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Abstract: Land use/cover change (LUCC) has an important impact on the terrestrial carbon cycle.
The spatial distribution of regional carbon reserves can provide the scientific basis for the management
of ecosystem carbon storage and the formulation of ecological and environmental policies. This paper
proposes a method combining the CA-based FLUS model and the Integrated Valuation of Ecosystem
Services and Trade-offs (InVEST) model to assess the temporal and spatial changes in ecosystem
carbon storage due to land-use changes over 1990–2015 in the Qinghai Lake Basin (QLB). Furthermore,
future ecosystem carbon storage is simulated and evaluated over 2020–2030 under three scenarios of
natural growth (NG), cropland protection (CP), and ecological protection (EP). The long-term spatial
variations in carbon storage in the QLB are discussed. The results show that: (1) Carbon storage
in the QLB decreased at first (1990–2000) and increased later (2000–2010), with total carbon storage
increasing by 1.60 Tg C (Teragram: a unit of mass equal to 1012 g). From 2010 to 2015, carbon storage
displayed a downward trend, with a sharp decrease in wetlands and croplands as the main cause;
(2) Under the NG scenario, carbon reserves decrease by 0.69 Tg C over 2020–2030. These reserves
increase significantly by 6.77 Tg C and 7.54 Tg C under the CP and EP scenarios, respectively, thus
promoting the benign development of the regional ecological environment. This study improves our
understanding on the impact of land-use change on carbon storage for the QLB in the northeastern
Qinghai–Tibetan Plateau (QTP).

Keywords: ecosystem services; carbon storage; InVEST model; CA-based FLUS model;
Qinghai–Tibetan Plateau

1. Introduction

Global climate change has greatly affected ecosystem patterns and processes, which have also
been spurred by human activities [1,2]. With accelerated urbanization, land use/cover change (LUCC)
has had a significant impact on ecosystem functions, which has become one of the most critical issues
in ecosystem and land science research [3–5]. Changes in regional ecosystem carbon storage have
a profound influence on the global carbon cycle and atmospheric CO2 concentrations, as carbon
sequestration plays a crucial role in reducing the concentration of greenhouse gases. Organic carbon
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storage in the soil affects climate regulation, and is an important issue in global climate change
research [6–8].

Methods used to quantify carbon reserves include field surveys [9], modeling [10,11], and remote
sensing (RS) [12]. Model-based methods are becoming more important because of their ability to
spatially assess carbon reserves at various scales: global [13], national [14,15], regional [16], and city
and county [12,17]. For example, one study [18] shows that the impact of land-use change on carbon
storage is related to the natural process of soil carbon storage evolution in the floodplains of the
Cosmons and California Rivers. A process-based dynamic land ecosystem model is used to simulate
vegetation and soil carbon storage in the southern United States, and to assess the carbon dynamics
of urbanized land over 1945–2007 [19]. Global urban land and cropland changes from 2000 to 2015
are simulated, and the impacts of these changes on regional carbon storage in different countries and
regions are assessed with the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST)
model [20], an ecosystem assessment tool jointly developed by Stanford University, the World Wide
Fund for Nature (WWF), and The Nature Conservation (TNC) [21]. The InVEST model can be used
to quantitatively analyze a variety of ecosystem service functions [21] (e.g., habitat quality, carbon
storage, water yield and water provision service, etc.), and to present the assessment results in the form
of thematic maps. However, most of these studies focus on the carbon storage of a single ecosystem,
for instance, woodland, cropland, grassland, wetland, water, or other single ecosystems [22]. There
are few systematic studies on carbon storage by terrestrial ecosystems. Also, most such studies
are biased toward single-year explorations [23–25]. One study assesses soil organic carbon storage
following conversion from croplands to grasslands [26]. Analyses of carbon reserves in Brazil model
and map soil organic matter [27,28], but they focus on the assessment and prediction of soil organic
matter [29,30]. Few studies predict and simulate future total carbon storage in terrestrial ecosystems.
Therefore, model-based assessment of the potential impact of future land-use changes on regional
carbon storage is very important, and so is the construction of a long-time carbon storage database of
a whole ecosystem for dynamic monitoring and ecological protection. Few models can predict the
potential impact of land-use change on carbon storage in the future. To address this gap, we use a
land-use change model and an ecosystem system model to assess future ecosystem carbon stocks.

In recent years, there has been more emphasis on models that multiply the average carbon density
of each land use/cover (LUC) type by its corresponding area, due to their simplicity of use at different
scales [31,32]. A cellular automata (CA) model has strong spatial computing abilities and can effectively
simulate and spatially display complex dynamic systems. However, due to the high complexity
of the land system, the most difficult aspect in designing CA models is the formulation of cellular
transformation rules. In practice, this formulation often relies on expert knowledge, and thus lacks
objective standards. The artificial neural network (ANN), an artificial intelligence (AI) technology,
has unique nonlinear processing abilities, and can be used to alleviate CA design difficulties. Using
ANN and CA is an effective way to simulate land-use change. Almeida and Gleriani successfully
apply ANN-based CA from the watershed scale to the urban land-use scale in Piracicaba, Brazil [33].
Li et al. [34] propose an ANN–CA model focusing on the conversion of non-urban to urban land use at a
regional scale, and account for three categories of spatial variables: distance, neighbor state, and natural
attribute of land use. Several scholars have tried to combine ANN with CA for simulation experiments,
but most of their simulated objects are urban areas, with a focus on urban expansion. There is little
research on LUCC and ecosystem services in fragile ecological environments. To effectively assess
the potential effects of LUCC on carbon storage, we use the ANN–CA and InVEST models, which are
both suitable to assess different policy scenarios. First, we describe the principles of the ANN–CA and
InVEST models. Second, the two models are implemented as follows: (1) The ANN–CA model is used
to predict LUCC resulting from different development scenarios in the QLB; (2) The InVEST model is
used to assess carbon storage changes due to LUCC. The carbon density data required in the InVEST
model is determined by consulting the related literature.
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In this paper, we focus on the impact of LUCC on the ecosystem service of carbon storage in
the Qinghai Lake Basin (QLB) of the Qinghai–Tibetan Plateau (QTP). More than 69% of the area is
grasslands. The 4,500 km2 of Qinghai Lake are teeming with rare aquatic animals (Qinghai Lake naked
carp) unique to the plateau, and with more than 300,000 migratory birds living there. This ecosystem
is fragile and very sensitive to global change and human intervention. As a result, its environmental
conditions have changed significantly over the past decades, including grassland and permafrost
degradation, and carbon reserve loss. The QLB is a transitional zone from the arid area of Northwest
China to the alpine area of the QTP; it is also the source of some large rivers in China [35] and is sensitive
to global climate change. Qinghai Lake is an important ecological body of water on the QTP, and plays
a protective role in the desertification of the whole western Qinghai, as well as an important barrier to
maintain the ecological security of the northeastern QTP. It is also an important, ecologically fragile area
in Western China [36], and its impact on ecosystem carbon storage is still unclear. The Planning of the
Main Functional Areas of Qinghai Province lists the QLB as an important part of its ecological security
strategy [37]. The region needs to further expand green spaces and enhance its carbon sequestration
capacity to respond to global climate change. Therefore, an assessment of ecosystem carbon storage
in this area is urgently needed for decisions on land-use, ecological environmental protection, and
coordinated sustainable development in the QLB.

This paper takes the QLB as a case study to make the following research contributions to the
existing literature:

(1) Analysis of the trends of LUCC and carbon storage in the QLB from 1990 to 2015.
(2) Simulation of land-use changes and carbon storage over 2020–2030 under different scenarios

using an ANN–CA model.

2. Materials and Methods

2.1. Study Area and Data

Located in the northeastern margin of the QTP, the QLB is located in north–central Qinghai
Province, ranging from 36◦00′N–38◦15′N to 99◦50′E–102◦40′E, with a typical continental plateau
climate and a total area of 55.7 million km2 (Figure 1). The QLB is located within the administrative
jurisdiction of three prefectures and four counties in Qinghai Province: Haiyan County and Gangcha
County in Haibei Tibetan Autonomous Prefecture, Tianjun County in Haixi Mongolian Tibetan
Autonomous Prefecture, and Gonghe County in Hainan Tibetan Autonomous Prefecture. Qinghai
Lake is the largest saltwater lake in China, with an average altitude of 3193 m. It is surrounded by vast
grasslands and many snow peaks, and is an important world wetland [38].

The land-use data are produced using Landsat TM 5 and 7 remote sensing (RS) images (spatial
resolution of 30 m) for 1990, 2000, 2010, and 2015, with orbital numbers 132, 133, 134, 135, and line
numbers 33, 34, and 35. These satellite images were downloaded from the website of the United States
Geological Survey (http://earthexplorer.usgs.gov). Images were calibrated by systematic radiation
and geometry. Using the Environment for Visualizing Images (ENVI) software, we first established
the interpretation marks of ground objects for these RS images, using field surveys and statistical
yearbook data. Then, we visually interpreted and reclassified LUC types into cropland, grassland,
woodland, construction land, wetland, water area, and unused land. We use Google images and
high-resolution images (SPOT 6 with 1.5 m resolution) to help us in the visual interpretation from the
Landsat TM/ETM+ data.

To verify the accuracy of the LUC data, 500 validation samples (Figure S1) were randomly selected
from a high-resolution classification map (SPOT 6), and were investigated through a field survey in
2015. The data for 2020–2030 is simulated by the ANN–CA model, which can be synthesized based on
the trends of historical LUCC (using the spatial characteristics of recent LUCC and coupling human
and natural effects). The probability of occurrence of each type of LUC is used to trace the area’s history
and predict future land-use change.

http://earthexplorer.usgs.gov
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Eco–environment Protection in the Qinghai Lake Basin (http://deep.qherc.org//)). 
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response to the QLB changing political and economic conditions. The elevation, slope and slope 
direction factors are derived from DEM data. Distance is taken as the Euclidean distance to main 
roads, Qinghai Lake, and county and town centers. Population density data is obtained by using the 
area weight method of administrative units. Temperature and precipitation data are obtained from 
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Figure 1. Map of the study area (The elevation data is provided by International Scientific &
Technical Data Mirror Site, Computer Network Information Center, Chinese Academy of Sciences
(http://www.gscloud.cn). The vector boundary data for counties are provided by the Data Center for
Eco-environment Protection in the Qinghai Lake Basin (http://deep.qherc.org//)).

We set the land demand for future land use by interpolating the historical development trend.
Based on QLB existing data, a land-use type transformation matrix is created over 1990–2015. We select
12 driving factors: elevation, slope, slope direction, distance from major highways, distance from
Qinghai Lake, distance from the city center, distance from the township center, GDP density, population
density, temperature, precipitation and a random factor representing unpredictable factors encountered
in the process of land-use evolution. The latter may be related to different policies and disputes
arising in the process of land expropriation, as formulated by decision-makers in response to the
QLB changing political and economic conditions. The elevation, slope and slope direction factors are
derived from DEM data. Distance is taken as the Euclidean distance to main roads, Qinghai Lake, and
county and town centers. Population density data is obtained by using the area weight method of
administrative units. Temperature and precipitation data are obtained from China’s ground weather
stations (http://data.cma.cn/).

2.2. Methods

2.2.1. Land Development Scenarios

Future land-use demand results from future land-use changes, and can be estimated by Markov
chains, historic trend extrapolation, and economic models. In our model, land-use demand is inputted
year by year, and is obtained through interpolation. Given future land demand in the QLB, the present
land-use situation, and the goal of future ecological protection, three scenarios are developed for the
QLB over 2020–2030: natural growth (NG), cropland protection (CP), and ecological protection (EP).

http://www.gscloud.cn
http://deep.qherc.org//
http://data.cma.cn/
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The land-use dynamic change and the land-use conversion matrix methods were used to analyze
land use demand. Land-use dynamics include the Single Land Use Dynamic Degree (SLUDD) [39],
which reflects the rate of change K in the quantity of land of a certain use type. The calculation formula
is as follows:

K =
Ub −Ua

Ua
×

1
T
× 100% (1)

where Ua and Ub represent the land-use area of a single land-use type at the beginning and the end
of the study period. T is the length of this period. If K is greater than 0, the study region is in land
expansion period (otherwise, in land shrinkage). We use dynamic historical trends to deduce land
demand in the future under the three scenarios.

Because QLB is not a complete administrative unit, its future land-use demand is difficult to
predict. In view of this, the scenario analysis method is adopted. According to the characteristics of
each scenario model and with reference to the Master Plan for Land Use of Qinghai Province and the
Main Functional Zone Plan of Qinghai Province, the conversion probabilities of a Markov model are
modified to estimate the demand area of each land type in each scenario. The specific scenarios are
described below.

The NG scenario is set to be consistent with the historical land dynamics of the QLB. Under this
scenario, we assume that land-use demand will not be affected by large-scale policy adjustments and
will change according to the conversion probability matrix for the period 1990–2015. We assume that
all land uses may convert into each other. With 10 years as the step size, a Markov model is used to
predict the area of each land-use type under the NG scenario.

The CP scenario is set to be consistent with planning policy and to achieve its core goal of cropland
protection. Under this scenario, the mutual interests of social, economic, and environmental protections
are all considered. Under the premise of satisfying the QLB steady economic (GDP) growth, green
mountains and green waters are protected, and basic cropland s (protected by national policies) are set
as restricted areas. Basic cropland zoning cannot be converted into other land types. In this scenario, the
expansion rate of construction land and the conversion rates of cropland to other lands are restrained
to strengthen the protection of croplands. The conversion probability of cropland to construction land
is reduced by 10%, the conversion probabilities of croplands to woodlands, grasslands and water areas
are reduced by 15%, and the conversion probability of croplands to unused lands is reduced by 20%.

The EP scenario is set to reflect ecological security, which has become very important in China.
This scenario is to strengthen the protection of woodlands, grasslands, water areas and other ecological
lands, while strengthening the conversion of other lands to ecological land. Under this scenario,
the spatial distribution of land uses focuses on: (1) improving the regional ecological environment;
(2) strictly protecting the ecological control area of Qinghai Lake; (3) strengthening the protection of
wetlands, waters, and woodlands; and (4) strictly restricting wetlands. (Waters and wetlands are not
changed into other land uses). The conversion probability from wetlands to grasslands decreases from
40.95% to 30.95%. The conversion rate from croplands to woodlands increases from 0.02% to 5.02%.
The conversion rate from woodlands to grasslands decreases from 37.1% to 32.1%. The conversion rate
from unused lands to woodlands increases from 0.14% to 10.14%. The conversion rate from grasslands
to woodlands increases from 0.73% to 20.73%.

2.2.2. CA-Based FLUS Model

We use the Future Land Use Simulation Model (FLUS), a CA model simulating land-use change
and future land-use scenarios [40]. This model improves greatly over traditional CA models. The CA
model is a dynamic model with discrete time, space and state [41], and is a powerful method for
describing, recognizing and simulating the behavior of complex systems [42]. It includes four basic
elements: cellular space, grid size, cell neighborhood and transition rule [43]. The cellular space
represents the collection of all cells, each cell having its own attributes (such as land use/cover type,
etc.), and the state of each cell in the next period is determined by the current state of the cell, the
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state of the cells in its neighborhood, and the transition rule. The CA transition principle is expressed
as follows:

St+1 =
(
Ud, St, Nt, f

)
(2)

where St+1 represent the cellular state at time t + 1, d represents the number of land-cover states, Ud

represent the d-dimensional cellular space, St. represent the cellular state at time t, Nt represent the
state of neighbors at time t, and f . represent the transition rule [44].

In the FLUS model, the multi-layer artificial neural networks algorithm (ANN) is first used
to obtain the suitability probabilities of various land types, based on land-use data and various
driving factors (Table S3), including human activities and natural effects (terrain, traffic, location,
policy, etc.). Next, a self-adaptive inertial competition mechanism based on roulette is used to solve the
uncertainty and complexity of the interactive conversions of land-use types resulting from natural
action and human activity. This progress gives the FLUS model a higher simulation accuracy, with
better approximation of the actual land-use distribution.

ANN determines occurrence probabilities by uncovering the complex relationship between
land-use patterns and various human and natural driving forces. ANN is a nonlinear and adaptive
information processing model composed of a large number of processing units. Its advantage is that it
can fit complex relationships between input data and training target through iterative learning [45].
The original land-use data is based on a 30 m resolution grid, and we resampled it into a 50 m resolution
grid by using a bilinear interpolation method. The model can represent spatial interactions in the
neighborhood, and fully integrate feedback among system elements through iteration and updating.
Two main steps are addressed in this model: (1) The land cover changes over 1990–2015 provide key
inputs to the ANN–CA (land cover type change rate, possibility of specific land cover change, and
basic characteristics of patch size) to determine the demand for land use in the future; (2) A bottom-up
spatial modeling component using CA. The ANN–CA model combines the strong ability of ANN to
deal with non-linear relationships with the domain analysis function of the CA.

In the training stage, the ANN is trained by extracting the land-use classification data of the
starting year, and the weight value of the network is obtained. In the prediction stage, the probabilistic
values of land-use types that should be converted are obtained through ANN to determine whether
a current cell can be converted. In the simulation process, ANN is responsible for providing the
conversion rules of the geographic CA.

The sampling proportion for neural network training is 3% of the pixels, which were randomly
selected across the QLB. All driving factors were normalized between 0 and 1 before training the
network. The number of iterations for optimal accuracy was chosen through a trial and error process.
As a rule of thumb, the number of hidden layers in the neural network is set to 12. The error acceptance
is within 0.01 and the iteration limit is 10,000. The learning rate and terminal conditions of the ANN
model are self-adaptive during the training process.

The ANN model network structure is divided into three layers. The first layer is the input layer,
with a total of 19 neurons, 12 of which are factors of land-use change and 7 are types of land use in the
neighborhood. The input layer formula is as follows:

X = [x1, x2, . . . , xn]
T (3)

where xi represent the i input neuron, one of the influencing factors (social economy and human
activities). X is the whole set of neurons.

The second hidden layer calculates the signal received by all input neurons on a cell at a certain
moment according to the following formula:

net j(g, t) =
∑

i

wi, j × xi(g, t). (4)



Remote Sens. 2020, 12, 528 7 of 22

where g is the simulation unit (cell) corresponding to the input signal, t is the simulation time, net j(g, t).
is the signal received by neuron j in the hidden layer, wi, j. is the adaptive weight of neuron i in the
input layer and neuron j in the hidden layer, which is modified in the training process.

The output layer is the third layer composed of seven neurons, corresponding to the probability
values of the seven land-use types. The connection between the hidden layer and the output layer is
determined by the sigmoid function:

sigmoid
(
net j(g, t)

)
=

1

1 + e−net j(g,t)
. (5)

The probability of land-use type k is calculated as follows:

sg(g, k, t) =
∑

n
wn,k × sigmoid(netn(g, t)) =

∑
n

wn,k ×
1

1 + e−netn(g,t)
(6)

where sg(g, k, t) represents the probability of occurrence of land-use type k in grid cell g at time t.
Similar to wi, j, wn,k is the adaptive weight between the hidden layer and the output layer. For each
iteration time t and grid cell g, the sum of the suitability probabilities of all land types is equal to 1, with:∑

k

sg(g, k, t) = 1 (7)

The core of competition mechanism in the FLUS model is adaptive inertia, where the inertia
coefficient of each land-use type is determined by the difference between amount of current land and
land demand. An adaptive adjustment is carried out in an iterative process, so that the amounts of
land converge to the predetermined targets. The adaptive inertia coefficient Aiθk of the land type k at
iteration time t is:

Aiθk =


Aiθ−1

k i f
∣∣∣Dθ−2

k

∣∣∣ ≤ ∣∣∣Dθ−1
k

∣∣∣
Aiθ−1

k ×
Dθ−2

k
Dt−1

k
i f 0 > Dθ−2

k > Dθ−1
k

Aiθ−1
k ×

Dθ−1
k

Dθ−2
k

i f Dθ−1
k > Dθ−2

k > 0

(8)

where Dθ−1
k and Dθ−2

k are the difference between the number of cells of land type k and the demand for
land k at iterations θ-1 and θ-2, respectively. If the target land is inconsistent with the current land,
the inertia coefficient is dynamically adjusted to conform to the changing trend in the next iteration.
For example, when future development requires more cropland, but cropland actually decreases in
the simulation, the inertia coefficient of cropland is increased to prevent the loss of cropland and to
encourage the conversion of other lands to croplands.

The conversion matrix representing the possible land-use conversions under the different scenarios
is presented in Figure 2.
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Figure 2. Rule matrix of land-use conversion under three scenario objectives in the Qinghai Lake
Basin (outside frame: 0 grassland, 1 cropland, 2 construction land, 3 woodland, 4 wetland, 5 water,
6 unused land; inside frame, “1” indicates that land-use conversion is permitted; “0”means the
opposite; Abbreviation: NG, Natural Growth scenario; CP, Cropland Protection scenario; EP, Ecological
Protection scenario.).
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Conversion costs represent the difficulty of conversion from current land-use types to other
land-use types and affect the dynamics of land-use change, as described below. After the probabilities
of suitability of each cell are calculated by the ANN model, each type of land is allocated to each cell
through CA model iterations. The probability Tpt

gk of the transformation of cell g into land-use type k
at time t can be expressed as:

Tpt
gk = sg(g, k, t) ×Ωt

g,k ×Aitk ×
(
1− spp→k

)
. (9)

where spp→k is the normalized cost of converting land type p into type k, and 1− spp→k represents the
difficulty of conversion. Ωt

g,k represents the neighbors domain, with:

Ωt
g,k =

∑
N×N con

(
pt−1

g = k
)

N ×N − 1
×wk (10)

where
∑

N×N
con

(
pt−1

g = k
)

represents the total number of cells of land type k after the last iteration time

t − 1 in the N × N Moore neighborhood; wk is the weight of land type k. In this study, a 3 × 3 field
Moore window is used, and the number of CA iterations is set at 300.

2.2.3. Variable Importance Measures

We use the random forest (RF) algorithm to evaluate which factors are dominant in the model.
The measurements of the importance of spatial variables in ANN–CA models coincides with the
identification of driving factors acting on land-use changes, and the RF algorithm can better accomplish
this identification. The RF algorithm is a nonlinear modeling tool proposed by Breiman [40]. It measures
the importance of each factor. The Bootstrap resampling method (a sampling algorithm with fallback)
is used to extract multiple samples from the original sample, and each Bootstrap sample is modeled as
a decision tree. Then RF combines the predictions of these multiple decision trees and generates the
final prediction by voting [41].

2.2.4. Estimation of Carbon Storage based on the InVEST Model

The InVEST model requires fewer input parameters and is used to evaluate carbon storage.
We combine the ANN–CA model with the InVEST model, which simulates the impact of land-use
changes on carbon reserves in the QLB over 2020–2030, based on the three scenarios. The general
modeling framework is divided into two parts (Figure 3): (1) historical regional land-use data and
the CA model for the determination of future land-use change, and (2) the InVEST model to evaluate
potential regional carbon reserves. A more detailed description can be found in the InVEST 3.2.0 User‘s
Guide [21] and in Supplementary Materials.

The ecosystem carbon pool consists of four parts (Figure 3): above-ground biocarbon,
under-ground biocarbon, soil carbon, and dead organic carbon. The carbon storage of above-ground
biomass mainly includes the carbon content of vegetation, tree trunks, branches, leaves, etc.
Underground biological carbon is mainly the carbon content in roots of active vegetation. Soil
carbon is generally limited to the carbon content in mineral soil, but also includes organic soil. Dead
organic carbon includes litter or the carbon content of dead trees. The InVEST model assumes that each
land cover is characterized by a total carbon density, which aggregates above-ground, below-ground,
soil organic and dead organic matter carbon densities.

The model considers that a change in carbon storage results from a land-use change, thus
simplifying the carbon cycle process. The model is [21]:

Ci = Ci1 + Ci2 + Ci3 + Ci4 (11)
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where i represents the land-use type, Ci represent the total carbon density of land-use type i (Mg/ha)
(Mg, Megagram: a unit of mass equal to 106 g), Ci1 the above-ground density, Ci2 represent the
underground density, Ci3 the soil carbon density, and Ci4 the dead organic carbon density.
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Figure 3. General modeling framework for the integrated Artificial Neural Networks–Cellular Automata
and InVEST models (LULC, land use and land cover; NG, Natural Growth scenario; CP, Cropland
Protection scenario; EP, ecological protection scenario; See Supplementary Materials for additional
information on the model).

Total carbon storage is computed as follows:

Call =
n∑

i=1

Ci × Si (12)

Equation (12) accounts for the area of land-use i (Si, ha), the numbers of land-use types (n), and
the total carbon storage (Call, Mg) [21]. We run the InVEST model by inputting carbon densities.
The results are then loaded into ArcGIS 10.3 to analyze the spatial distribution of carbon storage in the
QLB (See Supplementary Materials for additional information). Based on research by Li et al. [46],
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Xie et al. [47,48], and Huang et al. [49], the carbon density in different LULC ecosystems is presented in
Table 1.

Table 1. Carbon density for different LULC types in the QLB (Mg/ha).

LULC Above
Ground

Below
Ground

Soil
Organic

Dead
Organic Source

Grassland 35.3 26.5 80.9 2.2 [48–50]
Cropland 5.7 80.7 28.4 1 [48–50]

Construction
Land 12 0 71 1 [48–50]

Woodland 42.4 120 236.9 67.5 [48–50]
Wetland 35 90 208.5 25 [48–50]

Water 10 8 0 0 [48–50]
Unused Land 4 20 74.6 0 [48–50]

3. Results

3.1. Importance of Driving Factors for each LUC Type in the Model

The Random Forest algorithm provides the importance of each driving factor for each land use,
as presented in Figure 4. The main driving factors of grassland change are temperature, precipitation
and elevation. The driving factor influencing the change in croplands is the distance between cells and
main roads. Specifically, the loss of croplands is mainly due to transport accessibility and population
growth and transfer, resulting in urban expansion and agricultural restructuring. The intensive use
of urban and other non-agricultural lands slows down the loss of croplands. The distances to the
town center and the main highway are the driving factors that influence construction land change.
The driving factors for woodland growth include elevation and temperature. Elevation is the main
driving factor of wetland change. Distance and elevation from Qinghai Lake are the main driving
factors for structural changes in water area. The closer the area is to Qinghai Lake and the lower the
elevation, the easier it is for other types of land to be converted into water. The elevation is the main
driver of unused lands change. In summary, the dominant driving factors of land-use change in the
QLB are altitude, distance to main roads, and temperature.
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Figure 4. The importance of factors for each type of land use in the Random Forest model (implemented
on the Python platform). The numbers represent the contribution degree. The greater the number, the
greater the contribution of the driving factor to the land-use change.

3.2. Simulation Model Validation

There are two commonly-used methods to test model results: point-by-point comparison and
overall comparison. The point-by-point method uses the Kappa accuracy coefficient, and the results
are presented in Table S1 in Supplementary Materials.
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Based on the land-use map in 2010 and corresponding driving factors, the land-use scenario for
2015 is simulated, and compared with the actual 2015 land-use map. The simulation accuracy is 92.4%,
and the Kappa coefficient is 0.86, indicating a high accuracy (Table S1). Overall, the simulated land use
in 2015 is consistent with the actual land use. In terms of the simulation accuracy for various land uses,
water areas have the highest accuracy, with Kappa = 0.99. Kappa = 0.97 for unused lands. However,
the accuracy for construction lands is relatively poor, with Kappa = 0.68. Croplands, woodlands, and
wetlands have also high accuracies. The main reasons for the high accuracy for water areas is that they
are mainly composed of large water surfaces, such as the Qinghai Lake and the Shaliu and Buha rivers,
which have been classified as important ecological protection areas and have been relatively stable
over time.

3.3. Land Use and Land Cover Change over 1990–2030

LULC maps were generated and displayed using Landsat TM images from 1990 to 2015. The four
reclassified land-use maps have a uniform spatial resolution of 50 m × 50 m (Figure 5). The overall
classification accuracy is 83.5% and Kappa is higher than 0.80, which meets the standards of this study.
Land changes in the QLB from 1990 to 2015 are as follows: construction lands increased sharply to 5131
ha (+592%); wetlands decreased to 109,428 ha (−8.64%); croplands decreased to 52,316 ha (−3.81%);
woodlands increased to 56,315 ha (+23.83%); grasslands increased to 2,050,812 ha (+0.75%); and unused
lands decreased to 191,742 ha (−10.17%).
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Landsat TM 5 and 7 satellite images (http://earthexplorer.usgs.gov).

Table 2 shows the transitions of the seven LUC types from 1990 to 2015. For a more detail about
LUC inflow and outflow, see Figure S2. Grasslands, construction lands, woodlands and water areas
increased, while croplands, wetlands, and unused lands decreased. According to previous studies [51],
the water area of Qinghai Lake decreased from 1987 to 2005, and precipitations increased slightly. Then,
rapid increases in the QLB were observed from 2005 to 2016, which is similar to our findings (Table S2).

http://earthexplorer.usgs.gov
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Table 2. Land use/cover conversion matrix from 1990 to 2015 in the Qinghai Lake Basin (Unit: ha).

Grassland Cropland Construction Land Woodland Wetland Water Unused Land Total

Grassland
1,865,864 14,659 3271 42,263 48,525 2335 60,820 2,037,736
91.57% 0.72% 0.16% 2.08% 2.38% 0.11% 2.99%

Cropland 15,028 37,324 1288 0 73 238 439 54,390
27.63% 68.62% 2.37% 0 0.13% 0.44% 0.81%

Construction Land
113 203 425 0 0 0 0

74115.28% 27.39% 57.34% 0 0 0 0

Woodland
30,572 0 0.50 13,710 782 49 365 45,479
67.22% 0 0 30.15% 1.72% 0.11% 0.80%

Wetland
58,753 130 146 106 58,964 1063 623 119,785
49.05% 0.11% 0.12% 0.09% 49.22% 0.89% 0.52%

Water
3292 0.50 0 0 708 433,238 512 437,750

0.75% 0 0 0 0.16% 98.97% 0.12%

Unused Land
79,321 0 0 236 378 4561 131,958 213,453
37.16% 0 0 0 0.18% 2.14% 60.42%

Total 2,050,812 52,317 5131 56,316 109,428 441,483 191,717 2,912,334
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Figure 4 shows that the increases in construction lands and woodlands are mainly due to increased
use of resources for human activities and infrastructure construction, occupying large amounts
of unused lands and grasslands. In developing countries, human activities, such as overgrazing,
contribute to the degradation of nearly 90% of grasslands [52]. Governments often choose economic
benefits at the expense of the environment. Then, changes in grasslands bring great pressure on
livestock production. Woodlands increased from 1.56% in 1990 to 1.94% in 2015, mainly because of the
implementation of the Three-North Shelterbelt System Construction Project in 1978, the strengthening
of ecological construction by the Qinghai Government, the overall continuous reversal of desertification
in the QLB, and the artificial afforestation of 889.5 million ha over the last 40 years [53]. The QLB has
emphasized increased grain production capacity and continuous reclamation of new grasslands, with
construction lands increasing from 0.01% to 0.18% and occupying mainly croplands and grasslands.
Unused lands have been greatly reduced, from 7.34% in 1990 to 6.60% in 2015; wetlands have also
been reduced, from 4.13% to 3.77%. Previous studies [54] show that degraded grasslands accounted
for 65% of the land cover over 2006–2010, and were mainly located in the north and surrounding the
QLB, which is consistent with our findings. From 1990 to 2015, the area of unused lands converted
into grasslands in the QLB was the largest (79,321 ha), indicating that primarily because of increased
human population and activities. Second, grasslands were converted into 60,820 ha of unused lands.
Almost all these grasslands had been degraded. After years of glacial snow melting, some of the
degraded grasslands have been transformed into wetlands, while others have become unused bare
lands, greatly aggravating desertification. Regional animal husbandry has a good economic foundation
and has displayed rapid development and a large demand for grassland resources. At the same
time, there is wetlands degradation caused by overgrazing. Wetlands have been transformed into
596 km2 of grasslands. The sharp decrease in wetland areas is due to the reduction in inland beaches
and swamplands caused by melting alpine ice and snow. More importantly, because of increased
population and activities, many wetlands have been developed into pasture. With rapid economic
development, construction lands are also expanding rapidly and are mainly located in tourism areas
around Qinghai Lake and prefecture residences.

Figure 6 presents the simulated land-use maps for 2020 and 2030 under the three scenarios.
By comparing Figures 5 and 6, we can see future trends of land-use conversion under the NG
scenario: croplands, woodlands, wetlands, and water areas decline over 2015–2030, land desertification
intensifies, and the ecological environment of the QLB further deteriorates. To analyze future land-use
changes in the QLB, the projected land-use areas in 2020 and 2030 are presented in Table 3.
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By 2020, under the CP scenario, croplands, construction lands, water areas and unused lands will
have declined by 3.68%, 9.27%, 0.26%, and 7.44% respectively, as compared to 2015. Wetlands will
have increased the most (13.71%), followed by woodlands (5%). Under the CP scenario, wetlands will
be effectively protected, increasing by 16.87%, and the rate of cropland loss will also have been slowed.
By 2030, under the CP scenario, croplands and unused lands will have declined by 1.4% and 16.05%,
respectively, compared to 2015. Construction lands, woodlands, and wetlands will have increased
by 15%, 10%, and 15%, respectively. Under the EP scenario, construction lands will be reduced by
41.87%, and be almost the same as in 2020. Wetlands will be effectively protected, increasing by 22.72%,
as compared to 2015. This scenario is of great significance for maintaining and improving the ecological
environment of the QLB.

Table 3. Changes in land use/cover in the Qinghai Lake Basin over 2020–2030 under the three scenarios
(Unit: km2).

Land Type 2015
2020 2030

NG CP EP NG CP EP

Grassland 20,508 20,539 20,508 20,539 20,599 20,599 20,713
Cropland 523 495 504 492 502 516 492

Construction land 51 31 47 30 31 59 30
Woodland 563 560 591 619 573 619 562
Wetland 1094 1074 1244 1279 1032 1258 1343

Water 4415 4391 4403 4415 4395 4411 4394
Unused land 1917 1984 1775 1698 1940 1610 1538

3.4. Temporal Patterns of Carbon Storage

3.4.1. Total Carbon storage and Potential Regional Carbon Losses

Figure 7 shows that the total carbon reserves of the QLB in 1990, 2000, 2010, 2015 were 394, 392,
396, and 396 Tg C, respectively. Carbon reserves decreased over 1990–2000, indicating that the land
carbon sequestration capacity weakened. Carbon sequestration capacity rose sharply over 2005–2010,
due to the acceleration of the Three-North Shelterbelt project, with systematic woodland protection by
the local government.
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Figure 7. Total carbon storage over 1990–2015 in the QLB (calculation based on Equations (11) and (12).

The rapid growth of woodlands over 2010–2015 and the improvement of the ecological environment
increased carbon storage; however, total carbon storage decreased slightly, mainly because wetlands
decreased during this period. The area of wetlands is affected by the melting of mountain ice and
snow, which reduces the area of inland beaches and marshes. Also, more importantly, a large
number of wetlands have been developed into grasslands because of the increase in population and
human activities.
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Carbon storage changes corresponding to the various land uses over 2015–2030 are illustrated in
Figure 8. In the NG scenario, the loss of carbon sequestration in wetlands is the largest (2.23 Tg C),
followed by croplands (0.24 Tg C). Increased carbon sequestration takes place in grasslands, woodlands
and unused lands, with the largest increase in grasslands (1.32 Tg C). In the CP scenario, carbon
sequestration increases for wetlands (5.88 Tg C), followed by woodlands (2.63 Tg C). Carbon
sequestration in unused lands and water areas decreases, particularly in unused lands (3.04 Tg C).
Under the EP scenario, carbon sequestration increases in wetlands (8.91 Tg C), followed by woodlands
and grasslands (2.97 Tg C). Croplands, unused lands, and construction lands gradually lose carbon
storage, particularly unused lands (49.61% of the total QLB carbon storage).
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Figure 8. Sequestered carbon content of different land uses over 2015–2030 under different scenarios.

Table 4 shows that grassland have the largest carbon reserves, followed by wetlands, woodlands,
unused lands, water areas and croplands. Construction lands and croplands have the smallest
carbon reserves.

Table 4. Carbon reserves of different land types in the QLB over 2015–2030 (Unit: Tg).

Carbon Storage Grassland Cropland Construction
Land Woodland Wetland Water Unused

Land Total

2015 297.16 6.01 0.43 26.29 39.23 7.95 18.91 395.97

2020
NG 297.60 5.68 0.25 26.15 38.49 7.90 19.56 395.64
CP 297.16 5.79 0.39 27.60 44.61 7.93 17.50 400.97
EP 297.60 5.65 0.25 28.92 45.85 7.95 16.75 402.96

2030
NG 298.48 5.76 0.26 26.73 37.00 7.91 19.13 395.28
CP 298.48 5.92 0.49 28.92 45.11 7.94 15.87 402.74
EP 300.13 5.65 0.25 26.25 48.14 7.91 15.17 403.50

In the NG scenario, grassland carbon storage in 2020 increases slightly over 2015 (0.44 Tg C).
Unused land carbon storage increases by 0.65 Tg C, and carbon storage of wetlands, croplands, and
woodlands decreases over 2015–2020 by 0.74 Tg C, 0.33 Tg C, and 0.13 Tg C, respectively. By 2030, the
carbon storage of grasslands and woodlands will have increased by 1.32 Tg C and 0.44 Tg C, respectively,
while the carbon storage of croplands, construction lands, and wetlands will have decreased by 4.02%,
39.65%, and 5.68%, respectively, as compared to 2015. Therefore, if the area develops according to the
NG scenario, important carbon reserves in croplands and wetlands will have been reduced, seriously
affecting the QLB balance of carbon reserves.

The CP scenario accounts for land demand for development, but also pays attention to cropland
protection and considers the impact of cropland policies on ecosystems, with economic growth relying
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mainly on tourism. Grassland carbon storage remains unchanged in 2020, woodland and wetland
carbon storage increases by 1.31 Tg C and 5.38 Tg C, respectively, while construction land carbon
storage decreases slightly. Carbon storage in grasslands, woodlands and wetlands remain unchanged
over 2020–2030, while carbon storage of unused lands and croplands decreases. The growth rate of
construction lands is reduced, croplands are effectively protected, and carbon reserves in woodlands
and wetlands is reduced, which are all conducive to a balance of carbon reserves in the QLB.

In the EP scenario, the ecological situation of the QLB improves significantly. By 2020, carbon
storage increases by 0.44 Tg C for grasslands, by 2.63 Tg C and 6.62 Tg C for woodlands and wetlands
respectively, and decreases by 0.36 Tg C and 2.16 Tg C for croplands and unused lands respectively.
The increase in carbon reserves in woodlands is enough to offset the corresponding decrease in unused
lands. Compared with 2015, total carbon storage in the whole study area increases by 7.5 Tg C in 2030.
Most of the increased carbon storage is due to wetlands. Carbon storage in grasslands and wetlands
increases by 1% and 22.72%, respectively, over 2015–2030, while carbon storage in croplands and unused
lands decreases by 5.93% and 19.78%, respectively. This scenario promotes the protection and survival
of local species, and contributes to the coordination of carbon balance with economic development.

3.4.2. Spatial patters of Future Carbon Storage

Figure 9 presents the spatial distribution of carbon storage in the QLB over 1990–2030. Overall,
Qinghai Lake has the lowest carbon storage, with an average carbon density of 0–20 Mg/ha. Over
1990–2015, grasslands account for at least 68.91% of the total area, with a carbon storage density
of 144.9 Mg/ha, and the largest carbon storage. Carbon storage in northern Qinghai Province is
relatively high, due to large-scale woodlands, which sequester a lot of carbon in the Tianjun Mountain
in Haiyan and Tianjun counties. The above-ground and underground biomass carbon content of
reeds and other plants growing in wetlands is relatively high, and their carbon sequestration ability is
strong. The average carbon storage density in eastern Qinghai Lake lies in the 100–120 Mg/ha range.
A more detailed spatial analysis of carbon storage in QLB sensible areas is presented in Supplementary
Materials (Figures S3 and S4).
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4. Discussion

4.1. Analysis of Land Use and Cover Change

Table 3 shows that 37.16% of unused lands was converted to grasslands, and 49.05% of wetlands
was converted to grasslands from 1990 to 2015. How did this large conversion from unused lands to
grasslands happen? Unused lands underwent reclamation to satisfy the increasing demand for grazing
by sheep and yaks in some towns, and also because of grasslands degradation due to heavy grazing in
the original grasslands and, after a few years, in newly reclaimed areas. The shift between grasslands
and wetlands was caused by a governmental ecological restoration project and more rainfall in recent
years. Conversion of wetlands to grasslands was also caused by excess irrigation for croplands and soil
erosion. Also, grasslands may have continued to degrade into barren lands. We see a slight decrease
of wetlands in some towns and in the whole study area. In the short term (1990–2015), wetlands
decreased slightly due to reduced rainfall over this period in the QTP’s climate cycle. However, in the
next climate cycle period, rainfall will be reduced again, and the climate will be warmer. The newly
gained wetlands and woodlands may disappear, and newly reclaimed grasslands will degrade more
quickly. In addition, there will be more people and livestock. Human land-use activities have already
rendered the land more fragile and sensitive to climate change. Thus, the current land-use system is
unsustainable in the long term. The phenomena that occurred in the study area comprise a snapshot of
the QTP’s land system. If the same process that occurred in the QLB happens across the entire QTP, the
ecological security of China and even Asia might be threatened.

4.2. Measurement of Carbon Storage in the QLB

This paper has revealed historical spatial changes in carbon storage in the QLB. It has also
simulated future changes in carbon storage in the area. As expected, woodlands and grasslands
accumulate more carbon storage than croplands and water areas. From 1990 to 2015, 67.47% of
woodlands were converted into grasslands, with a greater impact because grazing negatively impacts
carbon storage on the ground. Studies from India have also shown that when natural woodlands
are converted into grasslands, soil organic carbon stocks decrease by 23%. Current studies show
that, under the EP scenario, the QLB ecological situation will improve significantly. Carbon storage
of grasslands and croplands will decrease continuously until 2030, but increased carbon storage
by woodlands will compensate for this decrease. Fang et al. [14] believe that the continuation of
national afforestation and reforestation projects may significantly contribute to global terrestrial carbon
sequestration. According to our model, important carbon reserves in woodlands, grasslands, and
wetlands will increase. Although grassland carbon reserves remain unchanged as compared with
natural growth scenarios, increased wetlands have an important role in promoting the protection and
survival of local species. They also contributes to the coordination of economic development and
carbon balance. Quantifying the dynamics of carbon storage in the QLB ecosystem is very important
for understanding changes in carbon storage in the whole ecosystem of the QTP.

There have been many studies on ecosystems in the QTP, but few studies on carbon storage of
single ecosystems. QLB is an important ecological security barrier and an ecologically fragile area
in Western China. Changes in carbon storage in this ecosystem have not only an important impact
on the region’s ecological quality, but also a close relationship with local climate conditions and the
ecological security in China’s western region. Analysis of such changes is important to ensure regional
ecological security and to promote the coordinated development of the regional society, economy and
ecology. This study also shows that ecosystems with large carbon reserves may not exhibit high carbon
sequestration, which is consistent with the result of an earlier study [55]. Studying the supply and
demand of carbon storage and storage services in the QLB, so as to mitigate climate change in the
QTP’s ecological environment, reducing the emission level of carbon, and improving storage capacity,
are all essential measures for improving global ecological services in sensitive areas.
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4.3. Generality of Models

LUCC and the resulting changes in ecosystem services have become a research hotspot, and
some studies have attempted to evaluate the potential impacts of LUCC on ecosystem services [56–58].
Future ecosystem services have been assessed by using two models. The ANN–CA model was used
to forecast LUCC under different scenarios. The InVEST model was adopted to calculate changes
in carbon storage due to LUCC. Combining the land-use change model and the InVEST model to
optimize the simulation of land-use changes has become an increasingly important research focus
and direction. For example, He et al. [59] assess the potential impact of urban expansion on regional
carbon storage by linking the LUSD-urban and InVEST models. The relative error between simulated
carbon storage losses and actual losses is less than 12%. Effective progress has been made in this study,
which uses the ANN–CA model to optimize the quantity and spatial allocation of land use in the QLB,
with good simulation results (Table S1). The model integrates macro-driving factors and micro-pattern
land-use change; it also considers four factor categories: topographic, socio-economic, administrative
center, and traffic. Although the model can effectively simulate the impact of future land-use changes
on carbon storage in a relatively short time, there are limitations in the long-term. It is expected that
the climate around the QLB will become warmer and wetter, which will lead to changes in vegetation
pattern and soil carbon density. When models are used for long-term predictions, the effects of climate
change cannot be ignored. Finally, 99.82% of the study area is uninhabited and largely covered by
vegetation, which is driven by climate and environmental factors. Incorporating these factors into
LUCC simulation remains a challenge.

4.4. Limitations and Future Research

Based on the research of Li et al. [60] and Xie et al. [47], carbon density parameters for different
carbon sources can only roughly estimate the carbon storage of a regional ecosystem and its
socioeconomic value. Although the accuracy of these estimate must be further improved, this
does not affect the overall research results of this paper, which could support decision-making in the
region’s relevant government departments. Future studies will collect more detailed data on soil and
vegetation carbon density, in turn facilitating further research. However, this study still has some
deficiencies. For example, a limitation of the InVEST model is its inability to estimate carbon storage
in water and the carbon density of unused lands. In the InVEST model, regional carbon storage is
calculated as the sum of the above-ground, under-ground, soil organic matter and dead organic matter
carbon. The variation of carbon density within each land use type and seasonal variations in carbon
loss among LUC types were not accounted for. Another shortcoming of this study is the land cover
classification. The original spatial resolution of the data is 30 m * 30 m. To ensure data uniformity, all
spatial data were resampled uniformly to a 50 m * 50 m grid, and this might have led to reallocation
errors. For future research, it is necessary to better describe land cover patterns and obtain more
accurate carbon storage values.

5. Conclusions

In this study, we have used the InVEST and ANN–CA models to analyze and simulate the
temporal and spatial changes in ecosystem carbon storage due to land-use changes in the QLB in the
northeastern QTP over 1990–2030 under three scenarios. The amount of and spatial differences in
carbon storage in the QLB were discussed, and the following are the main conclusions: (1) Using the
ANN–CA model with the InVEST model can effectively assess the potential impact of carbon storage in
sensitive areas under future ecological constraints. (2) Dependence on the animal husbandry industry
in the QLB leads to overgrazing. From 2010 to 2015, the QLB carbon storage ecosystem has displayed
a downward trend, due mainly to decreased grasslands and wetlands. (3) Under the CP scenario,
the carbon storage ecosystem displays a downward trend. (4) Under the EP scenario, focusing on
important carbon sources such as ecological control areas, woodlands and wetlands, the role of land in
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enhancing the carbon sequestration potential is strong. To a certain extent, land use in the QLB has
been optimized, and life, production and ecology have been improved. The spatial structure has a
profound influence on promoting the orderly development of the QLB economy, society, and ecology.
This study has found that the establishment of high-quality cultivated pasture is an important measure
to improve carbon storage [23]. In the long run, the reclamation of high-quality cultivated pasture
may not only provide livestock with high-quality pasture and reduce pressure on natural grasslands,
but also ensure normal improvement or restoration of natural grasslands and wetlands. In the future,
government should continuously optimize the land-use structure and spatial distribution based on
a strict implementation of overall land-use planning. This would include changing trends toward a
single grassland type, restricting development of inland beaches, protecting important wetland and
woodland resources, and adopting a variety of bioengineering measures to prevent soil erosion and
soil desertification. The government should establish reasonable ecological compensations to farmers
and herdsmen for protecting the ecological environment and promoting its healthy development.
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scenarios over 2015–2030 in the Qinghai Lake Basin sensitive areas. Table S1: Simulation results: percentage
accuracy and Kappa coefficient, Table S2: Summary of land use/cover areas over 1990–2030 (Unit: ha), Table S3:
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Author Contributions: Conceptualization, J.L. and J.G.; methodology, J.L., S.L. and J.Z.; validation, J.L., J.G., and
J.-M.G.; data curation, J.L. and J.G.; writing—original draft preparation, J.L.; writing—review and editing, J.L.
and J.-M.G.; funding acquisition, J.G. and S.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (41871172), the
Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (GUGL170408);
and the Key Laboratory of Meteorological Disaster of the Ministry of Education, Nanjing University of Information
Science and Technology (No. KLME1506).

Acknowledgments: The authors would like to thank the Data Center for Eco-Environment Protection in the
Qinghai Lake Basin (http://deep.qherc.org) for providing open-access data, and Jianxin Yang, Xun Liang, Jia Feng,
and Guang Chen for their assistance. Additionally, the authors would like to thank anonymous reviewers for
their helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design of
the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision
to publish the results.

References

1. Rodríguez-Echeverry, J.; Echeverría, C.; Oyarzún, C.; Morales, L.J.L.E. Impact of land-use change on
biodiversity and ecosystem services in the Chilean temperate forests. Landsc. Ecol. 2018, 33, 439–453.
[CrossRef]

2. Li, S.C.; Zhang, Y.L.; Wang, Z.F.; Li, L.H. Mapping human influence intensity in the Tibetan Plateau for
conservation of ecological service functions. Ecosyst. Serv. 2018, 30, 276–286. [CrossRef]

3. Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M.
The Importance of Land-Cover Change in Simulating Future Climates. Science 2005, 310, 1674–1678.
[CrossRef] [PubMed]

4. Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.;
Choimes, A.; Collen, B.J.N. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50.
[CrossRef] [PubMed]

5. Li, S.; Bing, Z.; Jin, G. Spatially Explicit Mapping of Soil Conservation Service in Monetary Units Due to
Land Use/Cover Change for the Three Gorges Reservoir Area, China. Remote Sens. 2019, 11, 468. [CrossRef]

6. Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002,
116, 381–389. [CrossRef]

http://www.mdpi.com/2072-4292/12/3/528/s1
http://deep.qherc.org
http://dx.doi.org/10.1007/s10980-018-0612-5
http://dx.doi.org/10.1016/j.ecoser.2017.10.003
http://dx.doi.org/10.1126/science.1118160
http://www.ncbi.nlm.nih.gov/pubmed/16339443
http://dx.doi.org/10.1038/nature14324
http://www.ncbi.nlm.nih.gov/pubmed/25832402
http://dx.doi.org/10.3390/rs11040468
http://dx.doi.org/10.1016/S0269-7491(01)00214-7


Remote Sens. 2020, 12, 528 20 of 22

7. Rabbi, S.M.F.; Tighe, M.; Delgado-Baquerizo, M.; Cowie, A.; Robertson, F.; Dalal, R.; Page, K.; Crawford, D.;
Wilson, B.R.; Schwenke, G.; et al. Climate and soil properties limit the positive effects of land use reversion
on carbon storage in Eastern Australia. Sci. Rep. 2015, 5, 17866. [CrossRef]

8. Xu, L.; Yu, G.R.; He, N.P.; Wang, Q.F.; Gao, Y.; Wen, D.; Li, S.G.; Niu, S.L.; Ge, J.P. Carbon storage in China’s
terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 2806. [CrossRef]

9. Zhang, C.H.; Ju, W.M.; Chen, J.M.; Wang, X.Q.; Yang, L.; Zheng, G. Disturbance-induced reduction of biomass
carbon sinks of China’s forests in recent years. Environ. Res. Lett. 2015, 10, 114021. [CrossRef]

10. Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on
biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [CrossRef]

11. Zhao, S.Q.; Liu, S.G.; Sohl, T.; Young, C.; Werner, J. Land use and carbon dynamics in the southeastern United
States from 1992 to 2050. Environ. Res. Lett. 2013, 8, 575–591. [CrossRef]

12. Fu, Y.C.; Lu, X.Y.; Zhao, Y.L.; Zeng, X.T.; Xia, L.L. Assessment Impacts of Weather and Land Use/Land Cover
(LULC) Change on Urban Vegetation Net Primary Productivity (NPP): A Case Study in Guangzhou, China.
Remote Sens. 2013, 5, 4125. [CrossRef]

13. Le Quéré, C.; Peters, G.P.; Andres, R.J.; Andrew, R.M.; Boden, T.A.; Ciais, P.; Friedlingstein, P.; Houghton, R.A.;
Marland, G.; Moriarty, R. Global carbon budget 2013. Earth Syst. Sci. Data 2015, 7, 521–610. [CrossRef]

14. Fang, J.Y.; Chen, A.P.; Peng, C.H.; Zhao, S.Q.; Ci, L.J. Changes in forest biomass carbon storage in China
between 1949 and 1998. Science 2001, 292, 2320–2322. [CrossRef] [PubMed]

15. Sohl, T.L.; Sleeter, B.M.; Zhu, Z.; Sayler, K.L.; Bennett, S.; Bouchard, M.; Reker, R.; Hawbaker, T.; Wein, A.;
Liu, S.; et al. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks
and fluxes. Appl. Geogr. 2012, 34, 111–124. [CrossRef]

16. Tao, Y.; Li, F.; Liu, X.S.; Zhao, D.; Sun, X.; Xu, L.F. Variation in ecosystem services across an urbanization
gradient: A study of terrestrial carbon stocks from Changzhou, China. Ecol. Mod. 2015, 318, 210–216.
[CrossRef]

17. Yan, Y.; Zhang, C.; Hu, Y.F.; Kuang, W.H. Urban Land-Cover Change and Its Impact on the Ecosystem Carbon
Storage in a Dryland City. Remote Sens. 2016, 8, 6. [CrossRef]

18. Steger, K.; Fiener, P.; Marvin-DiPasquale, M.; Viers, J.H.; Smart, D.R. Human-induced and natural carbon
storage in floodplains of the Central Valley of California. Sci. Total Environ. 2019, 651, 851–858. [CrossRef]

19. Zhang, C.; Tian, H.; Chen, G.; Chappelka, A.; Xu, X.; Ren, W.; Hui, D.; Liu, M.; Lu, C.; Pan, S.; et al. Impacts
of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environ. Pollut.
2012, 164, 89–101. [CrossRef]

20. Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem
services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [CrossRef]

21. Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Chaplin-Kramer, R.; Nelson, E. VEST Version 3.2. 0
User’s Guide; The Natural Capital Project. The Nature Conservancy, and World Wildlife Fund; Stanford
University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA, 2015.

22. Rogers, K.; Kelleway, J.J.; Saintilan, N.; Megonigal, J.P.; Adams, J.B.; Holmquist, J.R.; Lu, M.; Schile-Beers, L.;
Zawadzki, A.; Mazumder, D.; et al. Wetland carbon storage controlled by millennial-scale variation in
relative sea-level rise. Nature 2019, 567, 91–95. [CrossRef] [PubMed]

23. Zhang, F.; Zhan, J.Y.; Zhang, Q.; Yao, L.; Liu, W. Impacts of land use/cover change on terrestrial carbon stocks
in Uganda. Phys. Chem. Earth Parts A/B/C 2017, 101, 195–203. [CrossRef]

24. Schulz, K.; Guschal, M.; Kowarik, I.; Almeida-Cortez, J.S.; Sampaio, E.V.; Cierjacks, A. Grazing, forest density,
and carbon storage: Towards a more sustainable land use in Caatinga dry forests of Brazil. Reg. Environ.
Chang. 2018, 18, 1969–1981. [CrossRef]

25. Aryal, D.R.; Castro, H.G.; del Carmen García, N.; Ruiz, O.D.J.J.; Paniagua, L.F.M.; Trujillo, J.A.J.; Venegas, J.A.V.;
Ruiz, R.P.; de Coss, A.L.; Hernández, F.G. Carbon storage potential in forest areas within a livestock system.
Revista Mexicana Ciencias Forestales 2018, 9, 48.

26. Auerswald, K.; Fiener, P. Soil organic carbon storage following conversion from cropland to grassland on
sites differing in soil drainage and erosion history. Sci. Total Environ. 2019, 661, 481–491. [CrossRef]

27. Bortolon, E.S.O.; Mielniczuk, J.; Tornquist, C.G.; Lopes, F.; Bergamaschi, H. Validation of the Century model
to estimate the impact of agriculture on soil organic carbon in Southern Brazil. Geoderma 2011, 167–168,
156–166. [CrossRef]

http://dx.doi.org/10.1038/srep17866
http://dx.doi.org/10.1038/s41598-018-20764-9
http://dx.doi.org/10.1088/1748-9326/10/11/114021
http://dx.doi.org/10.1073/pnas.1211658109
http://dx.doi.org/10.1088/1748-9326/8/4/044022
http://dx.doi.org/10.3390/rs5084125
http://dx.doi.org/10.5194/essdd-7-521-2014
http://dx.doi.org/10.1126/science.1058629
http://www.ncbi.nlm.nih.gov/pubmed/11423660
http://dx.doi.org/10.1016/j.apgeog.2011.10.019
http://dx.doi.org/10.1016/j.ecolmodel.2015.04.027
http://dx.doi.org/10.3390/rs8010006
http://dx.doi.org/10.1016/j.scitotenv.2018.09.205
http://dx.doi.org/10.1016/j.envpol.2012.01.020
http://dx.doi.org/10.1016/j.agee.2012.12.001
http://dx.doi.org/10.1038/s41586-019-0951-7
http://www.ncbi.nlm.nih.gov/pubmed/30842636
http://dx.doi.org/10.1016/j.pce.2017.03.005
http://dx.doi.org/10.1007/s10113-018-1303-0
http://dx.doi.org/10.1016/j.scitotenv.2019.01.200
http://dx.doi.org/10.1016/j.geoderma.2011.08.008


Remote Sens. 2020, 12, 528 21 of 22

28. Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.R.; Filho, E.I.F. Modelling and mapping
soil organic carbon stocks in Brazil. Geoderma 2019, 340, 337–350. [CrossRef]

29. Wang, B.; Waters, C.; Orgill, S.; Gray, J.; Cowie, A.; Clark, A.; Liu, D.L. High resolution mapping of soil
organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia.
Sci. Total Environ. 2018, 630, 367–378. [CrossRef]

30. Minasny, B.; Setiawan, B.I.; Saptomo, S.K.; McBratney, A.B. Open digital mapping as a cost-effective method
for mapping peat thickness and assessing the carbon stock of tropical peatlands. Geoderma 2018, 313, 25–40.
[CrossRef]

31. Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national
ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA
2018, 115, 4039–4044. [CrossRef]

32. Fang, J.Y.; Guo, Z.D.; Hu, H.F.; Kato, T.; Muraoka, H.; Son, Y. Forest biomass carbon sinks in East Asia, with
special reference to the relative contributions of forest expansion and forest growth. Glob. Chang. Biol. 2014,
20, 2019–2030. [CrossRef] [PubMed]

33. Almeida, C.M.; Gleriani, J.M.; Castejon, E.F.; Soares-Filho, B.S. Using neural networks and cellular automata
for modelling intra-urban land-use dynamics. Int. J. Geogr. Inf. Syst. 2008, 22, 943–963. [CrossRef]

34. Xia, L.I.; Gar-On, Y.A. Neural-network-based Cellular Automata for Realistic and Idealized Urban Simulation.
Acta Geogr. Sin. 2002, 57, 159–166.

35. Gong, J.; Li, J.Y.; Yang, J.X.; Li, S.C.; Tang, W.W. Land Use and Land Cover Change in the Qinghai Lake
Region of the Tibetan Plateau and Its Impact on Ecosystem Services. Int. J. Environ. Res. Public Health 2017,
14, 818. [CrossRef] [PubMed]

36. Zhang, S.-Y.; Li, X.-Y.; Zhao, G.-Q.; Huang, Y.-M. Surface energy fluxes and controls of evapotranspiration in
three alpine ecosystems of Qinghai Lake watershed, NE Qinghai-Tibet Plateau. Ecohydrology 2016, 9, 267–279.
[CrossRef]

37. Government, Q.P. The Planning of the Main Functional Area of Qinghai Province Was Officially Released.
Available online: http://www.gov.cn/xinwen/content_2660999.htm (accessed on 17 April 2014).

38. Xin, H. A Green Fervor Sweeps the Qinghai-Tibetan Plateau. Science 2008, 321, 633–635. [CrossRef] [PubMed]
39. Wang, X.; Bao, Y. Research on the methods of land use dynamic change research. Prog. Geogr. 1999, 18, 81–87.
40. Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use

simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects.
Landsc. Urban Plan. 2017, 168, 94–116. [CrossRef]

41. Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with
a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [CrossRef]

42. Xia, L.; Gar-Onyeh, A. Modelling sustainable urban development by the integration of constrained cellular
automata and GIS. Int. J. Geogr. Inf. Syst. 2000, 14, 131–152.

43. Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban growth simulation by incorporating planning policies
into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Syst. 2018, 32, 2294–2316. [CrossRef]

44. Guan, Q.F.; Clarke, K.C. A general-purpose parallel raster processing programming library test application
using a geographic cellular automata model. Int. J. Geogr. Inf. Syst. 2010, 24, 695–722. [CrossRef]

45. Li, X.; Yeh, A.G.-O. Cellular automata for simulating complex land use systems using neural networks.
Geogr. Res. 2005, 24, 19–27.

46. Li, K.R.; Wang, S.Q.; Cao, M.K. Vegetation and soil carbon storage in China. Sci. China Ser. D 2003, 47, 72–80.
[CrossRef]

47. Xie, X.L.; Sun, B.; Zhou, H.Z.; Li, Z.P.; Li, A.B. Organic carbon density and storage in soils of china and
spatial analysis. Acta Pedol. Sin. 2004, 41, 35–43.

48. Xie, X.L.; Sun, B.; Zhou, H.Z.; Li, Z.P. Soil carbon stocks and their influencing factors under native vegetations
in China. Acta Pedol. Sin. 2004, 41, 687–699.

49. Mei, H.; JinjJun, J.; Mingkui, C.; Kerang, L. Modeling study of vegetation shoot and root biomass in China.
Acta Ecol. Sin. 2006, 26, 4156–4163.

50. Chuai, X.W.; Huang, X.J.; Zheng, Z.Q.; Zhang, M.; Liao, Q.L.; Lai, L.; Lu, J.Y. Land Use Change and Its
Influence on Carbon Storage of Terrestrial Ecosystems in Jiangsu Province. Res. Sci. 2011, 33, 1932–1939.

http://dx.doi.org/10.1016/j.geoderma.2019.01.007
http://dx.doi.org/10.1016/j.scitotenv.2018.02.204
http://dx.doi.org/10.1016/j.geoderma.2017.10.018
http://dx.doi.org/10.1073/pnas.1700294115
http://dx.doi.org/10.1111/gcb.12512
http://www.ncbi.nlm.nih.gov/pubmed/24464906
http://dx.doi.org/10.1080/13658810701731168
http://dx.doi.org/10.3390/ijerph14070818
http://www.ncbi.nlm.nih.gov/pubmed/28754029
http://dx.doi.org/10.1002/eco.1633
http://www.gov.cn/xinwen/content_2660999.htm
http://dx.doi.org/10.1126/science.321.5889.633
http://www.ncbi.nlm.nih.gov/pubmed/18669838
http://dx.doi.org/10.1016/j.landurbplan.2017.09.019
http://dx.doi.org/10.1016/j.landurbplan.2018.04.016
http://dx.doi.org/10.1080/13658816.2018.1502441
http://dx.doi.org/10.1080/13658810902984228
http://dx.doi.org/10.1360/02yd0029


Remote Sens. 2020, 12, 528 22 of 22

51. Tang, L.Y.; Duan, X.F.; Kong, F.J.; Zhang, F.; Zheng, Y.F.; Li, Z.; Mei, Y.; Zhao, Y.W.; Hu, S.J. Influences of
climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s. Sci. Rep. 2018, 8,
7331. [CrossRef]

52. Liu, J.G.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179. [CrossRef]
53. Qinghai Province Three-North Shelterbelt Project 40 Years of Artificial Afforestation 889,500 Hectares.

Available online: http://www.forestry.gov.cn/main/72/content-1060041.html (accessed on 22 December 2017).
54. Luo, C.F.; Changjun, X.U.; You, H.Y. Analysis on grassland degradation in Qinghai Lake Basin during

2000–2010. Acta Ecol. Sin. 2013, 33, 4450–4459.
55. Nath, A.J.; Brahma, B.; Sileshi, G.W.; Das, A.K. Impact of land use changes on the storage of soil organic

carbon in active and recalcitrant pools in a humid tropical region of India. Sci. Total Environ. 2018, 624,
908–917. [CrossRef] [PubMed]

56. Tardieu, L.; Roussel, S.; Thompson, J.D.; Labarraque, D.; Salles, J.M. Combining direct and indirect impacts
to assess ecosystem service loss due to infrastructure construction. J. Environ. Manag. 2015, 152, 145–157.
[CrossRef] [PubMed]

57. Quoc Vo, T.; Kuenzer, C.; Oppelt, N. How remote sensing supports mangrove ecosystem service valuation:
A case study in Ca Mau province, Vietnam. Ecosyst. Serv. 2015, 14, 67–75. [CrossRef]

58. Cao, V.; Margni, M.; Favis, B.D.; Deschênes, L. Aggregated indicator to assess land use impacts in life cycle
assessment (LCA) based on the economic value of ecosystem services. J. Cleaner Prod. 2015, 94, 56–66.
[CrossRef]

59. He, C.Y.; Zhang, D.; Huang, Q.X.; Zhao, Y.Y. Assessing the potential impacts of urban expansion on regional
carbon storage by linking the LUSD-urban and InVEST models. Environ. Modell. Softw. 2016, 75, 44–58.
[CrossRef]

60. Li, Y.G.; Han, N.; Li, X.J.; Du, H.Q.; Mao, F.J.; Cui, L.; Liu, T.Y.; Xing, L.Q. Spatiotemporal Estimation of
Bamboo Forest Aboveground Carbon Storage Based on Landsat Data in Zhejiang, China. Remote Sens. 2018,
10, 898. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41598-018-25683-3
http://dx.doi.org/10.1038/4351179a
http://www.forestry.gov.cn/main/72/content-1060041.html
http://dx.doi.org/10.1016/j.scitotenv.2017.12.199
http://www.ncbi.nlm.nih.gov/pubmed/29275253
http://dx.doi.org/10.1016/j.jenvman.2015.01.034
http://www.ncbi.nlm.nih.gov/pubmed/25621389
http://dx.doi.org/10.1016/j.ecoser.2015.04.007
http://dx.doi.org/10.1016/j.jclepro.2015.01.041
http://dx.doi.org/10.1016/j.envsoft.2015.09.015
http://dx.doi.org/10.3390/rs10060898
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area and Data 
	Methods 
	Land Development Scenarios 
	CA-Based FLUS Model 
	Variable Importance Measures 
	Estimation of Carbon Storage based on the InVEST Model 


	Results 
	Importance of Driving Factors for each LUC Type in the Model 
	Simulation Model Validation 
	Land Use and Land Cover Change over 1990–2030 
	Temporal Patterns of Carbon Storage 
	Total Carbon storage and Potential Regional Carbon Losses 
	Spatial patters of Future Carbon Storage 


	Discussion 
	Analysis of Land Use and Cover Change 
	Measurement of Carbon Storage in the QLB 
	Generality of Models 
	Limitations and Future Research 

	Conclusions 
	References

