Prediction of Permeability Coefficient k in Sandy Soils Using ANN
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. ANN (Artificial Neural Network) Analysis
4.1. Architecture of ANN
- -
- Relative error for individual cases:
- -
- Determination coefficient R2:
- -
- Mean absolute error:
- -
- Root mean squared error:
4.2. Data Sets, Training and Testing the ANN
4.3. ANN Estimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Todd, D. Groundwater Hydrology, 2nd ed.; John Wiley & Sons: Chichester, UK, 1980. [Google Scholar]
- Wrzesiński, G. Anisotropy of soil shear strength parameters caused by the principal stress rotation. Arch. Civ. Eng. 2021, 67, 163–187. [Google Scholar] [CrossRef]
- Wrzesiński, G.; Lechowicz, Z. Testing of undrained shear strength in a Hollow Cylinder Apparatus. Studia Geotech. Mech. 2015, 37, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Szymkiewicz, A.; Kryczałło, A. Calculation of permeability coefficient of sands and gravel based on grain size distribution curve: Review of empirical relations. Inżynieria Morska Geotech. 2011, 2, 110–121. [Google Scholar]
- Twardowski, K.; Drożdżak, R. Pośrednie metody oceny właściwości filtracyjnych gruntów. Wiertnictwo Nafta Gaz 2006, 23, 477–486. [Google Scholar]
- Parylak, K.; Zięba, Z.; Bułdys, A.; Witek, K. The verification of determining a permeability coefficient of non-cohesive soil based on empirical formulas including its microstructure. Acta Sci. Pol. Archit. 2013, 12, 43–51. [Google Scholar]
- Wrzesiński, G. Permeability coefficient tests in non-cohesive soils. Sci. Rev. Eng. Environ. Sci. 2020, 29, 72–80. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, A.; Barker, J.; Davies, J. The bailer test: A simple effective pumping test for assessing borehole success. Hydrogeol. J. 2008, 16, 1065–1075. [Google Scholar] [CrossRef] [Green Version]
- Pawluk, K.; Połoński, M.; Lendo-Siwicka, M.; Wrzesiński, G. Two-objective optimization for optimal design of the multi-layered permeable reactive barriers. IOP Conference Series: Materials Science and Engineering. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 1–11. [Google Scholar] [CrossRef]
- Polak, K.; Kaznowska-Opala, K.; Pawlecka, K.; Klich, J. Interpretation of pumping tests results on the basis of examination of AGH-1 well. Przegląd górniczy 2014, 10, 106–111. [Google Scholar]
- Head, K.; Epps, R. Manual of Soil Laboratory Testing. Vol. 2. Permeability, Shear Strength and Compressibility Test; Whittles Publishing: Scotland, UK, 2011. [Google Scholar]
- Jang, D.; Park, H.; Choi, G. Estimation of Leakage Ratio Using Principal Component Analysis and Artificial Neural Network in Water Distribution Systems. Sustainability 2018, 10, 750. [Google Scholar] [CrossRef] [Green Version]
- Kang, P.-S.; Lim, J.-S.; Huh, C. Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery. Appl. Sci. 2016, 6, 188. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cui, L.; Zhang, Y.; Cai, Z.; Zhang, M.; Xu, W.; Zhao, X.; Lei, Y.; Pan, X.; Li, J.; et al. Using a Backpropagation Artificial Neural Network to Predict Nutrient Removal in Tidal Flow Constructed Wetlands. Water 2018, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Fan, Y.; Zhang, F.; Ye, X.; Chen, C.; Yue, H. Multiple-Factor Based Sparse Urban Travel Time Prediction. Appl. Sci. 2018, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Paez, T.L. Neural networks in mechanical systems simulation, identification and assessment. Shock. Vib. 1993, 1, 177–199. [Google Scholar] [CrossRef]
- Adeli, H. Neural Networks in Civil Engineering: 1989–2000. Comput.-Aided Civ. Inf. 2001, 16, 126–142. [Google Scholar] [CrossRef]
- Ghaboussi, J. Biologically inspired soft computing methods in structural mechanics and engineering. Struct. Eng. Mech. 2001, 11, 485–502. [Google Scholar] [CrossRef]
- Rojas, R. Neural Networks: A Systematic Introduction; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Wrzesiński, G.; Sulewska, M.J.; Lechowicz, Z. Evaluation of the Change in Undrained Shear Strength in Cohesive Soils due to Principal Stress Rotation Using an Artificial Neural Network. Appl. Sci. 2018, 8, 781. [Google Scholar] [CrossRef] [Green Version]
- Waszczyszyn, Z. Advances of Soft Computing in Engineering CISM Courses and Lectures; Springer: Vienna, Austria, 2010. [Google Scholar]
- Waszczyszyn, Z. Artificial neural networks in civil engineering: Another five years of research in Poland. Comp. Assist. Mech. Eng. Sci. 2011, 18, 131–146. [Google Scholar]
- Rafiq, M.Y.; Bugmann, G.; Easterbrook, D.J. Neural network design for engineering applications. Comput. Struct. 2001, 79, 1541–1552. [Google Scholar] [CrossRef]
- Shahin, M.A.; Jaksa, M.B.; Maier, H.R. Artificial Neural Network Applications in Geotechnical Engineering. Aust. Geomech. 2001, 36, 49–62. [Google Scholar]
- Shahin, M.A.; Jaksa, M.B.; Maier, H.R. State of the Art of Artificial Neural Networks in Geotechnical Engineering. Elect. J. Geotech. Eng. 2008, 8, 1–26. [Google Scholar]
- Dihoru, L.; Muir Wood, D.; Sadek, T.; Lings, M. A neural network for error prediction in a true triaxial apparatus with flexible boundaries. Comput. Geotech. 2005, 32, 59–71. [Google Scholar] [CrossRef]
- Pichler, B.; Lackner, R.; Mang, H.A. Back analysis of model parameters in geotechnical engineering by means of soft computing. Int. J. Numer. Meth. Eng. 2003, 57, 1943–1978. [Google Scholar] [CrossRef]
- Sulewska, M.J. Applying artificial neural networks for analysis of geotechnical problems. Comp. Assist. Mech. Eng. Sci. 2011, 18, 231–241. [Google Scholar]
- Tian, J.; Li, C.; Liu, J.; Yu, F.; Cheng, S.; Zhao, N.; Wan Jaafar, W.Z. Groundwater Depth Prediction Using Data-Driven Models with the Assistance of Gamma Test. Sustainability 2016, 8, 1076. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Wang, F.; Yang, Z. Comparative Analysis of ANN and SVM Models Combined with Wavelet Preprocess for Groundwater Depth Prediction. Water 2017, 9, 781. [Google Scholar] [CrossRef] [Green Version]
- Ellis, G.W.; Yao, C.; Zhao, R.; Penumadu, D. Stress-strain modeling of sands using artificial neural network. J. Geotech. Eng. 1995, 121, 429–435. [Google Scholar] [CrossRef]
- Sidarta, D.E.; Ghaboussi, J. Constitutive modeling of geomaterials from non-uniform material test. Comput. Geotech. 1998, 22, 53–71. [Google Scholar] [CrossRef]
- Penumadu, D.; Zhao, R. Triaxial compression behavior of sand and gravel using artificial neural networks (ANN). Comput. Geot. 1999, 24, 207–230. [Google Scholar] [CrossRef]
- Basheer, I.A. Selection of methodology for neural network modeling of constitutive hysteresis behavior of soils. Comput.-Aided Civ. Inf. 2000, 15, 440–458. [Google Scholar] [CrossRef]
- Najjar, Y.M.; Huang, C. Simulating the stress-strain behavior of Georgia kaolin via recurrent neuronet approach. Comput. Geot. 2007, 34, 346–361. [Google Scholar] [CrossRef]
- Fu, Q.; Hashash, Y.M.A.; Hung, S.; Ghaboussi, J. Integration of laboratory testing and constitutive modeling of soils. Comput. Geotech. 2007, 34, 330–345. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, S.R.; Kim, Y.S. An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation. Comput. Geotech. 2003, 30, 489–503. [Google Scholar] [CrossRef]
- Das, S.K.; Basudhar, P.K. Undrained lateral load capacity of piles in clay using artificial neural network. Comput. Geotech. 2006, 33, 454–459. [Google Scholar] [CrossRef]
- Byeon, W.Y.; Lee, S.R.; Kim, Y.S. Application of flat DMT and ANN to Korean soft clay deposits for reliable estimation of undrained shear strength. Int. J. Offshore Polar Eng. 2006, 16, 73–80. [Google Scholar]
- Wrzesiński, G. Stability Analysis of an Embankment with Influence of the Principal Stress Rotation on the Shear Strength of Subsoil. Ph.D. Thesis, Warsaw University of Life Sciences–SGGW, Warsaw, Poland, 2016. [Google Scholar]
- Wrzesiński, G.; Kowalski, J.; Miszkowska, A. Numerical analysis of dewatering process of deep excavation. In Proceedings of the 18th International Multidisciplinary Scientific Geoconference SGEM 2018: Hydrogeology, Engineering Geology and Geotechnics, Albena, Bulgaria, 30 June 2018; Issue 1.2, Science and Technologies in Geology, Exploration and Mining. Volume 18, pp. 497–504. [Google Scholar]
- Lin, P.Y.; Ni, P.P.; Guo, C.C.; Mei, G.X. Mapping Soil Nail Loads Using FHWA Simplified Models and Artificial Neural Network Technique. Can. Geotech. J. 2020, 57, 1453–1471. [Google Scholar] [CrossRef]
- Lin, P.Y.; Chen, X.Y.; Jiang, M.J.; Song, X.G.; Xu, M.J.; Huang, S. Mapping shear strength and compressibility of soft soils with artificial neural networks. Eng. Geol. 2022, 300, 106585. [Google Scholar] [CrossRef]
- Liu, D.; Lin, P.Y.; Zhao, C.Y.; Qiu, J.J. Mapping horizontal displacement of soil nail walls using machine learning approaches. Acta Geotech. 2021, 16, 4027–4044. [Google Scholar] [CrossRef]
- Driscoll, F. Groundwater and Wells, 2nd ed.; Johnson Filtration Systems Inc.: St Paul, MN, USA, 1986. [Google Scholar]
- ICRC. Technical Review: Practical Guidelines for Test Pumping in Water Wells; International Committee of the Red Cross: Geneva, The Switzerland, 2011. [Google Scholar]
- Kruseman, G.P.; de Ridder, N.A. Analysis and Evaluation of Pumping Test Data, 2nd ed.; Publication 47; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1994. [Google Scholar]
- EN ISO 14688-1; Geotechnical Investigation and Testing-Identification and Classification of Soil-Part 1: Identification and Description. International Organization for Standardization: Geneva, Switzerland, 2002.
- EN ISO 14688-2; Geotechnical Investigation and Testing-Identification and Classification of Soil-Part 2: Principles for a Classification. International Organization for Standardization: Geneva, Switzerland, 2004.
- Head, K. Manual of Soil Laboratory Testing. Vol. 1. Soil Classification and Compaction Test; Pentech Press: London, UK, 1996. [Google Scholar]
- Tymosiak, D.; Sulewska, M.J. The study of compactibility parameters in non-cohesive soils by Proctor compaction test. Acta Sci. Pol. Archit. 2016, 15, 43–54. [Google Scholar]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
No. of Well | Soil | Fraction-EN ISO 14688-1: 2002; EN ISO 14688-2: 2004 (%) | Relative Density ID (-) | Void Ratio e (-) | Effective Soil Diameter d10 (mm) | |||
---|---|---|---|---|---|---|---|---|
Gr | Sa | Si | Cl | |||||
1 | FSa | 0 | 91 | 9 | 0 | 0.49 | 0.542 | 0.07 |
2 | FSa | 1 | 90 | 9 | 0 | 0.67 | 0.591 | 0.07 |
3 | FSa | 0 | 92 | 8 | 0 | 0.61 | 0.498 | 0.08 |
4 | FSa | 1 | 92 | 7 | 0 | 0.64 | 0.523 | 0.09 |
5 | FSa | 2 | 90 | 8 | 0 | 0.41 | 0.656 | 0.08 |
6 | FSa | 0 | 94 | 6 | 0 | 0.54 | 0.599 | 0.10 |
7 | FSa | 1 | 93 | 6 | 0 | 0.51 | 0.587 | 0.10 |
8 | FSa | 0 | 97 | 3 | 0 | 0.56 | 0.486 | 0.17 |
9 | FSa | 0 | 95 | 3 | 2 | 0.39 | 0.705 | 0.17 |
10 | FSa | 0 | 95 | 5 | 0 | 0.50 | 0.589 | 0.12 |
11 | FSa | 0 | 86 | 12 | 2 | 0.35 | 0.712 | 0.04 |
12 | FSa | 2 | 86 | 10 | 2 | 0.68 | 0.506 | 0.063 |
13 | FSa | 1 | 89 | 8 | 2 | 0.39 | 0.701 | 0.09 |
14 | FSa | 1 | 88 | 11 | 0 | 0.69 | 0.520 | 0.06 |
15 | FSa | 0 | 94 | 6 | 0 | 0.22 | 0.728 | 0.11 |
16 | FSa | 1 | 85 | 11 | 3 | 0.54 | 0.599 | 0.06 |
17 | FSa | 2 | 90 | 8 | 0 | 0.39 | 0.680 | 0.08 |
18 | FSa | 0 | 89 | 9 | 2 | 0.42 | 0.701 | 0.07 |
19 | FSa | 2 | 90 | 8 | 0 | 0.80 | 0.491 | 0.08 |
20 | FSa | 1 | 87 | 10 | 2 | 0.45 | 0.593 | 0.063 |
21 | MSa | 0 | 99 | 1 | 0 | 0.48 | 0.603 | 0.25 |
22 | MSa | 0 | 97 | 2 | 1 | 0.41 | 0.589 | 0.23 |
23 | MSa | 1 | 96 | 3 | 0 | 0.58 | 0.521 | 0.20 |
24 | MSa | 0 | 97 | 3 | 0 | 0.52 | 0.580 | 0.20 |
25 | MSa | 0 | 98 | 2 | 0 | 0.61 | 0.536 | 0.21 |
26 | MSa | 2 | 94 | 3 | 1 | 0.65 | 0.514 | 0.21 |
27 | MSa | 2 | 92 | 4 | 2 | 0.70 | 0.545 | 0.18 |
28 | MSa | 1 | 95 | 4 | 0 | 0.67 | 0.513 | 0.17 |
29 | MSa | 0 | 98 | 2 | 0 | 0.56 | 0.563 | 0.21 |
30 | MSa | 1 | 98 | 1 | 0 | 0.78 | 0.456 | 0.25 |
31 | MSa | 0 | 97 | 2 | 1 | 0.37 | 0.631 | 0.23 |
32 | MSa | 0 | 95 | 3 | 2 | 0.85 | 0.405 | 0.20 |
33 | MSa | 1 | 97 | 2 | 0 | 0.78 | 0.415 | 0.24 |
34 | MSa | 2 | 96 | 2 | 0 | 0.63 | 0.520 | 0.24 |
35 | MSa | 1 | 98 | 1 | 0 | 0.56 | 0.547 | 0.26 |
36 | MSa | 0 | 98 | 2 | 0 | 0.82 | 0.436 | 0.21 |
37 | MSa | 1 | 97 | 2 | 0 | 0.39 | 0653 | 0.24 |
38 | MSa | 0 | 97 | 2 | 1 | 0.33 | 0.606 | 0.23 |
39 | MSa | 0 | 96 | 4 | 0 | 0.86 | 0.410 | 0.25 |
40 | MSa | 0 | 98 | 2 | 0 | 0.61 | 0.535 | 0.21 |
41 | MSa | 2 | 96 | 2 | 0 | 0.54 | 0.518 | 0.23 |
42 | MSa | 0 | 98 | 2 | 0 | 0.49 | 0.552 | 0.21 |
43 | CSa | 8 | 92 | 0 | 0 | 0.71 | 0.470 | 0.50 |
44 | CSa | 12 | 87 | 1 | 0 | 0.68 | 0.456 | 0.46 |
45 | CSa | 19 | 81 | 0 | 0 | 0.59 | 0.507 | 0.61 |
46 | CSa | 18 | 82 | 0 | 0 | 0.40 | 0.532 | 0.58 |
47 | CSa | 17 | 80 | 2 | 1 | 0.54 | 0.528 | 0.45 |
48 | CSa | 18 | 82 | 0 | 0 | 0.28 | 0.590 | 0.57 |
49 | CSa | 18 | 82 | 0 | 0 | 0.38 | 0.576 | 0.60 |
50 | CSa | 16 | 82 | 2 | 0 | 0.92 | 0.423 | 0.63 |
No. of Well | Soil | Permeability Coefficient k (m/s) | |
---|---|---|---|
Pumping Test | Consolidometer Test | ||
1 | FSa | 2.32 × 10−5 | 2.20 × 10−5 |
2 | FSa | 3.69 × 10−5 | 3.42 × 10−5 |
3 | FSa | 2.10 × 10−5 | 2.00 × 10−5 |
4 | FSa | 1.24 × 10−5 | 1.33 × 10−5 |
5 | FSa | 5.77 × 10−5 | 5.64 × 10−5 |
6 | FSa | 4.68 × 10−5 | 4.33 × 10−5 |
7 | FSa | 3.79 × 10−5 | 3.66 × 10−5 |
8 | FSa | 4.40 × 10−5 | 3.97 × 10−5 |
9 | FSa | 4.78 × 10−5 | 4.64 × 10−5 |
10 | FSa | 5.59 × 10−5 | 5.27 × 10−5 |
11 | FSa | 9.32 × 10−5 | 9.05 × 10−5 |
12 | FSa | 3.85 × 10−5 | 3.64 × 10−5 |
13 | FSa | 8.48 × 10−5 | 8.50 × 10−5 |
14 | FSa | 4.54 × 10−5 | 4.63 × 10−5 |
15 | FSa | 9.86 × 10−5 | 9.65 × 10−5 |
16 | FSa | 5.08 × 10−5 | 4.96 × 10−5 |
17 | FSa | 7.20 × 10−5 | 7.32 × 10−5 |
18 | FSa | 8.64 × 10−5 | 8.73 × 10−5 |
19 | FSa | 5.30 × 10−5 | 4.98 × 10−5 |
20 | FSa | 6.75 × 10−5 | 6.14 × 10−5 |
21 | MSa | 1.69 × 10−4 | 1.57 × 10−4 |
22 | MSa | 2.97 × 10−4 | 2.93 × 10−4 |
23 | MSa | 2.28 × 10−4 | 2.12 × 10−4 |
24 | MSa | 1.49 × 10−4 | 1.45 × 10−4 |
25 | MSa | 1.32 × 10−4 | 1.32 × 10−4 |
26 | MSa | 1.35 × 10−4 | 1.25 × 10−4 |
27 | MSa | 1.48 × 10−4 | 1.50 × 10−4 |
28 | MSa | 1.36 × 10−4 | 1.22 × 10−4 |
29 | MSa | 2.20 × 10−4 | 2.03 × 10−4 |
30 | MSa | 1.17 × 10−4 | 1.16 × 10−4 |
31 | MSa | 2.78 × 10−4 | 2.65 × 10−4 |
32 | MSa | 1.45 × 10−4 | 1.26 × 10−4 |
33 | MSa | 1.63 × 10−4 | 1.55 × 10−4 |
34 | MSa | 2.08 × 10−4 | 1.92 × 10−4 |
35 | MSa | 2.23 × 10−4 | 2.05 × 10−4 |
36 | MSa | 1.85 × 10−4 | 1.64 × 10−4 |
37 | MSa | 2.89 × 10−4 | 2.57 × 10−4 |
38 | MSa | 2.54 × 10−4 | 2.36 × 10−4 |
39 | MSa | 1.29 × 10−4 | 1.16 × 10−4 |
40 | MSa | 1.98 × 10−4 | 1.97 × 10−4 |
41 | MSa | 1.75 × 10−4 | 1.63 × 10−4 |
42 | MSa | 1.70 × 10−4 | 1.61 × 10−4 |
43 | CSa | 3.73 × 10−4 | 3.68 × 10−4 |
44 | CSa | 4.14 × 10−4 | 3.84 × 10−4 |
45 | CSa | 4.85 × 10−4 | 4.78 × 10−4 |
46 | CSa | 6.28 × 10−4 | 5.89 × 10−4 |
47 | CSa | 5.84 × 10−4 | 5.80 × 10−4 |
48 | CSa | 7.05 × 10−4 | 6.98 × 10−4 |
49 | CSa | 6.97 × 10−4 | 7.02 × 10−4 |
50 | CSa | 3.24 × 10−4 | 3.29 × 10−4 |
Errors | Subset Tr | Subset T | Subset V |
---|---|---|---|
RMS | 0.0098 | 0.0096 | 0.0084 |
MAE | 0.0215 | 0.0204 | 0.0119 |
R2 | 0.976 | 0.976 | 0.976 |
No. of Wells | Soil | Measured Values of k in Pumping Tests di (m/s) | Predicted Values of k Based on ANN 6-8-1 yi (m/s) | Relative Errors of Individual Case REi (%) |
---|---|---|---|---|
1 | FSa | 2.32 × 10−5 | 2.25 × 10−5 | 3.02 |
2 | FSa | 3.69 × 10−5 | 3.58 × 10−5 | 2.98 |
3 | FSa | 2.10 × 10−5 | 2.23 × 10−5 | 6.19 |
4 | FSa | 1.24 × 10−5 | 1.31 × 10−5 | 5.65 |
5 | FSa | 5.77 × 10−5 | 5.70 × 10−5 | 1.21 |
6 | FSa | 4.68 × 10−5 | 4.65 × 10−5 | 0.64 |
7 | FSa | 3.79 × 10−5 | 3.80 × 10−5 | 0.26 |
8 | FSa | 4.40 × 10−5 | 4.28 × 10−5 | 2.73 |
9 | FSa | 4.78 × 10−5 | 4.69 × 10−5 | 1.88 |
10 | FSa | 5.59 × 10−5 | 5.45 × 10−5 | 2.50 |
11 | FSa | 9.32 × 10−5 | 9.28 × 10−5 | 0.43 |
12 | FSa | 3.85 × 10−5 | 3.84 × 10−5 | 0.26 |
13 | FSa | 8.48 × 10−5 | 8.48 × 10−5 | 0 |
14 | FSa | 4.54 × 10−5 | 4.53 × 10−5 | 0.22 |
15 | FSa | 9.86 × 10−5 | 9.82 × 10−5 | 0.41 |
16 | FSa | 5.08 × 10−5 | 5.03 × 10−5 | 0.98 |
17 | FSa | 7.20 × 10−5 | 6.98 × 10−5 | 3.06 |
18 | FSa | 8.64 × 10−5 | 8.63 × 10−5 | 0.12 |
19 | FSa | 5.30 × 10−5 | 5.46 × 10−5 | 3.02 |
20 | FSa | 6.75 × 10−5 | 6.84 × 10−5 | 1.33 |
21 | MSa | 1.69 × 10−4 | 1.65 × 10−4 | 2.37 |
22 | MSa | 2.97 × 10−4 | 3.05 × 10−4 | 2.69 |
23 | MSa | 2.28 × 10−4 | 2.22 × 10−4 | 2.63 |
24 | MSa | 1.49 × 10−4 | 1.49 × 10−4 | 0 |
25 | MSa | 1.32 × 10−4 | 1.31 × 10−4 | 0.76 |
26 | MSa | 1.35 × 10−4 | 1.33 × 10−4 | 1.48 |
27 | MSa | 1.48 × 10−4 | 1.47 × 10−4 | 0.68 |
28 | MSa | 1.36 × 10−4 | 1.30 × 10−4 | 4.41 |
29 | MSa | 2.20 × 10−4 | 2.18 × 10−4 | 0.91 |
30 | MSa | 1.17 × 10−4 | 1.16 × 10−4 | 0.85 |
31 | MSa | 2.78 × 10−4 | 2.73 × 10−4 | 1.80 |
32 | MSa | 1.45 × 10−4 | 1.34 × 10−4 | 7.59 |
33 | MSa | 1.63 × 10−4 | 1.60 × 10−4 | 1.84 |
34 | MSa | 2.08 × 10−4 | 2.05 × 10−4 | 1.44 |
35 | MSa | 2.23 × 10−4 | 2.28 × 10−4 | 2.24 |
36 | MSa | 1.85 × 10−4 | 1.84 × 10−4 | 0.54 |
37 | MSa | 2.89 × 10−4 | 2.89 × 10−4 | 0 |
38 | MSa | 2.54 × 10−4 | 2.53 × 10−4 | 0.39 |
39 | MSa | 1.29 × 10−4 | 1.21 × 10−4 | 6.20 |
40 | MSa | 1.98 × 10−4 | 1.99 × 10−4 | 0.51 |
41 | MSa | 1.75 × 10−4 | 1.75 × 10−4 | 0 |
42 | MSa | 1.70 × 10−4 | 1.68 × 10−4 | 1.18 |
43 | CSa | 3.73 × 10−4 | 3.71 × 10−4 | 0.54 |
44 | CSa | 4.14 × 10−4 | 4.25 × 10−4 | 2.66 |
45 | CSa | 4.85 × 10−4 | 4. 73 × 10−4 | 2.47 |
46 | CSa | 6.28 × 10−4 | 6.62 × 10−4 | 5.41 |
47 | CSa | 5.84 × 10−4 | 5.84 × 10−4 | 0 |
48 | CSa | 7.05 × 10−4 | 7.03 × 10−4 | 0.28 |
49 | CSa | 6.97 × 10−4 | 6.75 × 10−4 | 3.16 |
50 | CSa | 3.24 × 10−4 | 3.20 × 10−4 | 1.23 |
Max RE32 = 7.59% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wrzesiński, G.; Markiewicz, A. Prediction of Permeability Coefficient k in Sandy Soils Using ANN. Sustainability 2022, 14, 6736. https://doi.org/10.3390/su14116736
Wrzesiński G, Markiewicz A. Prediction of Permeability Coefficient k in Sandy Soils Using ANN. Sustainability. 2022; 14(11):6736. https://doi.org/10.3390/su14116736
Chicago/Turabian StyleWrzesiński, Grzegorz, and Anna Markiewicz. 2022. "Prediction of Permeability Coefficient k in Sandy Soils Using ANN" Sustainability 14, no. 11: 6736. https://doi.org/10.3390/su14116736