-S.; Salim, O.M.; Arafa, S.I. New triple-action controller for inverter power quality improvement. Comput. Electr. Eng.
**2019**, 81, 106543. [Google Scholar] [CrossRef] - Shahbaz, R.; Ahmed, T.; Elavarasan, R.M.; Raju, K.; Waqas, M.; Subramaniam, U. Selective Harmonics Elimination in Multilevel Inverter Using Bio-Inspired Intelligent Algorithms. In Proceedings of the 2021 31st Australasian Universities Power Engineering Conference (AUPEC), Perth, Australia, 26–30 September 2021. [Google Scholar] [CrossRef]
- Haiya, Q.; Xu, Q.; Jun, Z.; Yuan, X. A robust GPS-based control scheme for power sharing and quality improvement in microgrid. Int. J. Electr. Power Energy Syst.
**2020**, 123, 106324. [Google Scholar] - Jahan, S.; Biswas, S.; Hosain, K.; Islam, R.; Haq, S.; Kouzani, A.; Mahmud, M. An Advanced Control Technique for Power Quality Improvement of Grid-Tied Multilevel Inverter. Sustainability
**2021**, 13, 505. [Google Scholar] [CrossRef] - Kenjrawy, H.; Makdisie, C.; Houssamo, I.; Mohammed, N. New Modulation Technique in Smart Grid Interfaced Multilevel UPQC-PV Controlled via Fuzzy Logic Controller. Electronics
**2022**, 11, 919. [Google Scholar] [CrossRef] - Peter, J.; Mohammed Shafi, K.P.; Lakshmi, R.; Ramchand, R. Nearly Constant Switching Space Vector Based Hysteresis Controller for VSI Fed IM Drive. IEEE Trans. Ind. Appl.
**2018**, 54, 3360–3371. [Google Scholar] [CrossRef] - Lin, X.; Huang, W.; Wang, L. SVPWM Strategy Based on the Hysteresis Controller of Zero-Sequence Current for Three-Phase Open-End Winding PMSM. IEEE Trans. Power Electron.
**2018**, 34, 3474–3486. [Google Scholar] [CrossRef] - Grady, W.M.; Mansoor, A.; Fuchs, E.F.; Verde, P.; Doyle, M. Estimating the net harmonic currents produced by selected distributed single-phase loads: Computers, televisions, and incandescent light dimmers. In Proceedings of the 2002 IEEE Power Engineering Society Winter Meeting, New York, NY, USA, 27–31 January 2002. [Google Scholar]
- Yi, H.; Zhuo, F.; Wang, F.; Wang, Z. A Digital Hysteresis Current Controller for Three-Level Neural-Point-Clamped Inverter With Mixed-Levels and Prediction-Based Sampling. IEEE Trans. Power Electron.
**2015**, 31, 3945–3957. [Google Scholar] [CrossRef] - Buso, S.; Caldognetto, T. A Nonlinear Wide-Bandwidth Digital Current Controller for D.C.–D.C. and D.C.–A.C. Convert. IEEE Trans. Ind. Electron.
**2015**, 62, 7687–7695. [Google Scholar] [CrossRef] - Martins, D.C.; Casaro, M.M.; Barbi, I. Isolated three-phase rectifier with high power factor using the zeta converter in continuous conduction mode. IEEE Trans. Circuits Syst. I Fundam. Theory Appl.
**2002**, 48, 74–80. [Google Scholar] [CrossRef] - Wu, T.-F.; Liang, S.-A.; Chen, Y.-M.; Liang, S.-A. Design optimization for asymmetrical ZVS-PWM zeta converter. IEEE Trans. Aerosp. Electron. Syst.
**2003**, 39, 521–532. [Google Scholar] [CrossRef] - Lin, B.R.; Hsieh, F.Y. Soft-Switching Zeta–Flyback Converter With a Buck–Boost Type of Active Clamp. IEEE Trans. Ind. Electron.
**2007**, 54, 2813–2822. [Google Scholar] - Wang, D.; Ji, G.; Li, J.; Sun, H.; Liu, S.; Song, K. A novel hysteresis current control strategy based on neural network. In Proceedings of the 2010 International Conference On Computer Design and Application, Qinhuangdao, China, 25–27 June 2010; pp. V2-369–V2-372. [Google Scholar] [CrossRef]
- Karabag, Y.; Erfidan, T.; Urgun, S.; Abut, N. Artificial neural network based hysteresis current controller for single-phase inverter. In Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521), Dubrovnik, Croatia, 12–15 May 2004; Volume 1, pp. 339–341. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, B. BLDC Motor Driven Solar P.V. Array Fed Water Pumping System Employing Zeta Converter. IEEE Trans. Ind. Appl.
**2016**, 52, 2315–2322. [Google Scholar] [CrossRef] - Hmidet, A.; Subramaniam, U.; Elavarasan, R.M.; Raju, K.; Diaz, M.; Das, N.; Mehmood, K.; Karthick, A.; Muhibbullah, M.; Boubaker, O. Design of Efficient Off-Grid Solar Photovoltaic Water Pumping System Based on Improved Fractional Open Circuit Voltage MPPT Technique. Int. J. Photoenergy
**2021**, 2021, 1–18. [Google Scholar] [CrossRef]

**Figure 6.**Simulation results: (

**a**) grid voltage at input side, (

**b**) grid current at input side, (

**c**) grid current at output side before HCC, (

**d**) grid current at output side after HCC inverter current, and (

**e**) dc-link voltage.

**Figure 7.**Simulation results: 1Φ load terminal (

**a**) voltage waveform before HCC, (

**b**) current waveform before HCC, (

**c**) voltage waveform after HCC, and (

**d**) current waveform after HCC.

**Figure 8.**Total harmonic distortions: (

**a**) voltage THD with HCC, (

**b**) current THD without HCC, (

**c**) voltage THD with HCC, (

**d**) current THD with HCC.

**Figure 9.**Experimental results: (

**a**) input side voltage, (

**b**) input side current, (

**c**) current output, (

**d**) dc-link voltage.

**Figure 10.**Experimental THDs: (

**a**) voltage without HCC, (

**b**) current without HCC, (

**c**) voltage with HCC, (

**d**) current with HCC.

**Figure 11.**Comparative analyses between simulated and experimental results: (

**a**) simulated results, (

**b**) experimental results.

**Figure 12.**Comparative analyses between two cases (with and without HCC and ANN): (

**a**) simulated results, (

**b**) experimental results.

Three-phase supply (r.m.s): | V_{l-l} = 400 V, 50 Hz |

Single-phase supply (r.m.s): | V_{ph} = 230 V, 50 Hz |

Single-phase linear load: | R = 36.66 Ω, L = 10 mH |

Single-phase non-linear load: | R = 26.66 Ω, L = 10 mH |

dc-link parameters: | C = 3000 µF, V_{dc} = 120 V |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pattathurani, L.P.; Dash, S.S.; Dwibedi, R.K.; Raj, M.D.; Kannadasan, R.; Savio, M.F.; Alsharif, M.H.; Kim, J.H.
Harmonics Minimisation in Non-Linear Grid System Using an Intelligent Hysteresis Current Controller Operated from a Solar Powered ZETA Converter. *Sustainability* **2022**, *14*, 7028.
https://doi.org/10.3390/su14127028

**AMA Style**

Pattathurani LP, Dash SS, Dwibedi RK, Raj MD, Kannadasan R, Savio MF, Alsharif MH, Kim JH.
Harmonics Minimisation in Non-Linear Grid System Using an Intelligent Hysteresis Current Controller Operated from a Solar Powered ZETA Converter. *Sustainability*. 2022; 14(12):7028.
https://doi.org/10.3390/su14127028

**Chicago/Turabian Style**

Pattathurani, Lakshmana Perumal, Subhransu S. Dash, Rajat K. Dwibedi, Mani Devesh Raj, Raju Kannadasan, Max F. Savio, Mohammed H. Alsharif, and James Hyungkwan Kim.
2022. "Harmonics Minimisation in Non-Linear Grid System Using an Intelligent Hysteresis Current Controller Operated from a Solar Powered ZETA Converter" *Sustainability* 14, no. 12: 7028.
https://doi.org/10.3390/su14127028