Integrating Land Use, Ecosystem Service, and Human Well-Being: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development in the Topic of “LUCC–Ecosystem Services–Human Well-Being”
2.2. Systematic Search and Literature Selection
- What are the present research paths in linking LUCC and ecosystem services?
- What are the main methods to measure the relationship between LUCC and ecosystem services?
- What are the current challenges in studying the relationships between LUCC and ecosystem services?
- What is the connotation of human well-being?
- What are evaluation indicators to measure human well-being?
- What is the state of the art in studying the relationships between ecosystem services and human well-being?
- What are the current challenges in studying the relationships between ecosystem services and human well-being?
- How are LUCC, ecosystem services, and human well-being linked?
- What are the future research trends?
2.3. An Overview of the Keyword Search
3. Results
3.1. LUCC and Ecosystem Services
3.1.1. Effect of Land Use Type Changes on Ecosystem Services
3.1.2. Effect of Land Use Spatial Pattern on Ecosystem Services
3.1.3. Effect of Land Use Intensity on Ecosystem Services
3.1.4. Methods for Measuring the Relationship between LUCC and Ecosystem Services
3.1.5. Scale Effect
3.1.6. The Combined Effects of LUCC and Climate Change to Ecosystem Services
3.2. Ecosystem Services and Human Well-Being
3.2.1. Connotation and Evaluation Indicators of Human Well-Being
3.2.2. Research Progress on Ecosystem Services and Human Well-Being
- (1)
- Frameworks linking ecosystem services and human well-being
- (2)
- Research hotspots on the relationship between ecosystem services and human well-being
- 1
- Poverty alleviation
- 2
- Ecosystem health
- 3
- Biodiversity
- 4
- Sustainable development
- 5
- Natural capital
- (3)
- Relationship between ecosystem services and human well-being
- 1
- Trade-off and synergy
- 2
- Supply, demand, and consumption
- (4)
- Scale effects on the study of ecosystem services and human well-being
3.3. Relationships among LUCC, Ecosystem Services, and Human Well-Being
4. Directions for Further Research
4.1. LUCC and Ecosystem Services
4.2. Ecosystem Services and Human Well-Being
4.3. LUCC, Ecosystem Services, and Human Well-Being
5. Conclusions
- (1)
- Existing research in exploring the relationship between LUCC and human well-being is usually through land use type change, land use spatial pattern change, and land use intensity change. They usually use a collection of several different methods to explore the difficult relationships between LUCC and ecosystem services. In addition, scale effects are still a challenge in current studies.
- (2)
- Although there is no universal indicator of measuring human well-being, different studies build evaluation indicators to measure human well-being according to their understanding of human well-being. Moreover, the study of ecosystem services and human well-being is usually applied in poverty alleviation, ecosystem health, biodiversity, sustainable development, and natural capital.
- (3)
- The ways affecting LUCC, ecosystem services, and human well-being can roughly be divided into three types: resource system change, government system change, and political system change.
- (4)
- The directions of further development on the topic of LUCC–ecosystem services–human well-being are discussed. There is still a lot of space for further improvements. Four issues were listed which are worth addressing in future studies of “LUCC-ecosystem services-human well-being”: spatiotemporal scale correlation, driving force analysis under different scales, the correlation among different group characteristics in human well-being, and the impact of climate change on ecosystem services and human well-being.
Author Contributions
Funding
Conflicts of Interest
References
- Yue, H.; He, C.; Huang, Q.; Yin, D.; Bryan, B.A. Stronger policy required to substantially reduce deaths from pm2.5 pollution in China. Nat. Commun. 2020, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- Bateman, I.J.; Mace, G.M.; Fezzi, C.; Atkinson, G.; Turner, K. Economic analysis for ecosystem service assessments. Environ. Resour. Econ. 2010, 48, 177–218. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.R.; DeFries, R.; Dietz, T.; Mooney, H.A.; Polasky, S.; Reid, W.V.; Scholes, R.J. Millennium ecosystem assessment: Research needs. Science 2006, 314, 257–258. [Google Scholar] [CrossRef]
- Bongaarts, J. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. Popul. Dev. Rev. 2019, 45, 680–681. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Rounsevell, M.; Geist, H.J. Are agricultural land-use models able to predict changes in land-use intensity? Agric. Ecosyst. Environ. 2000, 82, 321–331. [Google Scholar] [CrossRef]
- Cao, Q.; Liu, Y.; Georgescu, M.; Wu, J. Impacts of landscape changes on local and regional climate: A systematic review. Landsc. Ecol. 2020, 35, 1269–1290. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Y.; Wang, Y.; Zhang, Y.; Xiang, J.; Xu, Y.; Wang, J. Individual and combined impacts of future land-use and climate conditions on extreme hydrological events in a representative basin of the yangtze river delta, China. Atmos. Res. 2020, 236, 104805. [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, L.; Li, M.; Zhao, R.; Duan, Y. Impacts of lucc on soil properties in the riparian zones of desert oasis with remote sensing data: A case study of the middle heihe river basin, China. Sci. Total Environ. 2015, 506, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Pimm, S.L.; Raven, P. Biodiversity—extinction by numbers. Nature 2000, 403, 843–845. [Google Scholar] [CrossRef] [PubMed]
- Rau, B.M.; Johnson, D.W.; Blank, R.R.; Lucchesi, A.; Caldwell, T.G.; Schupp, E.W. Transition from sagebrush steppe to annual grass (bromus tectorum): Influence on belowground carbon and nitrogen. Rangel. Ecol. Manag. 2011, 64, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Wei, H.; Xu, Z.; Liu, H.; Ren, J.; Fan, W.; Lu, N.; Dong, X. Evaluation on dynamic change and interrelations of ecosystem services in a typical mountain-oasis-desert region. Ecol. Indic. 2018, 93, 917–929. [Google Scholar] [CrossRef]
- Meng, S.; Huang, Q.; Zhang, L.; He, C.; Inostroza, L.; Bai, Y.; Yin, D. Matches and mismatches between the supply of and demand for cultural ecosystem services in rapidly urbanizing watersheds: A case study in the guanting reservoir basin, China. Ecosyst. Serv. 2020, 45, 101156. [Google Scholar] [CrossRef]
- Bodin, O. Collaborative environmental governance: Achieving collective action in social-ecological systems. Science 2017, 357, 659. [Google Scholar] [CrossRef] [Green Version]
- Almenar, J.B.; Elliot, T.; Rugani, B.; Philippe, B.; Gutierrez, T.N.; Sonnemann, G.; Geneletti, D. Nexus between nature-based solutions, ecosystem services and urban challenges. Land Use Policy 2021, 100, 104898. [Google Scholar] [CrossRef]
- Moran, E.; Ojima, D.S.; Buchmann, B.; Canadell, J.G.; Coomes, O.; Graumlich, L.; Jackson, R.; Jaramillo, V.; Lavorel, S.; Leadley, P. Global land project: Science plan and implementation strategy. In Environmental Policy Collection; IGBP Secretariat: Stockholm, Sweden, 2005. [Google Scholar]
- Hou, Y.; Zhao, W.; Liu, Y.; Yang, S.; Hu, X.; Cherubini, F. Relationships of multiple landscape services and their influencing factors on the qinghai-tibet plateau. Landsc. Ecol. 2021, 36, 1987–2005. [Google Scholar] [CrossRef]
- Peng, J.; Chen, X.; Liu, Y.; Lü, H.; Hu, X. Spatial identification of multifunctional landscapes and associated influencing factors in the beijing-tianjin-hebei region, China. Appl. Geogr. 2016, 74, 170–181. [Google Scholar] [CrossRef]
- Riao, D.; Zhu, X.; Tong, Z.; Zhang, J.; Wang, A. Study on land use/cover change and ecosystem services in Harbin, China. Sustainability 2020, 12, 6076. [Google Scholar] [CrossRef]
- Gomes, E.; Inacio, M.; Bogdzevi, K.; Kalinauskas, M.; Karnauskait, D.; Pereira, P. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef] [PubMed]
- Summers, J.K.; Smith, L.M.; Case, J.L.; Linthurst, R.A. A review of the elements of human well-being with an emphasis on the contribution of ecosystem services. Ambio 2012, 41, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Tao, J.; Lu, Q. Methodologies of human well-being assessment from the ecosystem service perspective. Acta Ecol. Sin. 2021, 41, 730–736. [Google Scholar]
- Wu, J. Linking landscape, land system and design approaches to achieve sustainability. J. Land Use Sci. 2019, 14, 173–189. [Google Scholar] [CrossRef]
- Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Camilo Villegas, J. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the colombian andes. Sci. Total Environ. 2019, 685, 1181–1192. [Google Scholar] [CrossRef]
- Dade, M.C.; Mitchell, M.G.E.; McAlpine, C.A.; Rhodes, J.R. Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach. Ambio 2019, 48, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Pearce, D. Nature’s services. Societal dependence on natural ecosystems. Science 1997, 277, 1783. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Sci. Total Environ. 2020, 702, 134581. [Google Scholar] [CrossRef]
- Patru-Stupariu, I.; Hossu, C.A.; Gradinaru, S.R.; Nita, A.; Stupariu, M.-S.; Huzui-Stoiculescu, A.; Gavrilidis, A.-A. A review of changes in mountain land use and ecosystem services: From theory to practice. Land 2020, 9, 336. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Ying, H.; Anming, B.A.O.; Wang, A.; Liu, H.; Wu, S. The lucc responses to climatic change and human activity in xinjiang in recent 25 years. J. Arid Land Resour. Environ. 2009, 23, 116–122. [Google Scholar]
- Hu, X.; Hong, W.; Qiu, R.; Hong, T.; Chen, C.; Wu, C. Geographic variations of ecosystem service intensity in Fuzhou city, China. Sci. Total Environ. 2015, 512, 215–226. [Google Scholar] [CrossRef]
- Mace, G. Ecology must evolve. Nature 2013, 503, 191–192. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Zhang, L.; Xu, Z.; Zhao, Y.; Wei, Y.; Skinner, D. Ecosystem services in changing land use. J. Soils Sediments 2015, 15, 833–843. [Google Scholar] [CrossRef]
- Sanchirico, J.N.; Mumby, P.J. Mapping ecosystem functions to the valuation of ecosystem services: Implications of species-habitat associations for coastal land-use decisions. Theor. Ecol. 2009, 2, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Andrew, M.E.; Wulder, M.A.; Nelson, T.A.; Coops, N.C. Spatial data, analysis approaches, and information needs for spatial ecosystem service assessments: A review. GIScience Remote Sens. 2015, 52, 344–373. [Google Scholar] [CrossRef] [Green Version]
- Englund, O.; Berndes, G.; Cederberg, C. How to analyse ecosystem services in landscapes-a systematic review. Ecol. Indic. 2017, 73, 492–504. [Google Scholar] [CrossRef]
- Huang, A.; Xu, Y.; Sun, P.; Zhou, G.; Liu, C.; Lu, L.; Xiang, Y.; Wang, H. Land use/land cover changes and its impact on ecosystem services in ecologically fragile zone: A case study of zhangjiakou city, Hebei province, China. Ecol. Indic. 2019, 104, 604–614. [Google Scholar] [CrossRef]
- Ma, S.; Wen, Z. Optimization of land use structure to balance economic benefits and ecosystem services under uncertainties: A case study in Wuhan, China. J. Clean. Prod. 2021, 311, 127537. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the middle reaches of the yangtze river economic belt in China based on the geo-informatic tupu method. Sci. Total Environ. 2020, 701, 134690. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Y.; Zhao, J.; Shen, Y.; Pei, H.; Zhang, H.; Li, Y. Revegetation projects significantly improved ecosystem service values in the agro-pastoral ecotone of northern China in recent 20 years. Sci. Total Environ. 2021, 788, 147756. [Google Scholar] [CrossRef] [PubMed]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the united states. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, K.; Jiang, W.; Ling, Z.; Hou, P.; Deng, Y. Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of sdg reporting: A case study of the wuhan urban agglomeration. J. Clean. Prod. 2021, 307, 127321. [Google Scholar] [CrossRef]
- Liu, W.; Yan, Y.; Wang, D.; Ma, W. Integrate carbon dynamics models for assessing the impact of land use intervention on carbon sequestration ecosystem service. Ecol. Indic. 2018, 91, 268–277. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of baguio city, the philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in munessa-shashemene landscape of the ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef]
- Hanley, N. UK National Ecosystems Assessment; UNEP-WCMC: Cambridge, UK, 2011. [Google Scholar]
- Ai, J. Long-term evolution process and mechanisms of wetland ecosystem in the yangtze river estuary using time-series multi-sensor remote sensing data. Acta Geod. Cartogr. Sin. 2020, 49, 133. [Google Scholar]
- Hill, J.; Stellmes, M.; Wang, C. Land transformation processes in ne China: Tracking trade-offs in ecosystem services across several decades with landsat-tm/etm+ time series. In Land Use and Land Cover Mapping in Europe—Practices and Trends; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Mitchell, M.G.E.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.; Johansen, K.; Rhodes, J.R. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Echeverry, J.; Echeverria, C.; Oyarzun, C.; Morales, L. Impact of land-use change on biodiversity and ecosystem services in the chilean temperate forests. Landsc. Ecol. 2018, 33, 439–453. [Google Scholar] [CrossRef]
- Vigl, L.E.; Schirpke, U.; Tasser, E.; Tappeiner, U. Linking long-term landscape dynamics to the multiple interactions among ecosystem services in the european alps. Landsc. Ecol. 2016, 31, 1903–1918. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Wu, F.; Xie, X. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an City, China. Ecol. Indic. 2020, 108, 105720. [Google Scholar] [CrossRef]
- Lima, G.; Hackbart, V.C.D.S.; Bertolo, L.S.; Santos, R. Identifying driving forces of landscape changes: Historical relationships and the availability of ecosystem services in the atlantic forest. Ecosyst. Serv. 2016, 22, 11–17. [Google Scholar] [CrossRef]
- Margriter, S.C.; Bruland, G.L.; Kudray, G.M.; Lepczyk, C.A. Using indicators of land-use development intensity to assess the condition of coastal wetlands in Hawai’i. Landsc. Ecol. 2014, 29, 517–528. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Notebaert, B.; Broothaerts, N.; Verstraeten, G. Evidence of anthropogenic tipping points in fluvial dynamics in europe. Glob. Planet. Chang. 2018, 164, 27–38. [Google Scholar] [CrossRef]
- Scholes, R.; Montanarella, L.; Brainich, A.; Barger, N.; ten Brink, B.; Cantele, M.; Erasmus, B.; Fisher, J.; Gardne, T.; Holland, T.G.; et al. Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2018. [Google Scholar]
- Nepstad, D.C.; Stickler, C.M.; Soares-Filho, B.; Merry, F. Interactions among amazon land use, forests and climate: Prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B-Biol. Sci. 2008, 363, 1737–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Aulakh, M.S.; Yagi, K.; et al. World’s soils are under threat. Soil 2016, 2, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Tang, H.; Wang, B.; Chen, J. Effects of land-use intensity on ecosystem services and human well-being: A case study in huailai county, China. Environ. Earth Sci. 2016, 75, 416. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Soliveres, S.; Penone, C.; Fischer, M.; Ammer, C.; Boch, S.; Boeddinghaus, R.S.; Bonkowski, M.; Buscot, F.; Fiore-Donno, A.M.; et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. USA 2020, 117, 28140–28149. [Google Scholar] [CrossRef]
- Othoniel, B.; Rugani, B.; Heijungs, R.; Beyer, M.; Machwitz, M.; Post, P. An improved life cycle impact assessment principle for assessing the impact of land use on ecosystem services. Sci. Total Environ. 2019, 693, 133374. [Google Scholar] [CrossRef] [PubMed]
- Raymundo Pavan, A.L.; Ometto, A.R. Ecosystem services in life cycle assessment: A novel conceptual framework for soil. Sci. Total Environ. 2018, 643, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Carrasco, L.R.; Kastner, T. Linking national wood consumption with global biodiversity and ecosystem service losses. Sci. Total Environ. 2017, 586, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Pullanikkatil, D.; Mograbi, P.J.; Palamuleni, L.; Ruhiiga, T.; Shackleton, C. Unsustainable trade-offs: Provisioning ecosystem services in rapidly changing likangala river catchment in southern malawi. Environ. Dev. Sustain. 2020, 22, 1145–1164. [Google Scholar] [CrossRef]
- Willemen, L.; Crossman, N.D.; Quatrini, S.; Egoh, B.; Kalaba, F.K.; Mbilinyi, B.; de Groot, R. Identifying ecosystem service hotspots for targeting land degradation neutrality investments in south-eastern africa. J. Arid Environ. 2018, 159, 75–86. [Google Scholar] [CrossRef]
- Rimal, B.; Sharma, R.; Kunwar, R.; Keshtkar, H.; Stork, N.E.; Rijal, S.; Rahman, S.A.; Baral, H. Effects of land use and land cover change on ecosystem services in the koshi river basin, eastern nepal. Ecosyst. Serv. 2019, 38, 100963. [Google Scholar] [CrossRef]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X. Effects of land use and climate change on ecosystem services in central asia’s arid regions: A case study in altay prefecture, China. Sci. Total Environ. 2017, 607, 633–646. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.; Guldmann, J.M.; Li, S.; Zhu, J. Carbon dynamics in the northeastern qinghai–tibetan plateau from 1990 to 2030 using landsat land use/cover change data. Remote Sens. 2020, 12, 528. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.C.; Han, X.; Tang, S.; Song, X.; Wang, H. An improved model for evaluating ecosystem service values using land use/cover and vegetation parameters. J. Meteorol. Res. 2021, 35, 148. [Google Scholar] [CrossRef]
- Nakakaawa, C.A.; Vedeld, P.O.; Aune, J.B. Spatial and temporal land use and carbon stock changes in uganda: Implications for a future redd strategy. Mitig. Adapt. Strateg. Glob. Chang. 2011, 16, 25–62. [Google Scholar] [CrossRef]
- Hu, S.; Chen, L.; Li, L.; Zhang, T.; Wen, M. Simulation of land use change and ecosystem service value dynamics under ecological constraints in anhui province, China. Int. J. Environ. Res. Public Health 2020, 17, 4228. [Google Scholar] [CrossRef]
- Gao, X.; Wang, J.; Li, C.; Shen, W.; Zhang, X. Land use change simulation and spatial analysis of ecosystem service value in shijiazhuang under multi-scenarios. Environ. Sci. Pollut. Res. 2021, 28, 31043–31058. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Min, M.; Junpeng, L.I. Regulation of ecosystem services in land consolidation regions. Resour. Sci. 2013, 35, 1415–1422. [Google Scholar]
- Sun, X.; Crittenden, J.C.; Li, F.; Lu, Z.; Dou, X. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in atlanta metropolitan area, USA. Sci. Total Environ. 2018, 622, 974–987. [Google Scholar] [CrossRef]
- Watanabe, M.; Ortega, E. Dynamic emergy accounting of water and carbon ecosystem services: A model to simulate the impacts of land-use change. Ecol. Model. 2014, 271, 113–131. [Google Scholar] [CrossRef]
- Cao, V.; Margni, M.; Favis, B.D.; Deschenes, L. Aggregated indicator to assess land use impacts in life cycle assessment (lca) based on the economic value of ecosystem services. J. Clean. Prod. 2015, 94, 56–66. [Google Scholar] [CrossRef]
- Deng, C.; Liu, J.; Nie, X.; Li, Z.; Liu, Y.; Xiao, H.; Hu, X.; Wang, L.; Zhang, Y.; Zhang, G.; et al. How trade-offs between ecological construction and urbanization expansion affect ecosystem services. Ecol. Indic. 2021, 122, 107253. [Google Scholar] [CrossRef]
- Yuan, S.; Zhu, C.; Yang, L.; Xie, F. Responses of ecosystem services to urbanization-induced land use changes in ecologically sensitive suburban areas in Hangzhou, China. Int. J. Environ. Res. Public Health 2019, 16, 1124. [Google Scholar] [CrossRef] [Green Version]
- Fuerst, C.; Frank, S.; Witt, A.; Koschke, L.; Makeschin, F. Assessment of the effects of forest land use strategies on the provision of ecosystem services at regional scale. J. Environ. Manag. 2013, 127, S96–S116. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, J.; Zhang, H.; Yan, W.; Zhao, C. Trade-offs and synergies in ecosystem service values of inland lake wetlands in central asia under land use/cover change: A case study on ebinur lake, China. Glob. Ecol. Conserv. 2020, 24, e01253. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Warren, P.H.; Evans, K.L.; Hancock, S.; Harris, J.A. The impact of land use/land cover scale on modelling urban ecosystem services. Landsc. Ecol. 2016, 31, 1509–1522. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Bryan, B.A.; Connor, J.D.; Nolan, M.; Gao, L. Land use mapping error introduces strongly-localised, scale-dependent uncertainty into land use and ecosystem services modelling. Ecosyst. Serv. 2015, 15, 63–74. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, D.; Lyu, X. A review on the impact of land use/land cover change on ecosystem services from a spatial scale perspective. J. Nat. Resour. 2020, 35, 1172–1189. [Google Scholar]
- Asmus, M.L.; Nicolodi, J.; Anello, L.S.; Gianuca, K. The risk to lose ecosystem services due to climate change: A south american case. Ecol. Eng. 2019, 130, 233–241. [Google Scholar] [CrossRef]
- Bahati, H.K.; Ogenrwoth, A.; Sempewo, J.I. Quantifying the potential impacts of land-use and climate change on hydropower reliability of muzizi hydropower plant, uganda. J. Water Clim. Chang. 2021, 12, 2526–2554. [Google Scholar] [CrossRef]
- Lang, Y.; Song, W.; Zhang, Y. Responses of the water-yield ecosystem service to climate and land use change in sancha river basin, China. Phys. Chem. Earth 2017, 101, 102–111. [Google Scholar] [CrossRef]
- Schirpke, U.; Kohler, M.; Leitinger, G.; Fontana, V.; Tasser, E.; Tappeiner, U. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst. Serv. 2017, 26, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Sun, G.; Zhang, N.; He, J.; Wu, N. Impacts of land-use and climate change on ecosystem service in eastern tibetan plateau, China. Sustainability 2018, 10, 467. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Tian, L.; Zhang, Z.; Zhao, Y.; Green, S.M.; Quine, T.A.; Liu, H.; Meersmans, J. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosyst. Serv. 2020, 46, 101199. [Google Scholar] [CrossRef]
- Choukri, F.; Raclot, D.; Naimi, M.; Chikhaoui, M.; Nunes, J.P.; Huard, F.; Herivaux, C.; Sabir, M.; Pepin, Y. Distinct and combined impacts of climate and land use scenarios on water availability and sediment loads for a water supply reservoir in northern morocco. Int. Soil Water Conserv. Res. 2020, 8, 141–153. [Google Scholar] [CrossRef]
- King, M.F.; Reno, V.F.; Novo, E.M.L.M. The concept, dimensions and methods of assessment of human well-being within a socioecological context: A literature review. Soc. Indic. Res. 2014, 116, 681–698. [Google Scholar] [CrossRef]
- Orviska, M.; Caplanova, A.; Hudson, J. The impact of democracy on well-being. Soc. Indic. Res. 2014, 115, 493–508. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.M.; Case, J.L.; Smith, H.M.; Harwell, L.C.; Summers, J.K. Relating ecoystem services to domains of human well-being: Foundation for a us index. Ecol. Indic. 2013, 28, 79–90. [Google Scholar] [CrossRef]
- Collard, D. Research on well-being—some advice from jeremy bentham. Philos. Soc. Sci. 2006, 36, 330–354. [Google Scholar] [CrossRef] [Green Version]
- Ravallion, M. Good and bad growth: The human development reports. World Dev. 1997, 25, 631–638. [Google Scholar] [CrossRef]
- Nussbaum, M.; Sen, A. The Quality of Life; Clarendon Press: Oxford, UK, 1993. [Google Scholar]
- Dodds, S. Towards a ‘science of sustainability’: Improving the way ecological economics understands human well-being. Ecol. Econ. 1997, 23, 95–111. [Google Scholar] [CrossRef]
- Cummins, R.A.; Eckersley, R.; Pallant, J.; Van Vugt, J.; Misajon, R. Developing a national index of subjective wellbeing: The australian unity wellbeing index. Soc. Indic. Res. 2003, 64, 159–190. [Google Scholar] [CrossRef]
- MEA. Ecosystems and human well-being: Synthesis/millennium ecosystem assessment. World Health 2005, 1134, 25–60. [Google Scholar]
- Papatheohari, L. Report by the Commission on the Measurement of Economic Performance and Social Progress. 2009. Available online: https://ec.europa.eu/eurostat/documents/8131721/8131772/Stiglitz-Sen-Fitoussi-Commission-report.pdf (accessed on 11 April 2022).
- Mcgregor, A.; Sumner, A. Beyond business as usual: What might 3-d wellbeing contribute to mdg momentum? IDS Bull. 2010, 41, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, E.; Hall, J.; Morrone, A.; Ranuzzi, G. A framework to measure the progress of societies. Rev. D Econ. Polit. 2011, 121, 93–118. [Google Scholar] [CrossRef]
- Woodhouse, E.; Homewood, K.M.; Beauchamp, E.; Clements, T.; Mccabe, J.T.; Wilkie, D.; Milner-Gulland, E.J. Guiding principles for evaluating the impacts of conservation interventions on human well-being. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20150103. [Google Scholar] [CrossRef]
- Bratman, G.N.; Anderson, C.B.; Berman, M.G.; Cochran, B.; de Vries, S.; Flanders, J.; Folke, C.; Frumkin, H.; Gross, J.J.; Hartig, T.; et al. Nature and mental health: An ecosystem service perspective. Sci. Adv. 2019, 5, eaax0903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaafsma, M. Natural Environment and Human Well-Being; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Costanza, R.; Kubiszewski, I.; Giovannini, E.; Lovins, H.; McGlade, J.; Pickett, K.E.; Ragnarsdottir, K.V.; Roberts, D.; De Vogli, R.; Wilkinson, R. Time to leave gdp behind. Nature 2014, 505, 283–285. [Google Scholar] [CrossRef] [Green Version]
- Georgian, B.; Lorand, B. The meaning of physical health in the improvement of the quality of life index. In 6th International Conference Edu World 2014: Education Facing Contemporary World Issues, Pitesti, Romania, 7–9 November 2014; Soare, E., Langa, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 180, pp. 1221–1228. [Google Scholar]
- Noorbakhsh, F. A modified human development index. World Dev. 1998, 26, 517–528. [Google Scholar] [CrossRef]
- Held, B.; Rodenhaeuser, D.; Diefenbacher, H.; Zieschank, R. The national and regional welfare index (nwi/rwi): Redefining progress in germany. Ecol. Econ. 2018, 145, 391–400. [Google Scholar] [CrossRef]
- Vemuri, A.W.; Costanza, R. The role of human, social, built, and natural capital in explaining life satisfaction at the country level: Toward a national well-being index (nwi). Ecol. Econ. 2006, 58, 119–133. [Google Scholar] [CrossRef]
- Bryant, F.B.; Veroff, J. The structure of psychological well-being—A sociohistorical analysis. J. Personal. Soc. Psychol. 1982, 43, 653–673. [Google Scholar] [CrossRef]
- Lau, A.L.D.; Cummins, R.A.; McPherson, W. An investigation into the cross-cultural equivalence of the personal wellbeing index. Soc. Indic. Res. 2005, 72, 403–430. [Google Scholar] [CrossRef]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The satisfaction with life scale. J. Personal. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef]
- Du Plessis, G.A.; Guse, T. Validation of the scale of positive and negative experience in a south african student sample. S. Afr. J. Psychol. 2017, 47, 184–197. [Google Scholar] [CrossRef]
- Boulinguez, S. Quality of life scales. Ann. Dermatol. Venereol. 2000, 127, 5–6. [Google Scholar]
- Burusic, J.; Ribar, M.; Racz, A. To live in material well-being or to trust others more? Standard of living and interpersonal trust as predictors of personal well-being in different age groups. Ljetop. Soc. Rada 2014, 21, 189–214. [Google Scholar]
- Hervas, G.; Vazquez, C. Construction and validation of a measure of integrative well-being in seven languages: The pemberton happiness index. Health Qual. Life Outcomes 2013, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Kats, V.; Marenkova, E. Correlation between happy planet index with education on the example of russia and austria. In Proceedings of the Ii International Scientific Symposium on Lifelong Wellbeing in the World Wellso 2015, Tomsk, Russia, 18–22 May 2015; Volume 7, pp. 482–484. [Google Scholar]
- Wei, H.; Liu, H.; Xu, Z.; Ren, J.; Lu, N.; Fan, W.; Zhang, P.; Dong, X. Linking ecosystem services supply, social demand and human well-being in a typical mountain-oasis-desert area, Xinjiang, China. Ecosyst. Serv. 2018, 31, 44–57. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y. Concepts, contents and challenges of ecosystem assessment -introduction to “ecosystems and human well-being: A framework for assessment”. Adv. Earth Sci. 2004, 19, 650–657. [Google Scholar]
- Leviston, Z.; Walker, I.; Green, M.; Price, J. Linkages between ecosystem services and human wellbeing: A nexus webs approach. Ecol. Indic. 2018, 93, 658–668. [Google Scholar] [CrossRef]
- Das, N. Impact of participatory forestry program on sustainable rural livelihoods: Lessons from an indian province. Appl. Econ. Perspect. Policy 2012, 34, 428–453. [Google Scholar] [CrossRef]
- Spangenberg, J.H.; von Haaren, C.; Settele, J. The ecosystem service cascade: Further developing the metaphor. Integrating societal processes to accommodate social processes and planning, and the case of bioenergy. Ecol. Econ. 2014, 104, 22–32. [Google Scholar] [CrossRef]
- Rabe, S.-E.; Koellner, T.; Marzelli, S.; Schumacher, P.; Gret-Regamey, A. National ecosystem services mapping at multiple scales—The german exemplar. Ecol. Indic. 2016, 70, 357–372. [Google Scholar] [CrossRef]
- Daw, T.; Brown, K.; Rosendo, S.; Pomeroy, R. Applying the ecosystem services concept to poverty alleviation: The need to disaggregate human well-being. Environ. Conserv. 2011, 38, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Nunan, F.; Menton, M.; Mcdermott, C.L.; Huxham, M.; Schreckenberg, K. How does governance mediate links between ecosystem services and poverty alleviation? Results from a systematic mapping and thematic synthesis of literature. World Dev. 2021, 146, 105595. [Google Scholar] [CrossRef]
- Araujo, A.; Santos, D.; Lins-De-Barros, F.M.; Hacon, S. Linking ecosystem services and human health in coastal urban planning by dpsiwr framework. Ocean Coast. Manag. 2021, 210, 105728. [Google Scholar] [CrossRef]
- Cantuarias, C.; Blain, J.; Pineau, R. The Impact of Biodiversity and Urban Ecosystem Services in Real Estate. The Case of the Region Ile-De-France. 2021. Available online: https://ideas.repec.org/p/arz/wpaper/eres2021_185.html (accessed on 11 April 2022).
- Wood, S.L.; Declerck, F. Ecosystems and human well-being in the sustainable development goals. Front. Ecol. Environ. 2016, 13, 123. [Google Scholar] [CrossRef]
- Suich, H.; Howe, C.; Mace, G. Ecosystem services and poverty alleviation: A review of the empirical links. Ecosyst. Serv. 2015, 12, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Tallis, H.; Kareiva, P.; Marvier, M.; Chang, A. An ecosystem services framework to support both practical conservation and economic development. Proc. Natl. Acad. Sci. USA 2008, 105, 9457–9464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Q.; Yin, D.; He, C.; Yan, J.; Liu, Z.; Meng, S.; Ren, Q.; Zhao, R.; Inostroza, L. Linking ecosystem services and subjective well-being in rapidly urbanizing watersheds: Insights from a multilevel linear model. Ecosyst. Serv. 2020, 43, 101106. [Google Scholar] [CrossRef]
- Fisher, J.A.; Patenaude, G.; Meir, P.; Nightingale, A.J.; Rounsevell, M.D.A.; Williams, M.; Woodhouse, I.H. Strengthening conceptual foundations: Analysing frameworks for ecosystem services and poverty alleviation research. Glob. Environ. Chang.-Hum. Policy Dimens. 2013, 23, 1098–1111. [Google Scholar] [CrossRef] [Green Version]
- Iatsenia, A.; Iatsenia, A. Exploring the Links: Human Well-Being, Poverty and Ecosystem Services; International Institute for Sustainable Development Winnipeg: Winnipeg, MB, Canada, 2004. [Google Scholar]
- Sandhu, H.; Sandhu, S. Linking ecosystem services with the constituents of human well-being for poverty alleviation in eastern himalayas. Ecol. Econ. 2014, 107, 65–75. [Google Scholar] [CrossRef]
- Lazar, A.N.; Adams, H.; Adger, W.N.; Nicholls, R.J. Modelling household well-being and poverty trajectories: An application to coastal bangladesh. PLoS ONE 2020, 15, e0238621. [Google Scholar] [CrossRef]
- Nam, K.-M.; Selin, N.E.; Reilly, J.M.; Paltsev, S. Measuring welfare loss caused by air pollution in europe: A cge analysis. Energy Policy 2010, 38, 5059–5071. [Google Scholar] [CrossRef] [Green Version]
- Kuo, M. How might contact with nature promote human health? Promising mechanisms and a possible central pathway. Front. Psychol. 2015, 6, 1093. [Google Scholar] [CrossRef]
- Luo, Z.; Zuo, Q.; Shao, Q. A new framework for assessing river ecosystem health with consideration of human service demand. Sci. Total Environ. 2018, 640, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Dong, X.; Zhang, P.; Zhang, Y.; Wang, X.; Gao, Y. Study on the sustainable development of an arid basin based on the coupling process of ecosystem health and human wellbeing under land use change-a case study in the manas river basin, Xinjiang, China. Sustainability 2020, 12, 1201. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Q.; Hao, M.; Zhang, Z.; Jiang, L. Assessment of the happy river index as an integrated index of river health and human well-being: A case study of the yellow river, China. Water 2020, 12, 3064. [Google Scholar] [CrossRef]
- Naeem, S.; Chazdon, R.; Duffy, J.E.; Prager, C.; Worm, B. Biodiversity and human well-being: An essential link for sustainable development. Proc. R. Soc. B-Biol. Sci. 2016, 283, 20162091. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Paracchini, M.L.; Zulian, G.; Dunbar, M.B.; Alkemade, R. Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in europe. Biol. Conserv. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Balvanera, P.; Pfisterer, A.B.; Buchmann, N.; He, J.-S.; Nakashizuka, T.; Raffaelli, D.; Schmid, B. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef] [Green Version]
- Duncan, C.; Thompson, J.R.; Pettorelli, N. The quest for a mechanistic understanding of biodiversity-ecosystem services relationships. Proc. R. Soc. B-Biol. Sci. 2015, 282, 20151348. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Zhou, S.; Burkharda, B.; Mueller, F. Socioeconomic influences on biodiversity, ecosystem services and human well-being: A quantitative application of the dpsir model in Jiangsu, China. Sci. Total Environ. 2014, 490, 1012–1028. [Google Scholar] [CrossRef]
- Pinto, R.; de Jonge, V.N.; Marques, J.C. Linking biodiversity indicators, ecosystem functioning, provision of services and human well-being in estuarine systems: Application of a conceptual framework. Ecol. Indic. 2014, 36, 644–655. [Google Scholar] [CrossRef]
- Pires, A.P.F.; Amaral, A.G.; Padgurschi, M.C.G.; Joly, C.A.; Scarano, F.R. Biodiversity research still falls short of creating links with ecosystem services and human well-being in a global hotspot. Ecosyst. Serv. 2018, 34, 68–73. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Wood, S.L.R.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L.; et al. Distilling the role of ecosystem services in the sustainable development goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Fu, B. Promoting geography for sustainability. Geogr. Sustain. 2020, 1, 1–7. [Google Scholar] [CrossRef]
- Robert, K.W.; Parris, T.M.; Leiserowitz, A.A. What is sustainable development? Goals, indicators, values, and practice. Environ. Sci. Policy Sustain. Dev. 2005, 47, 8–21. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, W.; Cherubini, F.; Pereira, P. Integrate ecosystem services into socio-economic development to enhance achievement of sustainable development goals in the post-pandemic era. Geogr. Sustain. 2021, 2, 68–73. [Google Scholar] [CrossRef]
- Ayompe, L.M.; Schaafsma, M.; Egoh, B.N. Towards sustainable palm oil production: The positive and negative impacts on ecosystem services and human wellbeing. J. Clean. Prod. 2021, 278, 123914. [Google Scholar] [CrossRef]
- Sterling, E.J.; Pascua, P.a.; Sigouin, A.; Gazit, N.; Mandle, L.; Betley, E.; Aini, J.; Albert, S.; Caillon, S.; Caselle, J.E.; et al. Creating a space for place and multidimensional well-being: Lessons learned from localizing the sdgs. Sustain. Sci. 2020, 15, 1129–1147. [Google Scholar] [CrossRef]
- Osamu, S.; Chiho, K.; Shizuka, H.; Takanori, M.; Kikuko, S.; Kei, K.; Tomoko, U.; Hisatomo, T.; Yoichi, I.; Kyohei, M. Co-design of national-scale future scenarios in japan to predict and assess natural capital and ecosystem services. Sustain. Sci. 2018, 14, 5–21. [Google Scholar]
- Alba-Patio, D.; Carabassa, V.; Castro, H.; Gutiérrez-Briceo, I.; Castro, A.J. Social indicators of ecosystem restoration for enhancing human wellbeing. Resour. Conserv. Recycl. 2021, 174, 105782. [Google Scholar] [CrossRef]
- Smith, A.C.; Harrison, P.A.; Soba, M.P.; Archaux, F.; Echeverria, V.W.D. How natural capital delivers ecosystem services: A typology derived from a systematic review. Ecosyst. Serv. 2017, 26, 111–126. [Google Scholar] [CrossRef] [Green Version]
- Daily, G.C.; Zhiyun, O.; Hua, Z.; Shuzhuo, L.; Yukuan, W.; Feldman, M.; Kareiva, P.; Polasky, S.; Ruckelshaus, M. Securing natural capital and human well-being. Acta Ecol. Sin. 2013, 33, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Hori, K.; Kamiyama, C.; Saito, O. Exploring the relationship between ecosystems and human well-being by understanding the preferences for natural capital-based and produced capital-based ecosystem services. Sustain. Sci. 2019, 14, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Zhao, W.; Duan, F. Coupling relation analysis between ecological value and economic poverty of contiguous destitute areas in qinling-dabashan region. Geogr. Res. 2015, 34, 1295–1309. [Google Scholar]
- Howe, C.; Suich, H.; Vira, B.; Mace, G.M. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. Glob. Environ. Chang.-Hum. Policy Dimens. 2014, 28, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Villasante, S.; Lopes, P.F.M.; Coll, M. The role of marine ecosystem services for human well-being: Disentangling synergies and trade-offs at multiple scales. Ecosyst. Serv. 2016, 17, 1–4. [Google Scholar] [CrossRef]
- Ghorbani, S.; Salehi, E.; Faryadi, S.; Jafari, H.R. Analyzing urban environmental justice based on supply, demand, and access to cooling ecosystem services in tehran, iran. J. Environ. Plan. Manag. 2021, 65, 288–310. [Google Scholar] [CrossRef]
- Goncalves, L.R.; Oliveira, M.; Turra, A. Assessing the complexity of social-ecological systems: Taking stock of the cross-scale dependence. Sustainability 2020, 12, 6236. [Google Scholar] [CrossRef]
- Bryce, R.; Irvine, K.N.; Church, A.; Fish, R.; Ranger, S.; Kenter, J.O. Subjective well-being indicators for large-scale assessment of cultural ecosystem services. Ecosyst. Serv. 2016, 21, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Yee, S.H. Contributions of ecosystem services to human well-being in puerto rico. Sustainability 2020, 12, 9625. [Google Scholar] [CrossRef]
- Yee, S.H.; Paulukonis, E.; Buck, K.D. Downscaling a human well-being index for environmental management and environmental justice applications in puerto rico. Appl. Geogr. 2020, 123, 102231. [Google Scholar] [CrossRef]
- Dong, X.; Ren, J.; Zhang, P.; Jin, Y.; Liu, R.; Wang, X.-C.; Lee, C.T.; Klemes, J.J. Entwining ecosystem services, land use change and human well-being by nitrogen flows. J. Clean. Prod. 2021, 308, 127442. [Google Scholar] [CrossRef]
- Horcea-Milcu, A.-I.; Leventon, J.; Hanspach, J.; Fischer, J. Disaggregated contributions of ecosystem services to human well-being: A case study from eastern europe. Reg. Environ. Chang. 2016, 16, 1779–1791. [Google Scholar] [CrossRef]
- Wang, X.; Dong, X.; Liu, H.; Wei, H.; Fan, W.; Lu, N.; Xu, Z.; Ren, J.; Xing, K. Linking land use change, ecosystem services and human well-being: A case study of the manas river basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Gong, J.; Qian, C. Spatial and temporal relations among land-use intensity, ecosystem services, and human well-being in the longzhong loess hilly region:A case study of the anding district, gansu province. Acta Ecol. Sin. 2019, 39, 637–648. [Google Scholar]
- Li, C.; Zheng, H.; Li, S.; Chen, X.; Li, J.; Zeng, W.; Liang, Y.; Polasky, S.; Feldman, M.W.; Ruckelshaus, M.; et al. Impacts of conservation and human development policy across stakeholders and scales. Proc. Natl. Acad. Sci. USA 2015, 112, 7396–7401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Yang, X.; Yang, J.; Yuan, J.; Zhang, Z. Linking landscape pattern, ecosystem service value, and human well-being in xishuangbanna, southwest China: Insights from a coupling coordination model. Glob. Ecol. Conserv. 2021, 27, e01583. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; Garcia-Llorente, M. Impacts of land use change on ecosystem services and implications for human well-being in spanish drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- Costanza, R. Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability. Ecosyst. Serv. 2020, 43, 101096. [Google Scholar] [CrossRef]
- Wang, B.; Tang, H. Human well-being and its applications and prospects in ecology. J. Ecol. Rural Environ. 2016, 32, 697–702. [Google Scholar]
- Castro, A.J.; Martin-Lopez, B.; Garcia-Llorente, M.; Aguilera, P.A.; Lopez, E.; Cabello, J. Social preferences regarding the delivery of ecosystem services in a semiarid mediterranean region. J. Arid Environ. 2011, 75, 1201–1208. [Google Scholar] [CrossRef]
References | Methods | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
the InVEST Model | Ecosystem Services Index Method | Remote Sensing Data and GIS-Based Models | Scenario Simulation Method | the Markov Model | Principal Component Analysis | Sensitivity Analysis | Logistic Analysis | the Grey Prediction Model | the Mann-Kendall Test | Energy Analysis Method | the Life Cycle Assessment (LCA) Method | |
[72] | √ | √ | ||||||||||
[73] | √ | √ | ||||||||||
[45] | √ | √ | ||||||||||
[74] | √ | √ | ||||||||||
[75] | √ | √ | ||||||||||
[76] | √ | √ | √ | |||||||||
[77] | ||||||||||||
[78] | √ | √ | √ | √ | √ | |||||||
[79] | √ | √ | ||||||||||
[80] | √ | |||||||||||
Application | assessing ecosystem services | acquiring historical/future LUCC data and related analysis methods | exploring the relationship between LUCC and ecosystem services | calculations of daily monetary flows of ecosystem processes based on the concept of energy | assessing the value of ecosystem services and human well-being in economic units |
Year | Concept | Reference |
---|---|---|
1781 | Classical utilitarianism in Bentham’s position believes that well-being is the satisfaction of the utility or preference of the consumption of goods. It is the favourite and most favourable mental state, which can be evaluated by people’s happiness or satisfaction. | [98] |
1990 | The Human Development Report issued by the United Nations in 1990 selected life span (determined by life expectancy at birth), knowledge (calculated by adult literacy rate and average years of education), and ability to obtain required resources (measured by the purchasing power evaluation of GDP per capita based on US dollars), and other indicators to measure human well-being. | [99] |
1993 | Sen noted that well-being is a function of feasibility. A person’s feasibility refers to the combination of various possible functional activities that the person can achieve. | [100] |
1997 | Dodds believed that well-being has four basic connotations: (1) Human well-being is regarded as a state of mind. (2) Well-being is regarded as a state of the world, which includes satisfaction with people’s preferences and basic needs. (3) Well-being is regarded as human abilities. (4) Satisfaction with well-being is regarded as a basic need. | [101] |
2003 | Cummins and others believed that human well-being is a concept that generally measures people’s life satisfaction, including seven major areas: satisfaction with living standards, health, life achievement, interpersonal relationships, safety, community connections, and future safety. | [102] |
2005 | MA is an activity and state that people consider valuable. It is a concept based on experience. It defines the components of human well-being as safety, the basic material needs for maintaining a high-quality life, health, good social relations, and freedom of choice and action. The five aspects are similar to Maslow’s demand theory. | [103] |
2009 | The Commission on the Measurement of Economic Performance and Social Progress believed that human well-being has eight key dimensions: (1) material standard of living (income, consumption, and wealth), (2) health, (3) education, (4) personal activities, (5) policy and government, (6) social relations, (7) social and physical environmental conditions (present and future), and (8) physical and economic insecurity. | [104] |
2010 | The concept of human well-being is abstracted to a process and an outcome in three interacting dimensions, which is the objective material circumstances of a person, subjective evaluation of people’s goals and the processes they engage in, and a relational component, respectively. | [105] |
2011 | Hall believed that human well-being includes health, knowledge, work, good material conditions, self-determination, interpersonal relationships, and living conditions. Under certain conditions, human well-being is also divided into personal and social well-being. | [106] |
2012 | Summers believed that human well-being consists of basic human needs, economic needs, environmental needs, and subjective happiness. | [23] |
2015 | Human well-being includes objective material of living conditions and subjective assessment of surroundings. The objective material of living conditions cover livelihoods, health, income, housing, and the environment. | [107] |
2019 | Psychological well-being is an indispensable part of well-being, which contains happiness, hedonic and eudaimonic, self-actualization, resilience, healthy relationships, cognitive functioning, and a lack of mental distress. It is usually affected by culture services. | [108] |
2021 | Human well-being contains subjective well-being and objective well-being. Subjective refers to affective and cognitive evaluations of the extent to which life is going well. Objective well-being refers to the evaluation of the extent to which social and physical needs are met. | [109] |
Category | Indicators | Reference | Characteristic |
---|---|---|---|
Objective human well-being | Gross domestic product (GDP) | [110] | Objective well-being refers to the material and social attributes that affect personal and social well-being, including wealth, education, health, and facilities. Objective well-being mainly uses measurable social or economic indicators to reflect the degree to which human needs are met. |
Physical quality of life index (PQoL) | [111] | ||
Human development index (HDI) | [112] | ||
Human welfare index (HWI) | [113] | ||
National well-being Index (NWI) | [114] | ||
Affect balance scale | [115] | ||
Objective well-being | Personal welfare index | [116] | Subjective well-being believes that well-being is determined by people’s attitudes of likes and dislikes and depends on inner feelings and situational experiences. It focuses more on the individual’s evaluation of his situation and his subjective feelings. |
Satisfaction with life scale | [117] | ||
The scale of positive and negative experiences | [118] | ||
Quality of life scale | [119] | ||
Personal well-being index | [120] | ||
Pemberton happiness index | [121] | ||
Happy planet index | [122] | ||
The combination of subjective and objective well-being | Human well-being index system | [123] | It is a comprehensive measurement of subjective-objective well-being. Given that human well-being is multidimensional, hierarchical, and regional, the principles of scientificity, comprehensiveness, hierarchy, and operability should be followed when constructing the index system of human well-being. |
Frameworks | Contents | Merits and Demerits | References |
---|---|---|---|
MEA | It links four types of ecosystem services (provision, regulating, supporting, and cultural) with five components of well-being (safety, achieving good life, health, good social relations, and freedom of choice and action). | The MEA framework believes that a one-way relationship exists between ecosystem services and human well-being. The potential for analyzing this connection is limited, and issues related to social differentiation and political economy are ignored. | [103] |
Sustainable Livelihood Framework (SLF) | SLF is an influential framework that conceptualizes livelihood based on the following five aspects: environment, conditions, and trends; livelihood resources; institutional processes and organizational structures; livelihood strategies; sustainable livelihood outcomes. | The focus of the framework is livelihood instead of human well-being. | [126] |
Cascade Model for Ecosystem Services | The framework is transformed into causality through the conceptualization of the links among biophysical structures, processes, functions, services, benefits, and values. | This framework shows that the contribution of ES to human well-being occurs through different steps. It emphasizes social and ecological interaction, in which human behavior regulates ES through mechanisms, factors, and feedback. The framework has been widely used. It has been further developed to include the socioeconomic processes that interfere with each cascading step and the role of management, governance, or sociopolitical context. | [127] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Wei, H.; Dong, X.; Wang, X.-C.; Zhao, B.; Zhang, Y. Integrating Land Use, Ecosystem Service, and Human Well-Being: A Systematic Review. Sustainability 2022, 14, 6926. https://doi.org/10.3390/su14116926
Liu M, Wei H, Dong X, Wang X-C, Zhao B, Zhang Y. Integrating Land Use, Ecosystem Service, and Human Well-Being: A Systematic Review. Sustainability. 2022; 14(11):6926. https://doi.org/10.3390/su14116926
Chicago/Turabian StyleLiu, Mengxue, Hejie Wei, Xiaobin Dong, Xue-Chao Wang, Bingyu Zhao, and Ying Zhang. 2022. "Integrating Land Use, Ecosystem Service, and Human Well-Being: A Systematic Review" Sustainability 14, no. 11: 6926. https://doi.org/10.3390/su14116926
APA StyleLiu, M., Wei, H., Dong, X., Wang, X. -C., Zhao, B., & Zhang, Y. (2022). Integrating Land Use, Ecosystem Service, and Human Well-Being: A Systematic Review. Sustainability, 14(11), 6926. https://doi.org/10.3390/su14116926