The Significance of Energy Factors, Green Economic Indicators, Blue Economic Aspects towards Carbon Intensity: A Study of Saudi Vision 2030
Abstract
:1. Introduction
1.1. Contribution
1.2. Objective
2. Literature Review
3. Data and Methodology
3.1. Data
3.2. Methodology
3.2.1. KSS Unit Root Test
3.2.2. Autoregressive Distributed Lag (ARDL)
3.2.3. Nonlinear ARDL
4. Results and Discussions
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malek, C. For the Gulf Region, Global Air Quality Report is a Wake-Up Call; Arab News: Riyadh, Saudi Arabia, 2019. [Google Scholar]
- Ahmad, R. Zero Emissions Day: Our Planet is Counting on Us; EcoMENA: Riyadh, Saudi Arabia, 2020. [Google Scholar]
- Pflanzer, L.R. The Cities with the World’s Worst Air Pollution WHO; Business Insider: New York, NY, USA, 2016. [Google Scholar]
- Lewis, J. Zero-Carbon Fuels and Marine Shipping: Both a Will and a Way? 2021. Available online: https://www.greenbiz.com/article/zero-carbon-fuels-and-marine-shipping-both-will-and-way (accessed on 27 December 2021).
- News, P. Saudi Arabia a Key Player in Maritime Transport Sector. Saudi Gazette. 2021. Available online: https://www.hellenicshippingnews.com/saudi-arabia-a-key-player-in-maritime-transport-sector/ (accessed on 11 December 2021).
- Rathi, A.; Martin, M. Aramco’s New Disclosures Still Understate Its Carbon Footprint; Al Jazeera: Doha, Qatar, 2021. [Google Scholar]
- Bosetti, V.; Carraro, C.; Tavoni, M. Climate policy after 2012. CESifo Econ. Stud. 2009, 55, 235–254. [Google Scholar] [CrossRef]
- Wogan, D.; Carey, E.; Cooke, D. Policy Pathways to Meet Saudi Arabia’s Contribution to the Paris Agreement. King Abdullah Pet. Stud. Res. Cent. (KAPSARC) 2019, 44. [Google Scholar] [CrossRef] [Green Version]
- ALshubiri, F. Assessing the impact of marine production manufacturing on gross domestic product indicators: Analytical comparative study of GCC countries. Marit. Bus. Rev. 2018, 3, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Kim, D.H.; Kim, Y. Fisheries: A missing link in greenhouse gas emission policies in south korea. Sustainability 2021, 13, 5858. [Google Scholar] [CrossRef]
- IMO. Fourth IMO Greenhouse Gas Study. Int. Marit. Organ. 2020, 11, 197–212. [Google Scholar]
- UKRI. Shipping Industry Reduces Carbon Emissions with Space Technology; UK Research and Innovation: Swindon, UK, 2021. [Google Scholar]
- Niavis, S.; Papatheochari, T.; Kyratsoulis, T.; Coccossis, H. Revealing the potential of maritime transport for ‘Blue Economy’ in the Adriatic-Ionian Region. Case Stud. Transp. Policy 2017, 5, 380–388. [Google Scholar] [CrossRef]
- Hall, P.; Anderson, L.; Holby, O.; Kollberg, S.; Samuelsson, M.-O. Chemical fluxes and mass balances in a marine fish cage farm. I Carbon. Mar. Ecol. Prog. Ser. 1990, 61, 61–73. [Google Scholar] [CrossRef]
- Robb DH, F.; MacLeod, M.; Hasan, M.R.; Soto, D. Greenhouse gas emissions from aquaculture: A life cycle assessment of three Asian systems. FAO Fish. Aquac. Tech. Pap. 2017, 609, 110. [Google Scholar]
- Hoegh-Guldberg, O.; Caldeira, K.; Chopin, T.; Gaines, S.; Haugan, P.; Hemer, M.; Howard, J.; Konar, M.; Krause-Jensen, D.; Linstad, E.; et al. The Ocean as a Solution to Climate Change: Five Opportunities for Action; World Resources Institute: Washington, DC, USA, 2019; Available online: http://www.oceanpanel.org/climate (accessed on 13 October 2021).
- Wu, H.; Xu, L.; Ren, S.; Hao, Y.; Yan, G. How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model. Resour. Policy 2020, 67, 101678. [Google Scholar] [CrossRef]
- Mensah, I.A.; Sun, M.; Gao, C.; Omari-Sasu, A.Y.; Zhu, D.; Ampimah, B.C.; Quarcoo, A. Analysis on the nexus of economic growth, fossil fuel energy consumption, CO2 emissions and oil price in Africa based on a PMG panel ARDL approach. J. Clean. Prod. 2019, 228, 161–174. [Google Scholar] [CrossRef]
- Hanif, I.; Faraz Raza, S.M.; Gago-de-Santos, P.; Abbas, Q. Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: Some empirical evidence. Energy 2019, 171, 493–501. [Google Scholar] [CrossRef]
- Rehman, A.; Rauf, A.; Ahmad, M.; Chandio, A.A.; Deyuan, Z. The effect of carbon dioxide emission and the consumption of electrical energy, fossil fuel energy, and renewable energy, on economic performance: Evidence from Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 21760–21773. [Google Scholar] [CrossRef]
- Shafiei, S.; Salim, R.A. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Salim, R.A.; Rafiq, S. Why do some emerging economies proactively accelerate the adoption of renewable energy? Energy Econ. 2012, 34, 1051–1057. [Google Scholar] [CrossRef]
- Irandoust, M. The renewable energy-growth nexus with carbon emissions and technological innovation: Evidence from the Nordic countries. Ecol. Indic. 2016, 69, 118–125. [Google Scholar] [CrossRef]
- Danish; Ulucak, R.; Khan, S.U.D. Relationship between energy intensity and CO2 emissions: Does economic policy matter? Sustain. Dev. 2020, 28, 1457–1464. [Google Scholar] [CrossRef]
- Shahzad, U.; Sarwar, S.; Amin, W. The Relationships Among Economic Growth, Renewable Energy Consumption, CO2 Emissions and Agriculture Production: Empirical Evidence for China and India. Glob. Local Econ. Rev. 2018, 22, 41–68. [Google Scholar]
- Lv, Y.; Si, C.; Zhang, S.; Sarwar, S. Impact of urbanization on energy intensity by adopting a new technique for regional division: Evidence from China. Environ. Sci. Pollut. Res. 2018, 25, 36102–36116. [Google Scholar] [CrossRef]
- Waheed, R.; Chang, D.; Sarwar, S.; Chen, W. Forest, agriculture, renewable energy, and CO2 emission. J. Clean. Prod. 2018, 172, 4231–4238. [Google Scholar] [CrossRef]
- Rauf, A.; Liu, X.; Amin, W.; Ozturk, I.; Rehman, O.U.; Sarwar, S. Energy and ecological sustainability: Challenges and panoramas in belt and road initiative countries. Sustainability 2018, 10, 2743. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.U.; Shahzad, U.; Sarwar, S.; Zaijun, L. The impact of carbon emission and forest activities on health outcomes: Empirical evidence from China. Environ. Sci. Pollut. Res. 2019, 26, 12894–12906. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, S.; Alsaggaf, M.I.; Tingqiu, C. Nexus Among Economic Growth, Education, Health, and Environment: Dynamic Analysis of World-Level Data. Front. Public Health 2019, 7, 307. [Google Scholar] [CrossRef] [PubMed]
- Waheed, R.; Sarwar, S.; Wei, C. The survey of economic growth, energy consumption and carbon emission. Energy Rep. 2019, 5, 1103–1115. [Google Scholar] [CrossRef]
- Doğan, B.; Driha, O.M.; Balsalobre Lorente, D.; Shahzad, U. The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries. Sustain. Dev. 2021, 29, 1–12. [Google Scholar] [CrossRef]
- Tavoni, M.; de Cian, E.; Luderer, G.; Steckel, J.C.; Waisman, H. The value of technology and of its evolution towards a low carbon economy. Clim. Change 2012, 114, 39–57. [Google Scholar] [CrossRef]
- Yin, J.; Zheng, M.; Chen, J. The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China. Energy Policy 2015, 77, 97–108. [Google Scholar] [CrossRef]
- Fernández, Y.F.; López MA, F.; Blanco, B.O. Innovation for sustainability: The impact of R&D spending on CO2 emissions. J. Clean. Prod. 2018, 172, 3459–3467. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Y. Do energy technology innovations contribute to CO2 emissions abatement? A spatial perspective. Sci. Total Environ. 2020, 726, 138574. [Google Scholar] [CrossRef]
- Mo, J.Y. Technological innovation and its impact on carbon emissions: Evidence from Korea manufacturing firms participating emission trading scheme. Technol. Anal. Strateg. Manag. 2021, 34, 47–57. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, C.C. Does technological innovation reduce CO2 emissions? Cross-country evidence. J. Clean. Prod. 2020, 263, 121550. [Google Scholar] [CrossRef]
- Sarwar, S.; Streimikiene, D.; Waheed, R.; Mighri, Z. Revisiting the empirical relationship among the main targets of sustainable development: Growth, education, health and carbon emissions. Sustain. Dev. 2020, 29, 419–440. [Google Scholar] [CrossRef]
- Waheed, R.; Sarwar, S.; Mighri, Z. Role of high technology exports for energy efficiency: Empirical evidence in the context of Gulf Cooperation Council countries. Energy Environ. 2020, 32, 1–17. [Google Scholar] [CrossRef]
- Mcdermott, A. Eating Seafood Can Reduce Your Carbon Footprint, but Some Fish Are Better Than Others; Oceana: Washington, DC, USA, 2018. [Google Scholar]
- Wan, X.; Xiao, S.; Li, Q.; Du, Y. Evolutionary policy of trading of blue carbon produced by marine ranching with media participation and government supervision. Mar. Policy 2021, 124, 104302. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, X.; Zhang, S.; Lin, J. Marine ranching construction and management in East China Sea: Programs for sustainable fishery and aquaculture. Water 2019, 11, 1237. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Ye, G.; Jiang, Q.; Zheng, Y.; Chen, G.; Wu, J.; Feng, X.; Si, Y.; Zeng, J.; Li, P.; et al. The contribution of ocean-based solutions to carbon reduction in China. Sci. Total Environ. 2021, 797, 149168. [Google Scholar] [CrossRef]
- Ozer, M.; Canbay, S.; Kirca, M. The impact of container transport on economic growth in Turkey: An ARDL bounds testing approach. Res. Transp. Econ. 2020, 88, 101002. [Google Scholar] [CrossRef]
- Taghvaee, S.M.; Omaraee, B.; Taghvaee, V.M. Maritime transportation, environmental pollution, and economic growth in Iran: Using dynamic log linear model and granger causality approach. Iran. Econ. Rev. 2017, 21, 185–210. [Google Scholar] [CrossRef]
- Fratila, A.; Gavril, I.A.; Nita, S.C.; Hrebenciuc, A. The importance of maritime transport for economic growth in the european union: A panel data analysis. Sustainability 2021, 13, 7961. [Google Scholar] [CrossRef]
- Ben Jebli, M.; Belloumi, M. Investigation of the causal relationships between combustible renewables and waste consumption and CO2 emissions in the case of Tunisian maritime and rail transport. Renew. Sustain. Energy Rev. 2017, 71, 820–829. [Google Scholar] [CrossRef]
- Arouri ME, H.; Ben Youssef, A.; M’henni, H.; Rault, C. Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy Policy 2012, 45, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Gorus, M.S.; Aydin, M. The relationship between energy consumption, economic growth, and CO2 emission in MENA countries: Causality analysis in the frEquationuency domain. Energy 2019, 168, 815–822. [Google Scholar] [CrossRef]
- Mahmood, H.; Alkhateeb TT, Y.; Furqan, M. Oil sector and CO2 emissions in Saudi Arabia: Asymmetry analysis. Palgrave Commun. 2020, 6, 88. [Google Scholar] [CrossRef]
- Alharthi, M.; Dogan, E.; Taskin, D. Analysis of CO2 emissions and energy consumption by sources in MENA countries: Evidence from quantile regressions. Environ. Sci. Pollut. Res. 2021, 28, 38901–38908. [Google Scholar] [CrossRef]
- Narayan, P.K. Reformulating Critical Values for the Bounds F-Statistics Approach to Cointegration: An Application to the Tourism Demand Model for Fiji; No. 1441–5429; Issue January 2004; Monash University: Victoria, Australia, 2004. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approches to analysis of long run relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Jianguo, W. Nexus between financial innovation and economic growth in South Asia: Evidence from ARDL and nonlinear ARDL approaches. Financ. Innov. 2018, 4, 20. [Google Scholar] [CrossRef]
- Bahmani-Oskooee, M.; Mohammadian, A. Asymmetry Effects of Exchange Rate Changes on Domestic Production: Evidence from Nonlinear ARDL Approach. Aust. Econ. Pap. 2016, 55, 181–191. [Google Scholar] [CrossRef]
- Delatte, A.L.; López-Villavicencio, A. Asymmetric exchange rate pass-through: Evidence from major countries. J. Macroecon. 2012, 34, 833–844. [Google Scholar] [CrossRef]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. In Festschrift in Honor of Peter Schmidt: Econometric Methods and Applications; Sickles, R.C., Horrace, W.C., Eds.; Springer: New York, NY, USA, 2014; pp. 281–314. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. CO2 emissions, energy usage, and output in Central America. Energy Policy 2009, 37, 3282–3286. [Google Scholar] [CrossRef]
- Mirzaei, M.; Bekri, M. Energy consumption and CO2 emissions in Iran, 2025. Environ. Res. 2017, 154, 345–351. [Google Scholar] [CrossRef]
- Saboori, B.; Sulaiman, J. CO2 emissions, energy consumption and economic growth in association of Southeast Asian Nations (ASEAN) countries: Acointegration approach. Energy 2013, 55, 813–822. [Google Scholar] [CrossRef]
- Hasanov, F.J.; Liddle, B.; Mikayilov, J.I. The impact of international trade on CO2 emissions in oil exporting countries: Territory vs consumption emissions accounting. Energy Econ. 2018, 74, 343–350. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, J.E. On the causal dynamics between renewable and non-renewable energy consumption and economic growth in developed and developing countries. Energy Syst. 2011, 2, 299–312. [Google Scholar] [CrossRef]
- Saidi, K.; Omri, A. The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries. Environ. Res. 2020, 186, 109567. [Google Scholar] [CrossRef] [PubMed]
- Menyah, K.; Wolde-Rufael, Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy 2010, 38, 2911–2915. [Google Scholar] [CrossRef]
- Cheng, C.; Ren, X.; Wang, Z.; Yan, C. Heterogeneous impacts of renewable energy and environmental patents on CO2 emission—Evidence from the BRIICS. Sci. Total Environ. 2019, 668, 1328–1338. [Google Scholar] [CrossRef]
- Huang, J.; Xiang, S.; Wang, Y.; Chen, X. Energy-saving R&D and carbon intensity in China. Energy Econ. 2021, 98, 105240. [Google Scholar] [CrossRef]
- Ibrahiem, D.M. Do technological innovations and financial development improve environmental quality in Egypt? Environ. Sci. Pollut. Res. 2020, 27, 10869–10881. [Google Scholar] [CrossRef]
- Aziz, G.; Khan, M.S. Empirical Relationship Between Creativity and Carbon Intensity: A Case of Saudi Arabia. Front. Environ. Sci. 2022, 10, 1–9. [Google Scholar] [CrossRef]
- Shaikh, S.A.; Taiyyeba, Z.; Khan, K. The Nexus between Technological Innovation and Carbon Dioxide Emissions: Evidence from China. NICE Res. J. 2018, 11, 181–193. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H. The Impact of Marine Tourism Resources Development on Sustainable Development of Marine Economy. J. Coast. Res. 2019, 94 (Suppl. 1), 589–592. [Google Scholar] [CrossRef]
- Madin EM, P.; Macreadie, P.I. Incorporating carbon footprints into seafood sustainability certification and eco-labels. Mar. Policy 2015, 57, 178–181. [Google Scholar] [CrossRef]
- Atalla, T.N.; Gasim, A.A.; Hunt, L.C. Gasoline demand, pricing policy, and social welfare in Saudi Arabia: A quantitative analysis. Energy Policy 2018, 114, 123–133. [Google Scholar] [CrossRef]
- Clarke, L.; Weyant, J.; Edmonds, J. On the sources of technological change: What do the models assume? Energy Econ. 2008, 30, 409–424. [Google Scholar] [CrossRef]
- Edenhofer, O.; Lessman, K.; Kemfert, C.; Grubb, M.; Köhler, J. Induced technological change: Exploring its implications for the economics of atmospheric stabilization: Synthesis report from the innovation modeling comparison project. Energy J. 2006, 27, 57–107. [Google Scholar] [CrossRef] [Green Version]
- Samargandi, N. Sector value addition, technology and CO2 emissions in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 78, 868–877. [Google Scholar] [CrossRef]
- Omri, A.; Daly, S.; Rault, C.; Chaibi, A. Financial development, environmental quality, trade and economic growth: What causes what in MENA countries. Energy Econ. 2015, 48, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Rico, A.; Martínez-Blanco, J.; Montlleó, M.; Rodríguez, G.; Tavares, N.; Arias, A.; Oliver-Solà, J. Carbon footprint of tourism in Barcelona. Tour. Manag. 2019, 70, 491–504. [Google Scholar] [CrossRef]
- Abedi, S.; Moeenian, M. Investigating the effects of environmental patents and climate change mitigation technologies on sustainable economic growth in the Middle East. Int. J. Low-Carbon Technol. 2021, 16, 910–920. [Google Scholar] [CrossRef]
- Hasangholipor, T.; Ghazinoory, S.; Heidari, A.; Saremi, M. Studying the Role of R&D Activities of Multinational Corporations in Building Technological Capabilities of Developing Countries through International Patent Analysis: China and India Case Study. J. Manag. Improv. 2018, 12, 71–88. Available online: http://www.behboodmodiriat.ir/article_81014.html%0Ahttp://www.behboodmodiriat.ir/pdf_81014_d370304a26485cfe2081e131040af234.html (accessed on 10 October 2021).
- Jin, L.; Duan, K.; Shi, C.; Ju, X. The impact of technological progress in the energy sector on carbon emissions: An empirical analysis from China. Int. J. Environ. Res. Public Health 2017, 14, 1505. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Gao, D. A research on the factors influencing carbon emission of transportation industry in “the belt and road initiative” countries based on panel data. Energies 2019, 12, 2405. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.A.; Haider, S.; Khan, N.A. Does trade openness affects global carbon dioxide emissions: Evidence from the top CO2 emitters. Manag. Environ. Qual. Int. J. 2020, 31, 32–53. [Google Scholar] [CrossRef]
- Vij, M.; Vij, A. Tourism and carbon foot prints in United Arab Emirates—Challenges and solutions. J. Environ. Manag. Tour. 2013, 3, 41–54. [Google Scholar] [CrossRef]
Variable | Obs. | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
CI | 30 | −2.148 | 0.065 | −2.267 | −2.013 |
EI | 30 | −1.787 | 0.200 | −2.209 | −1.442 |
NRE | 30 | 14.862 | 0.432 | 14.150 | 15.405 |
RE | 30 | 5.566 | 0.279 | 5.088 | 6.285 |
RD | 30 | −1.704 | 1.073 | −3.163 | −0.108 |
PAT | 30 | 6.925 | 0.593 | 6.165 | 8.203 |
HT | 30 | 3.409 | 0.266 | 3.065 | 3.743 |
AQUA | 30 | 10.958 | 0.176 | 10.604 | 11.184 |
MTRADE | 30 | 7.756 | 0.792 | 7.007 | 9.540 |
MTOURISM | 30 | 5.005 | 1.412 | 0.000 | 6.928 |
Chow Structural Break | |||
---|---|---|---|
F-Statistics | 0.734 | Critical Value (5%) | 0.683 |
DF-GLS | KSUR | |||||||
---|---|---|---|---|---|---|---|---|
DF-GLS | Level | Diff | Level | Diff | ||||
Variable | Stat | Stat | p-Value | p-Value | ||||
CI | −2.51 | Unit root | −5.69 *** | Stationary | 0.519 | Unit root | 0.000 *** | Stationary |
EI | −1.485 | Unit root | −7.085 *** | Stationary | 0.072 * | Stationary | 0.028 ** | Stationary |
NRE | −0.873 | Unit root | −6.201 *** | Stationary | 0.927 | Unit root | 0.001 *** | Stationary |
RE | −2.926 | Unit root | −5.277 *** | Stationary | 0.223 | Unit root | 0.000 *** | Stationary |
RD | −1.583 | Unit root | −4.284 *** | Stationary | 0.824 | Unit root | 0.000 *** | Stationary |
PAT | −2.121 | Unit root | −3.276 * | Stationary | 0.421 | Unit root | 0.024 ** | Stationary |
HT | −2.241 | Unit root | −6.415 *** | Stationary | 0.301 | Unit root | 0.000 *** | Stationary |
AQUA | −2.79 | Unit root | −6.405 *** | Stationary | 0.564 | Unit root | 0.001 *** | Stationary |
MTRADE | −1.641 | Unit root | −6.185 *** | Stationary | 0.942 | Unit root | 0.008 *** | Stationary |
MTOURISM | −2.447 | Unit root | −4.47 *** | Stationary | 0.07 * | Stationary | 0.098 * | Stationary |
ARDL Bounds Cointegration Test | F-Stat | CI |
---|---|---|
CI = f(EI, NRE, RE) | 9.534 *** | Exist |
CI = f(RD, PAT, HT) | 3.914 * | Exist |
CI = f(AQUA, MTRADE, MTOURISM) | 4.619 ** | Exist |
Lower-bound critical value at 1% | 4.29 | |
Upper-bound critical value at 1% | 5.61 | |
Lower-bound critical value at 5% | 3.23 | |
Upper-bound critical value at 5% | 4.35 | |
Lower-bound critical value at 10% | 2.72 | |
Upper-bound critical value at 10% | 3.77 |
Long Run | Model 1 | Model 2 | Model 3 |
CIt−1 | −0.405 | −1.682 *** | −1.036 * |
EI+t−1 | −0.068 | ||
EI−t−1 | 0.145 * | ||
NRE+t−1 | 0.033 | ||
NRE−t−1 | 14.582 | ||
RE+t−1 | 0.046 | ||
RE−t−1 | −0.422 | ||
RD+t−1 | −0.001 | ||
RD−t−1 | −0.427 ** | ||
PAT+t−1 | 0.004 | ||
PAT−t−1 | −0.441 * | ||
HT+t−1 | −0.025 | ||
HT−t−1 | 0.538 | ||
AQUA+t−1 | 0.169 | ||
AQUA−t−1 | 0.576 ** | ||
MTRADE+t−1 | 0.034 ** | ||
MTRADE−t−1 | 0.001 | ||
MTOURISM+t−1 | −0.037 | ||
MTOURISM−t−1 | −0.039 | ||
Short Run | Model 1 | Model 2 | Model 3 |
ΔCIt−1 | −0.278 | 0.368 | −0.090 |
ΔEI+t−1 | −0.117 | ||
ΔEI−t−1 | −0.177 ** | ||
ΔNRE+t−1 | −0.212 | ||
ΔNRE−t−1 | −0.555 | ||
ΔRE+t−1 | −0.143 | ||
ΔRE−t−1 | 0.253 | ||
ΔRD+t−1 | 0.043 | ||
ΔRD−t−1 | 0.333 * | ||
ΔPAT+t−1 | −0.038 | ||
ΔPAT−t−1 | 0.369 | ||
ΔHT+t−1 | −0.174 | ||
ΔHT−t−1 | 0.440 ** | ||
ΔAQUA+t−1 | −0.212 | ||
ΔAQUA−t−1 | −0.106 | ||
ΔMTRADE+t−1 | −0.008 | ||
ΔMTRADE−t−1 | −0.027 | ||
ΔMTOURISM+t−1 | 0.017 | ||
ΔMTOURISM−t−1 | 0.037 | ||
Constant | −0.948 * | −3.408 *** | −2.148 * |
Long Run (+) | Long Run (−) | Long Run Asymmetry (p-Value) | Short Run Asymmetric (p-Value) | |
---|---|---|---|---|
CI = f(EI, NRE, RE) | ||||
EI | −0.167 | −0.359 | 0.376 | 0.159 |
NRE | 0.081 | −36.024 | 0.452 | 0.501 |
RE | 0.113 | 1.043 | 0.453 | 0.297 |
Cointegration | −1.800 | |||
Portmanteau test | 0.225 | |||
Heteroskedasticity | 0.159 | |||
Ramsey test | 0.232 | |||
J−B test | 0.450 | |||
CI = f(RD, PAT, HT) | ||||
RD | 0.074 | −0.254 *** | 0.012 ** | 0.089 * |
PAT | 0.003 | −0.262 ** | 0.015 ** | 0.170 |
HT | −0.015 | −0.320 | 0.285 | 0.033 ** |
Cointegration | −4.736 | |||
Portmanteau test | 0.473 | |||
Heteroskedasticity | 0.537 | |||
Ramsey test | 0.122 | |||
J−B test | 0.356 | |||
CI = f(AQUA, MTRADE, MTOURISM) | ||||
AQUA | 0.163 | 0.556 * | 0.012 ** | 0.854 |
MTRADE | 0.032 ** | −0.001 | 0.782 | 0.354 |
MTOURISM | −0.036 | 0.038 | 0.936 | 0.631 |
Cointegration | −2.079 | |||
Portmanteau test | 0.147 | |||
Heteroskedasticity | 0.304 | |||
Ramsey test | 0.602 | |||
J−B test | 0.864 |
Long Run | Model 1 | Model 2 | Model 3 |
CIt−1 | −0.024 *** | −0.008 *** | −0.017 *** |
EI+t−1 | 0.000 | ||
EI−t−1 | 0.004 *** | ||
NRE+t−1 | 0.003 *** | ||
NRE−t−1 | 0.022 *** | ||
RE+t−1 | 0.027 * | ||
RE−t−1 | 0.003 | ||
RD+t−1 | −0.059 ** | ||
RD−t−1 | 0.041 | ||
PAT+t−1 | 0.013 | ||
PAT−t−1 | 0.090 | ||
HT+t−1 | −0.001 ** | ||
HT−t−1 | 0.003 ** | ||
AQUA+t−1 | −0.002 *** | ||
AQUA−t−1 | 0.004 *** | ||
MTRADE+t−1 | 0.008 | ||
MTRADE−t−1 | 0.001 *** | ||
MTOURISM+t−1 | 0.015 | ||
MTOURISM−t−1 | 0.083 ** | ||
Short Run | Model 1 | Model 2 | Model 3 |
ΔCI t−1 | 0.946 *** | 0.977 *** | 0.963 *** |
ΔEI+t−1 | 0.051 * | ||
ΔEI−t−1 | 0.102 *** | ||
ΔNRE+t−1 | 0.081 ** | ||
ΔNRE−t−1 | 0.118 | ||
ΔRE+t−1 | 0.005 | ||
ΔRE−t−1 | 0.002 | ||
ΔRD+t−1 | 0.011 | ||
ΔRD−t−1 | −0.016 | ||
ΔPAT+t−1 | −0.019 *** | ||
ΔPAT−t−1 | −0.054 *** | ||
ΔHT+t−1 | 0.028 *** | ||
ΔHT−t−1 | 0.087 *** | ||
ΔAQUA+t−1 | 0.045 ** | ||
ΔAQUA−t−1 | −0.032 | ||
ΔMTRADE+t−1 | 0.001 * | ||
ΔMTRADE−t−1 | −0.026 *** | ||
ΔMTOURISM+t−1 | −0.001 | ||
ΔMTOURISM−t−1 | 0.002 | ||
Constant | −0.049 *** | −0.015 *** | −0.035 *** |
Pre Vision 2030 | Long Run (+) | Long Run (−) | Long-Run Asymmetry (p-value) | Short-Run Asymmetric (p-Value) |
---|---|---|---|---|
CI = f(EI, NRE, RE) | ||||
EI | −0.004 | 0.180 *** | 0.000 *** | 0.223 |
NRE | 0.141 *** | −0.892 *** | 0.000 *** | 0.134 |
RE | 0.020 * | −0.014 * | 0.650 | 0.000 *** |
Cointegration | −12.842 | |||
Portmanteau test | 0.330 | |||
Heteroskedasticity | 0.801 | |||
Ramsey test | 0.165 | |||
J−B test | 0.227 | |||
CI = f(RD, PAT, HT) | ||||
RD | −0.031 * | −0.130 | 0.123 | 0.075 * |
PAT | 0.002 | 0.006 | 0.863 | 0.904 |
HT | −0.107 ** | 0.381 * | 0.158 | 0.165 |
Cointegration | −7.051 | |||
Portmanteau test | 0.824 | |||
Heteroskedasticity | 0.737 | |||
Ramsey test | 0.414 | |||
J−B test | 0.630 | |||
CI = f(AQUA, MTRADE, MTOURISM) | ||||
AQUA | 0.111 *** | −0.209 *** | 0.00 *** | 0.001 *** |
MTRADE | 0.018 * | −0.034 *** | 0.007 * | 0.968 |
MTOURISM | 0.005 | 0.004 ** | 0.007 *** | 0.658 |
Cointegration | −11.977 | |||
Portmanteau test | 0.535 | |||
Heteroskedasticity | 0.142 | |||
Ramsey test | 0.293 | |||
J−B test | 0.988 |
Long Run | Model 1 | Model 2 | Model 3 |
CI t−1 | −0.015 *** | −0.060 *** | −0.030 *** |
EI+t−1 | −0.008 | ||
EI−t−1 | 0.0288 *** | ||
NRE+t−1 | 4.779 *** | ||
NRE−t−1 | 0.018 | ||
RE+t−1 | 0.004 | ||
RE−t−1 | 0.287 *** | ||
RD+t−1 | −0.011 | ||
RD−t−1 | 0.000 | ||
PAT+t−1 | 0.015 | ||
PAT−t−1 | 0.003 | ||
HT+t−1 | −0.048 | ||
HT−t−1 | −0.001 | ||
AQUA+t−1 | 0.061 *** | ||
AQUA−t−1 | −0.031 *** | ||
MTRADE+t−1 | 0.006 *** | ||
MTRADE−t−1 | 0.001 | ||
MTOURISM+t−1 | 0.010 *** | ||
MTOURISM−t−1 | 0.005 *** | ||
Short Run | Model 1 | Model 2 | Model 3 |
ΔCI t−1 | 0.910 *** | 0.923 *** | 1.174 *** |
ΔEI+t−1 | −0.051 | ||
ΔEI−t−1 | −0.368 *** | ||
ΔNRE+t−1 | −8.973 | ||
ΔNRE−t−1 | 0.000 | ||
ΔRE+t−1 | 0.000 | ||
ΔRE−t−1 | −76.048 | ||
ΔRD+t−1 | 8.652 | ||
ΔRD−t−1 | 0.006 * | ||
ΔPAT+t−1 | −0.145 | ||
ΔPAT−t−1 | −0.013 | ||
ΔHT+t−1 | 3.924 | ||
ΔHT−t−1 | −0.303 *** | ||
ΔAQUA+t−1 | −1.287 *** | ||
ΔAQUA−t−1 | −1.307 *** | ||
ΔMTRADE+t−1 | −0.025 *** | ||
ΔMTRADE−t−1 | −0.441 *** | ||
ΔMTOURISM+t−1 | 0.046 *** | ||
ΔMTOURISM−t−1 | −0.058 *** | ||
Constant | 577.716 *** | −0.018 | −0.037 *** |
Post Vision 2030 | Long Run (+) | Long Run (−) | Long-Run Asymmetry (p−Value) | Short-Run Asymmetric (p−Value) |
---|---|---|---|---|
CI = f(EI, NRE, RE) | ||||
EI | −0.549 | 1.888 ** | 0.170 | 0.005 *** |
NRE | 0.909 *** | 0.000 | 0.002 *** | 0.697 |
RE | 0.000 | −0.880 | 0.302 | 0.589 |
Cointegration | −4.546 | |||
Portmanteau test | 0.000 | |||
Heteroskedasticity | 0.842 | |||
Ramsey test | 0.000 | |||
J−B test | 0.618 | |||
CI = f(RD, PAT, HT) | ||||
RD | −0.188 | 0.007 | 0.365 | 0.000 *** |
PAT | 0.259 | −0.042 | 0.722 | 0.696 |
HT | −0.796 | 0.014 | 0.925 | 0.513 |
Cointegration | −5.069 | |||
Portmanteau test | 0.643 | |||
Heteroskedasticity | 0.978 | |||
Ramsey test | 0.189 | |||
J−B test | 0.167 | |||
CI = f(AQUA, MTRADE, MTOURISM) | ||||
AQUA | 2.019 *** | 1.043 *** | 0.000 *** | 0.000 *** |
MTRADE | 0.209 *** | −0.028 | 0.170 | 0.116 |
MTOURISM | 0.346 *** | −0.172 *** | 0.000 *** | 0.502 |
Cointegration | −12.658 | |||
Portmanteau test | 0.974 | |||
Heteroskedasticity | 0.811 | |||
Ramsey test | 0.206 | |||
J−B test | 0.350 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waheed, R. The Significance of Energy Factors, Green Economic Indicators, Blue Economic Aspects towards Carbon Intensity: A Study of Saudi Vision 2030. Sustainability 2022, 14, 6893. https://doi.org/10.3390/su14116893
Waheed R. The Significance of Energy Factors, Green Economic Indicators, Blue Economic Aspects towards Carbon Intensity: A Study of Saudi Vision 2030. Sustainability. 2022; 14(11):6893. https://doi.org/10.3390/su14116893
Chicago/Turabian StyleWaheed, Rida. 2022. "The Significance of Energy Factors, Green Economic Indicators, Blue Economic Aspects towards Carbon Intensity: A Study of Saudi Vision 2030" Sustainability 14, no. 11: 6893. https://doi.org/10.3390/su14116893