Sustainable Use of Legume Residues: Effect on Nutritive Value and Ensiling Characteristics of Maize Straw Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Planting
2.3. Silage Preparation
2.4. Nutritive Value Analysis
2.5. Fermentation Characteristics and Aerobic Stability Determination
2.6. In Vitro Ruminal Dry Matter Degradability
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Nutritive Value
4.2. Fermentation Characteristics and Aerobic Stability
4.3. In Vitro Dry Matter Degradability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, D.; Ng’ambi, J.W.; Norris, D. Effect of tanniniferous Acacia karroo leaf meal inclusion level on feed intake, digestibility and live weight gain of goats fed a Setaria verticillata grass hay-based diet. J. Appl. Anim. Res. 2018, 46, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Mudau, H.S.; Mokoboki, H.K.; Ravhuhali, K.E.; Mkhize, Z. Nutrients Profile of 52 Browse Species Found in Semi-Arid Areas of South Africa for Livestock Production: Effect of Harvesting Site. Plants 2021, 10, 2127. [Google Scholar] [CrossRef] [PubMed]
- Mokgakane, T.J.; Mlambo, V.; Ravhuhali, K.E.; Magoro, N. Contribution of Soil Type to Quantity and Nutritional Value of Grass Species on the South African Highveld. Resources 2021, 10, 106. [Google Scholar] [CrossRef]
- Ravhuhali, K.E.; Mlambo, V.; Beyene, T.S.; Palamuleni, L.G. Effect of soil type on spatial distribution and nutritive value of grass species growing in selected rangelands of South Africa. S. Afr. J. Plant Soil. 2021, 38, 361–371. [Google Scholar] [CrossRef]
- Amuda, A.J.; Tanko, N. Physical properties of ensiled maize and legumes stover and acceptability by West African Dwarf goats. Niger. J. Anim. Sci. Technol. 2019, 2, 36–44. [Google Scholar]
- Contreras-Govea, F.; Muck, R.E.; Armstrong, K.L.; Albrecht, K.A. Nutritive value of corn silage in mixture with climbing beans. Anim. Feed Sci. Technol. 2009, 150, 1–8. [Google Scholar] [CrossRef]
- Goyal, M.; Tiwana, U.S. Ensiling legume with cereal fodder influences quality of silage mixtures. Indian J. Anim. Nutr. 2016, 33, 228–232. [Google Scholar] [CrossRef]
- Ozturk, D.; Kizilsimsek, M.; Kamalak, A.; Canbolat, O.; Ozkan, C. Effects of ensiling alfalfa with whole-crop maize on the chemical composition and nutritive value of silage mixtures. Asian-Australas. J. Anim. Sci. 2006, 19, 526–532. [Google Scholar] [CrossRef]
- Sahoo, A. Silage for climate resilient small ruminant production. In Ruminants: The Husbandry, Economic and Health Aspects; Abubakar, M., Ed.; IntechOpen: London, UK, 2018; Volume 11, pp. 11–39. [Google Scholar]
- Heinritz, S.N.; Martens, S.D.; Avila, P.; Hoedtke, S. The effect of inoculant and sucrose addition on the silage quality of tropical forage legumes with varying ensilability. Anim. Feed Sci. Technol. 2012, 174, 201–210. [Google Scholar] [CrossRef]
- Zhu, Y.; Bai, C.S.; Guo, X.S.; Xue, Y.L.; Ataku, K. Nutritive value of corn silage in mixture with vine peas. Anim. Prod. Sci. 2011, 51, 1117–1122. [Google Scholar] [CrossRef]
- Gulumser, E.; Mut, H.; Başaran, U.; Doğrusöz, M. An assessment of ensiling potential in maize x legume (soybean and cowpea) binary mixtures for yield and feeding quality. Turk. J. Vet. Anim. Sci. 2021, 45, 547–555. [Google Scholar] [CrossRef]
- Phiri, M.S.; Ngongoni, N.T.; Maasdorp, B.V.; Titterton, M.; Mupangwa, J.F.; Sebata, A. Ensiling characteristics and feeding value of silage made from browse tree legume-maize mixtures. Trop. Subtrop. Agroecosyst. 2007, 7, 149–156. Available online: http://www.redalyc.org/articulo.oa?id=93970301 (accessed on 25 January 2022).
- Campbell, M.; Ortuño, J.; Ford, L.; Davies, D.R.; Koidis, A.; Walsh, P.J.; Theodoridou, K. The Effect of Ensiling on the Nutritional Composition and Fermentation Characteristics of Brown Seaweeds as a Ruminant Feed Ingredient. Animals 2020, 10, 1019. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; Shimizu, K.; Jayanegara, A.; Mishima, T.; Matsui, H.; Karita, S.; Goto, M.; Fujihara, T. Changes in Nutrient Composition and in Vitro Ruminal Fermentation of Total Mixed Ration Silage Stored at Different Temperatures and Periods. J. Sci. Food Agric. 2016, 96, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, B.; Zhang, Q.; Cheng, H.; Yu, Z. Improvement of Fermentation Quality in the Fermented Total Mixed Ration with Oat Silage. Microorganisms 2021, 9, 420. [Google Scholar] [CrossRef]
- Pursiainen, P.; Tuori, M. Effect of ensiling field bean, field pea and common vetch in different proportions with whole-crop wheat using formic acid or an inoculant on fermentation characteristics. Gras. Forage Sci. 2008, 63, 60–78. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Nkosi, B.D.; Phenya, J.S.M.; Malebana, I.M.M.; Muya, M.C.; Motiang, M.D. Nutrient evaluation and ruminal degradation of dry matter and protein from amarula (Sclerocarya birrea), macadamia (integrifolia) and baobab (Adansonia digitata L.) oilcakes as dietary supplements for ruminants. Trop. Anim. Health Prod. 2019, 51, 1981–1988. [Google Scholar] [CrossRef]
- Lei, Y.G.; Li, X.Y.; Wang, Y.Y.; Li, Z.Z.; Chen, Y.L.; Yang, Y.X. Determination of ruminal dry matter and crude protein degradability and degradation kinetics of several concentrate feed ingredients in cashmere goat. J. Appl. Anim. Res. 2018, 46, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Dong, Z.; Li, J.; Shao, T. Ensiling characteristics, in vitro rumen fermentation, microbial communities and aerobic stability of low-dry matter silages produced with sweet sorghum and alfalfa mixtures. J. Sci. Food Agric. 2019, 99, 2140–2151. [Google Scholar] [CrossRef]
- Peyrat, J.; Noziere, P.; Le Morvan, A.; Férard, A.; Protin, P.V.; Baumont, R. Effects of ensiling maize and sample conditioning on in situ rumen degradation of dry matter, starch and fibre. Anim. Feed Sci. Technol. 2014, 196, 12–21. [Google Scholar] [CrossRef]
- Ngongon, N.T.; Mwale, M.; Mapiye, C.; Moyo, M.T.; Hamudikuwanda, H.; Titterton, M. Research note: Inclusion of lablab in maize and sorghum silages improves sheep performance. Trop. Grassl. 2008, 42, 188–192. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official’s Analytical Chemists, 18th ed.; Association of Official Analytical 438 Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides 440 in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Javier-Astete, R.; Jimenez-Davalos, J.; Zolla, G. Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. PLoS ONE 2021, 16, e0256559. [Google Scholar] [CrossRef] [PubMed]
- Barker, S.B.; Summerson, W.H. The colorimetric determination of lactic acid in biological material. J. Biol. Chem. 1941, 138, 535–554. [Google Scholar] [CrossRef]
- Pryce, J.D. A modification of the Barker-Summerson method for the determination of lactic acid. Analyst 1969, 94, 1151–1152. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Basso, F.C.; Bernardes, T.F.; Roth, A.P.D.T.P.; Lodo, B.N.; Berchielli, T.T.; Reis, R.A. Fermentation and aerobic stability of corn silage inoculated with Lactobacillus buchneri. Rev. Bras. Zootec. 2012, 41, 1789–1794. [Google Scholar] [CrossRef] [Green Version]
- Ashbell, G.; Weinberg, Z.G.; Azriel, A.; Hen, Y.; Horey, B. A simple system to study the aerobic deterioration of silages. Canad. Agric. Eng. 1991, 33, 391–393. [Google Scholar]
- IDF. International Standard 94B. Milk and Milk Products—Enumeration of Yeasts and Moulds. Colony Count Technique at 25 °C; International Dairy Federation: Brussels, Belgium, 1990. [Google Scholar]
- ANKOM Technology. In-Vitro True Digestibility Using the Daisy II Incubator; ANKOM Technology: New York, NY, USA, 2005. [Google Scholar]
- SAS. Statistical Analysis System. Statistics Software. Release 10; SAS Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Khan, N.A.; Sulaiman, S.M.; Hashmi, M.S.; Rahman, S.U.; Cone, J.W. Chemical composition, ruminal degradation kinetics, and methane production (in vitro) of winter grass species. J. Sci. Food Agric. 2021, 101, 179–184. [Google Scholar] [CrossRef]
- Ahmed, K.; Shaheen, M.; Mirzaei, F.; Khan, I.; Gondal, S.; Fardous, A.; Hussain, A.; Arshad, F.; Mehmood, T. Proximate analysis: Relative feed values of various forage plants for ruminants investigated in a semi-arid region of Punjab, Pakistan. Agric. Sci. 2013, 4, 302–308. [Google Scholar] [CrossRef] [Green Version]
- Edson, C.; Takarwirwa, N.N.; Kuziwa, N.L.; Stella, N.; Maasdorp, B. Effect of mixed maize-legume silages on milk quality and quantity from lactating smallholder dairy cows. Trop. Anim. Health Prod. 2018, 50, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Soetan, K.O.; Fafunso, M.A. Studies on the Proximate and Mineral Composition of Three Varieties of lablab beans (Lablab purpureus). Int. J. Appl. Agric. Res. 2010, 5, 291–300. Available online: http://www.ripublication.com/ijaar.htm (accessed on 25 January 2022).
- Gusha, J.; Halimani, T.E.; Ngongoni, N.T.; Ncube, S. Effect of feeding cactus-legume silages on nitrogen retention, digestibility and microbial protein synthesis in goats. Anim. Feed Sci. Technol. 2015, 206, 1–7. [Google Scholar] [CrossRef]
- Rambau, M.D.; Fushai, F.; Baloyi, J.J. Productivity, chemical composition and ruminal degradability of irrigated Napier grass leaves harvested at three stages of maturity. S. Afr. J. Anim. Sci. 2016, 46, 388–408. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, K.O.; Ajeigbe, O.M.; Oyebo, A.T.; Aderinboye, R.Y.; Onwuka, C.F.I. Nutrients and anti-nutrients content of some crop by-products and residues for ruminant feeding in Nigeria. J. Anim. Prod. Res. 2017, 29, 321–334. [Google Scholar]
- Mugweni, B.Z.; Maasdorp, B.V.; Mupangwa, J.F.; Gandiya, F. The effects of feeding mixed cereal-tree forage legume silages on mild yield and composition in lactating. S. Afr. J. Educ. Sci. Technol. 2006, 1, 70–76. [Google Scholar] [CrossRef]
- Young, K.M.; Lim, J.M.; Der Bedrosian, M.C.; Kung, L., Jr. Effect of exogenous protease enzymes on the fermentation and nutritive value of corn silage. J. Dairy Sci. 2012, 95, 6687–6694. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.L.; Zhang, T.F.; Chen, X.Z.; Li, G.D.; Zhang, J.G. Effects of maturity stages on the nutritive composition and silage quality of whole crop wheat. Asian-Australas. J. Anim. Sci. 2012, 25, 1374. [Google Scholar] [CrossRef]
- Malebana, I.M.M.; Langa, T.; Thomas, R.S.; Muya, M.C.; Meeske, R.; Van Niekerk, J.A.; Nkosi, B.D.; Motiang, M.D. Microbial additives affect silage quality and ruminal dry matter degradability of avocado (Persia americana) pulp silage. S. Afr. J. Anim. Sci. 2019, 49, 997–1007. [Google Scholar] [CrossRef]
- Stoltz, E.; Nadeau, E.; Wallenhammar, A.C. Intercropping maize and faba bean for silage under Swedish climate conditions. Agric. Res. 2013, 2, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Agricultural Research Council (ARC). The Nutrient Requirement of Ruminant Livestock. Supplement No-1; Commonwealth Agricultural Bureaux: Slough, UK, 1984. [Google Scholar]
- Htet, M.N.S.; Soomro, R.N. Effect of different planting structure of maize and soybean intercropping on fodder production and silage quality. Curr. Agri. Res. J. 2016, 4, 125–130. [Google Scholar] [CrossRef]
- Erdal, S.; Pamukcu, M.; Curek, M.; Kocaturk, M.; Dogu, O.Y. Silage yield and quality of row intercropped maize and soybean in a crop rotation following winter wheat. Arch. Agron. Soil Sci. 2016, 62, 1487–1495. [Google Scholar] [CrossRef]
- Tharangani, R.M.H.; Yakun, C.; Zhao, L.S.; Ma, L.; Liu, H.L.; Su, S.L.; Shan, L.; Yang, Z.N.; Kononoff, P.J.; Weiss, W.P.; et al. Corn silage quality index: An index combining milk yield, silage nutritional and fermentation parameters. Anim. Feed Sci. Technol. 2021, 273, 114817. [Google Scholar] [CrossRef]
- Qu, Y.; Jiang, W.; Yin, G.; Wei, C.; Bao, J. Effects of feeding corn-lablab bean mixture silages on nutrient apparent digestibility and performance of dairy cows. Asian-Australas. J. Anim. Sci. 2013, 26, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Nkosi, B.D.; Meeske, R.; Langa, T.; Motiang, M.D.; Modiba, S.; Mutavhatsindi, T.F.; Malebana, I.M.M.; Groenewald, I.B. Effects of bacterial inoculation on the fermentation characteristics and aerobic stability of ensiled whole plant soybeans (Glycine max (L.) Merr.). S. Afr. J. Anim Sci. 2016, 42, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Mciteka, H. Fermentation Characteristics and Nutritional Value of Opuntia ficusindica Var. Fusicaulis Cladode Silage. Master’s Dissertation, University of Free State, Bloemfontein, South Africa, 2008. [Google Scholar]
- Msiza, N.H.; Ravhuhali, K.E.; Mokoboki, H.K.; Mavengahama, S.; Motsei, L.E. Ranking Species for Veld Restoration in Semi-Arid Regions Using Agronomic, Morphological and Chemical Parameters of Selected Grass Species at Different Developmental Stages under Controlled Environment. Agronomy 2021, 11, 52. [Google Scholar] [CrossRef]
- Ball, D.; Collins, M.; Lacefield, G.; Martin, N.; Mertens, D.; Olson, K.; Putnam, D.; Undersander, D.; Wolf, M. Understanding Forage Quality; University of Kentucky: Lexington, Kentucky, 2001; Available online: http://www.uky.edu/Ag/Forage/ForageQuality.pdf (accessed on 25 January 2022).
- van Saun, R. What is Forage Quality and How does it Affect A Feeding Program? 2016. Available online: http://www.extension.psu.edu/animals/camelids/nutrition/what-is-forage-quality-and-how-does-it-effect-a-feeding-program (accessed on 25 January 2022).
- Balezentiene, L.; Mikulioniene, S. Chemical composition of galega mixtures silages. Agron. Res. 2006, 4, 483–492. [Google Scholar]
- Schuetz, M.; Benske, A.; Smith, R.A.; Watanabe, Y.; Tobimatsu, Y.; Ralph, J.; Demura, T.; Ellis, B.; Samuels, A.L. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol. 2014, 166, 798–807. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and Biological Functions in Plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef] [Green Version]
- Markovi, J.P.; Scaron, R.T.; Terzi, D.V.; Djoki, D.J.; Vrvi, M.M.; Sanja, P. Changes in lignin structure with maturation of alfalfa leaf and stem in relation to ruminants nutrition. Afr. J. Agric. Res. 2012, 7, 257–264. [Google Scholar]
- Amole, T.A.; Oduguwa, B.O.; Onifade, O.S.; Arigbede, O.M.; Jolaosho, A.O. Effect of sole maize and maize–lablab silage on the ruminal volatile fatty acids (VFAS) of grazing calves in the dry season. Niger. J. Anim. Prod. 2013, 40, 133–143. [Google Scholar] [CrossRef]
- Contreras-Govea, F.E.; VanLeeuwen, D.M.; Angadi, S.V.; Marsalis, M.A. Enhances in crude protein and effects on fermentation profile of corn and forage sorghum silage with addition of cowpea. Forage Grazingland. 2013, 11, 1–7. [Google Scholar] [CrossRef]
- Ravhuhali, K.E.; Msiza, N.H.; Mudau, H.S. Seasonal dynamics on nutritive value, chemical estimates and in vitro dry matter degradability of some woody species found in rangelands of South Africa. Agroforest. Syst. 2021, 96, 1–11. [Google Scholar] [CrossRef]
- Jusoh, S.; Alimon, A.R.; Iman, M.N. Effect of Gliricidia sepium leaves and molasses inclusion on aerobic stability, value and digestibility of Napier grass silage. Mal. J. Anim. Sci. 2016, 19, 33–42. [Google Scholar]
- Gusha, J.; Katsande, S.; Zvinorova, P.I.; Ncube, S. The nutritional composition and acceptability of cacti (Opuntia ficus indica)-legume mixed silage. Online J. Anim. Feed Res. 2013, 3, 116–120. [Google Scholar]
- Matlabe, G.; Mokoboki, H.K.; Sebola, A.N.; Lebopa, C.K.; Ravhuhali, K.E.; Hawu, O. Effects of browse legume species addition on nutritional composition, fermentation characteristics and aerobic stability of Opuntia cladodes silage. S. Afr. J. Sci. 2022, 118, 1–6. [Google Scholar] [CrossRef]
- Carpici, E.B. Nutritive values of soybean silages ensiled with maize at different rates. Legume Res. Int. J. 2016, 39, 810–813. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yuan, X.; Dong, Z.; Li, J.; Shao, T. Effect of ensiling corn stover with legume herbages in different proportions on fermentation characteristics, nutritive quality and in vitro digestibility on the Tibetan Plateau. Grassl. Sci. 2017, 63, 236–244. [Google Scholar] [CrossRef]
- da Silva Brito, G.S.M.; Santos, E.M.; de Araújo, G.G.L.; de Oliveira, J.S.; de Moura Zanine, A.; Perazzo, A.F.; Campos, F.S.; de Oliveira Lima, A.G.V.; Cavalcanti, H.S. Mixed silages of cactus pear and gliricidia: Chemical composition, fermentation characteristics, microbial population and aerobic stability. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Grant, R.J.; Ferraretto, L.F. Silage review: Silage feeding management: Silage characteristics and dairy cow feeding behavior. J. Dairy Sci. 2018, 101, 4111–4121. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Sun, Q.; Li, F.; Xu, C.; Cai, Y. Comparative analysis of ensiling characteristics and protein degradation of alfalfa silage prepared with corn or sweet sorghum in semiarid region of Inner Mongolia. Anim. Sci. J. 2020, 91, 13321. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.M.; Davies, D.R. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 2013, 68, 1–19. [Google Scholar] [CrossRef]
- Nkosi, B.D.; Meeske, R.; Langa, T.; Motiang, M.D.; Modiba, S.; Mkhize, N.R.; Groenewald, I.B. Effects of ensiling forage soybean (Glycine max (L.) Merr.) with or without bacterial inoculants on the fermentation characteristics, aerobic stability and nutrient digestion of the silage by Damara rams. Small Rumin. Res. 2016, 134, 90–96. [Google Scholar] [CrossRef]
- Mutavhatsindi, T.F.; Nkosi, B.D.; Baloyi, J.J.; Langa, T. Effects of a fibrolytic enzyme and bacterial inoculants on the fermentation, chemical composition and aerobic stability of ensiled potato hash. S. Afr. J. Anim. Sci. 2018, 48, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Mbukwane, M.J. Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Cowpea Varieties in the Limpopo Province, South Africa. Master’s Dissertation, University of Pretoria, Pretoria, South Africa, 2017. [Google Scholar]
- Mpanza, T.D.E.; Hassen, A.; Akanmu, A.M. Evaluation of Stylosanthes scabra Accessions as Forage Source for Ruminants: Growth Performance, Nutritive Value and In Vitro Ruminal Fermentation. Animals 2020, 10, 1939. [Google Scholar] [CrossRef]
Species | DM | Ash | CP | EE | NDF | ADF | ADL | Cel | Hemi |
---|---|---|---|---|---|---|---|---|---|
Maize | 915.2 a | 164.2 b | 70.6 e | 19.7 d | 622.6 a | 387.6 a | 141.2 c | 246.4 a | 235.0 a |
Dr Saunders | 896.8 c | 136.8 c | 230.7 a | 19.5 d | 352.0 c | 316.4 c | 159.6 b | 156.8 e | 35.6 d |
Lablab | 906.5 b | 101.8 d | 222.3 b | 16.7 c | 353.5 c | 302.7 d | 126.3 d | 176.4 c | 50.8 c |
Indigenous cowpea | 894.2 c | 103.1 d | 152.8 c | 17.0 c | 387.1 b | 307.3 d | 116.7 e | 190.6 b | 79.8 b |
Betswit | 896.5 c | 169.6 a | 180.7 d | 34.5 a | 394.1 b | 340.3 b | 176.7 a | 163.6 d | 53.8 c |
SE | 1.49 | 1.50 | 1.04 | 0.85 | 2.55 | 2.43 | 2.49 | 2.16 | 3.63 |
Treatments | DM | Ash | CP | EE | NDF | ADF | ADL | Cel | Hemi |
---|---|---|---|---|---|---|---|---|---|
M | 270.9 a | 135.8 d | 69.0 d | 24.9 b | 619.2 a | 385.7 b | 140.0 a | 245.7 b | 233.5 a |
MD | 260.7 a | 160.9 a | 112.8 a | 35.2 a | 510.5 b | 393.6 a | 126.8 ab | 266.8 a | 116.9 b |
ML | 272.5 a | 138.7 d | 116.0 a | 22.8 b | 515.5 b | 394.7 a | 124.4 b | 270.3 a | 120.8 b |
MI | 259.2 a | 153.0 b | 97.7 c | 21.0 b | 510.1 b | 389.9 ab | 128.9 ab | 261.0 ab | 120.2 b |
MB | 270.6 a | 145.4 c | 102.8 b | 24.3 b | 493.1 c | 365.2 c | 118.6 b | 246.5 b | 128.0 b |
SE | 4.39 | 1.65 | 1.42 | 1.25 | 5.83 | 2.12 | 4.06 | 4.66 | 6.24 |
Fermentation Characteristics | Aerobic Stability | |||||
---|---|---|---|---|---|---|
pH | LA | WSC | LAB (cfu/g) | Y and M (cfu/g) | CO2 | |
M | 3.66 b | 43.3 a | 9.0 a | 6289 bc | <10 | 6.17 c |
MD | 4.51 a | 48.0 a | 12.7 a | 30156 ab | <10 | 13.17 b |
ML | 4.58 a | 44.0 a | 9.3 a | 35167 a | <10 | 9.65 bc |
MI | 4.68 a | 45.3 a | 11.0 a | 17667 abc | <10 | 5.43 c |
MB | 4.75 a | 65.3 a | 16.0 a | 660 c | <10 | 20.52 a |
SE | 0.09 | 8.30 | 2.40 | 7880.52 | 1.88 |
0 h | 6 h | 12 h | 24 h | 36 h | 48 h | 72 h | |
---|---|---|---|---|---|---|---|
M | 201.6 b | 230.2 ab | 236.4 a | 296.2 c | 391.2 c | 482.4 ab | 544.9 d |
MD | 215.5 ab | 227.8 bc | 243.8 a | 333.4 a | 411.8 bc | 469.0 b | 591.6 b |
ML | 209.3 ab | 231.7 ab | 251.6 a | 343.6 a | 469.1 a | 497.9 a | 628.5 a |
MI | 202.3 b | 218.5 c | 237.5 a | 312.9 bc | 422.7 b | 493.3 a | 614.2 a |
MB | 219.7 a | 241.2 a | 255.2 a | 326.8 ab | 433.1 b | 469.8 b | 570.0 c |
SE | 4.38 | 3.38 | 6.81 | 5.37 | 6.76 | 5.22 | 6.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawu, O.; Ravhuhali, K.E.; Mokoboki, H.K.; Lebopa, C.K.; Sipango, N. Sustainable Use of Legume Residues: Effect on Nutritive Value and Ensiling Characteristics of Maize Straw Silage. Sustainability 2022, 14, 6743. https://doi.org/10.3390/su14116743
Hawu O, Ravhuhali KE, Mokoboki HK, Lebopa CK, Sipango N. Sustainable Use of Legume Residues: Effect on Nutritive Value and Ensiling Characteristics of Maize Straw Silage. Sustainability. 2022; 14(11):6743. https://doi.org/10.3390/su14116743
Chicago/Turabian StyleHawu, Onke, Khuliso Emmanuel Ravhuhali, Hilda Kwena Mokoboki, Cornelia Kedidimetse Lebopa, and Nkosomzi Sipango. 2022. "Sustainable Use of Legume Residues: Effect on Nutritive Value and Ensiling Characteristics of Maize Straw Silage" Sustainability 14, no. 11: 6743. https://doi.org/10.3390/su14116743