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Abstract: The paper presents a method of application of an ANN (Artificial Neural Network) to
predict the permeability coefficient k in sandy soils: FSa, MSa, CSa. To develop an ANN the results of
permeability coefficients from pumping and consolidation tests were applied. The proposed ANN
with an architecture 6-8-1 predicts the value of permeability coefficient k based on the following
parameters: soil type, relative density ID, void ratio e and effective soil diameter d10. The mean
relative error and single maximum value of the relative error for the proposed ANN are following:
Mean RE = ±4%, Max RE = 7.59%. The use of the ANN to predict the soil permeability coefficient
allows the reduction of the costs and time needed to conduct laboratory or field tests to determine
this parameter.
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1. Introduction

Due to the intensive development of the construction industry, areas with difficult
subsoil conditions or high groundwater levels are more and more often built on. Therefore,
before starting the preparation of an investment project, it is necessary to thoroughly iden-
tify the subsoil, i.e., to determine, apart from subsoil strength parameters, the permeability
coefficient k. The parameter k describes the soil’s hydraulic permeability, i.e., the filtration
ability of water through the subsoil. The permeability coefficient k in the subsoil depends
on the following properties: type of soil, grain size and shape, porosity, soil structure and
water viscosity [1]. Typical values of the parameter k in mineral soils are in the range
1 × 10−2 ÷ 1 × 10−10 m·s−1.

The permeability coefficient k is determined using many methods, ranging from
estimations based on uncomplicated calculations to complex laboratory and field tests.
Choosing the method of determining the parameter k depends mainly on the type of soil.
Eurocode 7 distinguishes four methods of the evaluation of the parameter k: laboratory
tests, field tests, estimation based on oedometer test and empirical correlations. Selection
of the method for determining the parameter k should be preceded by a thorough analysis
of the properties and homogeneity of the tested soil, as well as of the factors that may affect
the tested parameter [2,3].

Permeability coefficient k in soils is often estimated based on empirical correlations, in
which the content of grain size (most often the effective soil diameter d10), porosity and
specific surface area are used [4,5]. However, existing empirical formulas ignore the impact
of soil structure, permeability anisotropy and the soil grain shape. Research indicates that
the parameter k of the same material may differs significantly if it is estimated based on
different empirical formulas [6,7]. Therefore, it is crucial to determine the exact empirical
formulas and the correctness of the values of the parameters used, which may affect the
calculation results. It is also important that the empirical formulas depend on a greater
number of parameters of the analysed soil and the exact determination of the parameters
used in empirical formulas.
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The most accurate way to evaluate the permeability coefficient k are field tests. In
field tests the heterogeneity of the subsoil structure and hydraulic permeability anisotropy
are best reflected. Obviously, the accuracy of the determined parameter depends on the
correctness of the performed tests. The most common field test is pumping test. The main
goal of the pumping test is to obtain, by pumping water from the well (piezometer), a
hydrodynamic reaction of the subsoil, which enables the identification of the filtration
parameters of the soil and the conditions of its supply [8–10]. The pumping test is most
often used to estimate the parameter k in well-permeable soils, mainly sands. In soils
with less permeability (k < 10−6 m·s−1), the BAT probe test is used. This test involves the
connection of a piezometer to the probe measuring part with a glass water container in
which pressure changes are registered. Parameter k is determined on the basis of pressure
changes in a function of time. Depending on the degree of filling the pores with water
in the soil, the test may be performed under the conditions of water supply (inflow) or
outflow from the probe tip. In the laboratory, parameter k is determined using constant or
variable gradient methods. Constant-gradient methods, including the Rowe chamber and
Trautwein system and ZW-K2 apparatus, are most often used to evaluate the parameter k
in well-permeable soils [11]. Variable-gradient methods, including the flow-pump method,
Kamienski tube method and modified oedometer with a burette, are used to evaluate the
parameter k in low-permeable soils. Of the above-mentioned variable-gradient methods,
the flow-pump method is the most commonly used. In this method, the differences in
pressure at the top and bottom of the soil sample are measured after establishing a constant
water flow velocity in the test sample. The test is continued until the pressure stabilizes in
the soil sample.

ANNs (Artificial Neural Networks) are a tool used in science for modelling complex
phenomena [12–15]. In recent years, they have gained more and more popularity and are
widely used for statistical analysis [16]. In recent years they have been successfully applied
in civil engineering [17–20]. Waszczyszyn [21,22] used neural networks in the analysis of
hybrid computational systems, regression problems, development of Recurent Cascade
Neural Networks (RCNNs), Binarized Neural Networks (BNNs) and Principal Component
Analysis. Rafiq et al. [23] applied three types of neural networks in engineering: multi-layer
perceptron (MLP), normalized RBF (NRBF) and radial basis network (RBF). Research on
the use of ANNs in construction, in particular in relation to the subsoil, was presented
inter alia by: Shahin et al. [24,25], Dihoru et al. [26], Pichler et al. [27], Sulewska [28],
Tian et al. [29], Zhou et al. [30], Ellis et al. [31], Sidarta and Ghaboussi [32], Penumadu
and Zhao [33], Basheer [34], Najjar and Huang [35], Fu et al. [36], Lee et al. [37], Das and
Basudhar [38], Byeon et al. [39], Wrzesinski [40], Wrzesinski et al. [41], Lin et al. [42,43], Liu
et al. [44]. So far, many applications of ANNs in construction have been reported in the
literature; however, there are no reports on the using of ANNs to evaluate the parameter k
in non-cohesive soils.

The paper presents the using ANN (Artificial Neural Network) to predict the per-
meability coefficient k in sandy soils. In order to propose an ANN, a series of laboratory
and field tests to determine parameter k were carried out and the basic index properties of
tested soils were determined.

2. Materials and Methods

Research was performed on sands characterized by different grain size. The study
started with the selection of 50 test sites in the field. The criterion for selecting the test sites
was the subsoil with homogeneous permeable sandy soils and the possibility of performing
field tests and collecting samples for laboratory tests. The conducted research to determine
permeability coefficients was divided into field and laboratory tests. The field studies
included pumping tests, while the laboratory studies included consolidometer tests and
tests to determine basic index properties. A total of 50 field tests and 120 laboratory tests
were performed, in which the permeability coefficients k were determined.
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Pumping tests to determine permeability coefficients k were performed in accordance
with the standard method [45–47]. In carried research 1 well and 2 piezometers were
installed for each test. The pumping test started with the installation of a well in the subsoil.
The diameters of all installed wells were 400 mm and they were installed at a depth of
1.10 ÷ 2.00 m. The installation depth depended on the test site. Then, 2 piezometers were
installed in the subsoil. The first piezometer was installed at a distance of 2.0 m, the second
at a distance of 4 or 5 m from the edge of the well. PVC wells and piezometers were used.
The pumping tests were carried out by pumping water and simultaneous measurements
of changes in the water level inside installed piezometers. The tests were repeated two or
three times, at the test sites in particular, to verify the results. Differences in the permeability
coefficients k did not exceed 5% (at the same test site). The water level in the piezometers
was measured 28–30 days after the end of the studies. Parameters k in pumping tests were
determined in accordance with the following formula:

k =

Q
π(z2

2−z2
1)

lnx2

x1
(1)

where Q—water flow, z2—water level in piezometer 2, z1—water level in piezometer 1,
x2—distance between well and piezometer 2 and x1—distance between well and piezome-
ter 1.

A typical scheme of the performed pumping tests is presented in Figure 1.

Figure 1. Pumping test system scheme.

Additionally, cone penetrometer tests (CPT) and electrical resistivity measurements
were performed before pumping tests. Laboratory tests were performed on soil samples
collected from the test sites. In laboratory the following tests were performed: tests on
grain size distribution of soil, on the permeability coefficient in consolidometer and tests
using a scanning electron microscope.

Grain size distribution of tested soils were carried out in accordance with EN ISO
14688-1: 2002 and EN ISO 14688-2: 2004 [48,49]. Based on these tests, the effective soil
diameter d10 was evaluated. The results of the grain size distribution tests indicate that the
analysed soils, according to EN ISO 14688-2: 2006 and EN ISO 14688-2: 2006-Ap2: 2012, are
FSa-Fine Sand, MSa-Middle Sand and CSa-Coarse Sand. According to the EN ISO 14688-2:
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2006 standard, the tested sands were characterized by a gravel fraction of 0 ÷ 19%, sand
fraction of 80 ÷ 98%, silt fraction of 0 ÷ 12% and clay fraction of 0 ÷ 2%.

Relative densities ID of tested soils were determined using cone penetrometer tests
(CPT). Void ratios e were determined using electrical resistivity measurement. After con-
necting the electrodes to the power source and the gauge, several dozen measurements were
made with a frequency of 12 s for the same place. The arithmetic mean of the measurement
results was taken as the final result of the electrical resistance.

For the analysed soils, tests of the structure and chemical composition were carried
out using a scanning electron microscope (XL Series, FEG Quanta 250 model) equipped
with a chemical composition analysis system based on EDS X-ray energy dispersion.

Permeability coefficient tests to determine parameters k were performed in a labo-
ratory with the use of consolidometer (Figure 2). The tests started with the compaction
of soil in the Proctor apparatus. The diameters of compacted samples were 150 mm and
their heights were 60 mm. Soil samples were compacted until the values of the relative
density ID determined in the field studies using the cone penetrometer tests (CPT) were
reached [50,51]. The determination of the permeability coefficient was based on the analysis
of the consolidation process in the uniaxial state of strain. For this purpose, consolidometer
tests were performed using the flow pump method for soil saturation. Tests were performed
with a continuous inflow of water at constant gradients of 0.50. Based on the obtained
characteristics, the permeability coefficients k were determined by the Taylor method. The
values of the parameter k for particular soils obtained with the same gradients did not
differ from each other by more than 5%.

Figure 2. Consolidometer used in tests.

The grain size distribution, relative density ID, void ratio e and effective soil diameter
d10 of tested soils can be seen in Table 1.
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Table 1. Grain size distribution, relative densities, void ratios and effective soil diameters d10 of soils.

No. of Well Soil

Fraction-EN ISO 14688-1: 2002;
EN ISO 14688-2: 2004 (%)

Relative Density
ID (-) Void Ratio

e (-)

Effective Soil
Diameter
d10 (mm)Gr Sa Si Cl

1 FSa 0 91 9 0 0.49 0.542 0.07
2 FSa 1 90 9 0 0.67 0.591 0.07
3 FSa 0 92 8 0 0.61 0.498 0.08
4 FSa 1 92 7 0 0.64 0.523 0.09
5 FSa 2 90 8 0 0.41 0.656 0.08
6 FSa 0 94 6 0 0.54 0.599 0.10
7 FSa 1 93 6 0 0.51 0.587 0.10
8 FSa 0 97 3 0 0.56 0.486 0.17
9 FSa 0 95 3 2 0.39 0.705 0.17

10 FSa 0 95 5 0 0.50 0.589 0.12
11 FSa 0 86 12 2 0.35 0.712 0.04
12 FSa 2 86 10 2 0.68 0.506 0.063
13 FSa 1 89 8 2 0.39 0.701 0.09
14 FSa 1 88 11 0 0.69 0.520 0.06
15 FSa 0 94 6 0 0.22 0.728 0.11
16 FSa 1 85 11 3 0.54 0.599 0.06
17 FSa 2 90 8 0 0.39 0.680 0.08
18 FSa 0 89 9 2 0.42 0.701 0.07
19 FSa 2 90 8 0 0.80 0.491 0.08
20 FSa 1 87 10 2 0.45 0.593 0.063
21 MSa 0 99 1 0 0.48 0.603 0.25
22 MSa 0 97 2 1 0.41 0.589 0.23
23 MSa 1 96 3 0 0.58 0.521 0.20
24 MSa 0 97 3 0 0.52 0.580 0.20
25 MSa 0 98 2 0 0.61 0.536 0.21
26 MSa 2 94 3 1 0.65 0.514 0.21
27 MSa 2 92 4 2 0.70 0.545 0.18
28 MSa 1 95 4 0 0.67 0.513 0.17
29 MSa 0 98 2 0 0.56 0.563 0.21
30 MSa 1 98 1 0 0.78 0.456 0.25
31 MSa 0 97 2 1 0.37 0.631 0.23
32 MSa 0 95 3 2 0.85 0.405 0.20
33 MSa 1 97 2 0 0.78 0.415 0.24
34 MSa 2 96 2 0 0.63 0.520 0.24
35 MSa 1 98 1 0 0.56 0.547 0.26
36 MSa 0 98 2 0 0.82 0.436 0.21

37 MSa 1 97 2 0 0.39 0653 0.24
38 MSa 0 97 2 1 0.33 0.606 0.23
39 MSa 0 96 4 0 0.86 0.410 0.25
40 MSa 0 98 2 0 0.61 0.535 0.21
41 MSa 2 96 2 0 0.54 0.518 0.23
42 MSa 0 98 2 0 0.49 0.552 0.21
43 CSa 8 92 0 0 0.71 0.470 0.50
44 CSa 12 87 1 0 0.68 0.456 0.46
45 CSa 19 81 0 0 0.59 0.507 0.61
46 CSa 18 82 0 0 0.40 0.532 0.58
47 CSa 17 80 2 1 0.54 0.528 0.45
48 CSa 18 82 0 0 0.28 0.590 0.57
49 CSa 18 82 0 0 0.38 0.576 0.60
50 CSa 16 82 2 0 0.92 0.423 0.63

3. Results

Performed research allowed the determination of the parameters k of tested soils using
two methods: the pumping test and the consolidometer test. The parameters k, evaluated
based on performed tests, are presented in Table 2.
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Table 2. Permeability coefficients k, evaluated based on pumping and consolidometer tests.

No. of Well Soil
Permeability Coefficient k (m/s)

Pumping Test Consolidometer Test

1 FSa 2.32 × 10−5 2.20 × 10−5

2 FSa 3.69 × 10−5 3.42 × 10−5

3 FSa 2.10 × 10−5 2.00 × 10−5

4 FSa 1.24 × 10−5 1.33 × 10−5

5 FSa 5.77 × 10−5 5.64 × 10−5

6 FSa 4.68 × 10−5 4.33 × 10−5

7 FSa 3.79 × 10−5 3.66 × 10−5

8 FSa 4.40 × 10−5 3.97 × 10−5

9 FSa 4.78 × 10−5 4.64 × 10−5

10 FSa 5.59 × 10−5 5.27 × 10−5

11 FSa 9.32 × 10−5 9.05 × 10−5

12 FSa 3.85 × 10−5 3.64 × 10−5

13 FSa 8.48 × 10−5 8.50 × 10−5

14 FSa 4.54 × 10−5 4.63 × 10−5

15 FSa 9.86 × 10−5 9.65 × 10−5

16 FSa 5.08 × 10−5 4.96 × 10−5

17 FSa 7.20 × 10−5 7.32 × 10−5

18 FSa 8.64 × 10−5 8.73 × 10−5

19 FSa 5.30 × 10−5 4.98 × 10−5

20 FSa 6.75 × 10−5 6.14 × 10−5

21 MSa 1.69 × 10−4 1.57 × 10−4

22 MSa 2.97 × 10−4 2.93 × 10−4

23 MSa 2.28 × 10−4 2.12 × 10−4

24 MSa 1.49 × 10−4 1.45 × 10−4

25 MSa 1.32 × 10−4 1.32 × 10−4

26 MSa 1.35 × 10−4 1.25 × 10−4

27 MSa 1.48 × 10−4 1.50 × 10−4

28 MSa 1.36 × 10−4 1.22 × 10−4

29 MSa 2.20 × 10−4 2.03 × 10−4

30 MSa 1.17 × 10−4 1.16 × 10−4

31 MSa 2.78 × 10−4 2.65 × 10−4

32 MSa 1.45 × 10−4 1.26 × 10−4

33 MSa 1.63 × 10−4 1.55 × 10−4

34 MSa 2.08 × 10−4 1.92 × 10−4

35 MSa 2.23 × 10−4 2.05 × 10−4

36 MSa 1.85 × 10−4 1.64 × 10−4

37 MSa 2.89 × 10−4 2.57 × 10−4

38 MSa 2.54 × 10−4 2.36 × 10−4

39 MSa 1.29 × 10−4 1.16 × 10−4

40 MSa 1.98 × 10−4 1.97 × 10−4

41 MSa 1.75 × 10−4 1.63 × 10−4

42 MSa 1.70 × 10−4 1.61 × 10−4

43 CSa 3.73 × 10−4 3.68 × 10−4

44 CSa 4.14 × 10−4 3.84 × 10−4

45 CSa 4.85 × 10−4 4.78 × 10−4

46 CSa 6.28 × 10−4 5.89 × 10−4

47 CSa 5.84 × 10−4 5.80 × 10−4

48 CSa 7.05 × 10−4 6.98 × 10−4

49 CSa 6.97 × 10−4 7.02 × 10−4

50 CSa 3.24 × 10−4 3.29 × 10−4

On the basis of the conducted research, it can be stated that similar values of the
permeability coefficient k were obtained in field and laboratory tests for soils from the
same test site. The influence of the relative density ID on the permeability coefficients k
is significant in the tested soils. Higher values of permeability coefficients k were in soils
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characterized by a lower relative density ID, higher void ratio e and lower value of effective
soil diameter d10.

The tests carried out using the scanning electron microscope showed that the tested
non-cohesive soils have different grain shapes, even if the sieve analysis shows a similar
content of individual fractions and chemical composition. Sample SEM photos showing
the structure and chemical composition spectra for selected sample of fine sand (FSa),
characterized by similar relative density ID from two test sites (wells no. 1 and 6), are
presented in Figure 3.

Figure 3. Chemical composition spectra and sample SEM photos showing the structure for FSa,
characterized by similar relative density ID from two test sites (wells no. 1 and 6): (a) FSa from well
no. 1, (b) FSa from well no. 6.

The conducted research shows that the shape of the soil grains and arrangement of
grains has an impact on the parameter k. The performed tests confirmed that irregularly
shaped soil grains hold more water in the micro-cavities in comparison with grains with
more regular shapes. The differences in parameter k are significant for the same sand
characterized by similar relative density ID, void ratio e and the effective soil diameter d10.
For instance, the difference in parameter k is two-fold in FSa between wells no. 1 and 6.
The impact of the analysed parameters on the parameter k is the highest in fine sands (FSa).

4. ANN (Artificial Neural Network) Analysis
4.1. Architecture of ANN

The class of ANNs used in the presented research is that of multilayer perceptrons
(MLPs) with one hidden layer. The architecture of the ANNs N-H-M type is defined by:
N—number of nodes in the input layer X1–XN, H—number of nodes in the hidden layer,
M = Y—number of nodes in the output layer.
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ANNs were developed in accordance with the criterion of minimization of the error
function. The criterion was the sum of squares of differences (SOS) evaluated using the
equation:

ESOS =
P

∑
i=1

(di − yi)
2 (2)

where P—number of cases of set P, di—known values of the tests, yi—predicted values
using ANN.

Errors measures were separately calculated for subsets: training Tr, testing T and
validation V. The assessment of the ANN’s predictive quality took into account the value
of the error measures in the test subset T. The selected error measures for ANNs were
determined using the following formulas:

- Relative error for individual cases:

REi =

∣∣∣∣di − yi
di

∣∣∣∣·100% (3)

- Determination coefficient R2:

R2 = 1− ∑P
i=1(di − yi)

2

∑P
i=1

(
di − di

)2 (4)

- Mean absolute error:

MAE = 1− ∑P
i=1|di − yi|

P
(5)

- Root mean squared error:

RMS =

√√√√ 1
P
·

P

∑
i=1

(di − yi)
2 (6)

where di—measured value, yi—predicted value by ANN, di—measured mean value in
subset.

4.2. Data Sets, Training and Testing the ANN

In the performed ANN analysis, two data sets were used: set A and set B. Set A was
obtained in field and laboratory tests and consisted of nA = 50 cases. Set A was described
by five variables: X1 = soil type Є {FSa; MSa, CSa}; X2 = relative density ID Є {0.22 ÷ 0.92};
X3 = void ratio e Є {0.405 ÷ 0.728%}; and X4 = effective soil diameter d10 Є {0.04 ÷ 0.63} as
well as Y = permeability coefficient k (Table 1). Variable X1 was treated as quality variable
“one from N” type and required the use of many input neurons because three soil types were
used. Set B consisted of data obtained in consolidometer tests and included nB = 120 cases.
Set B was described by independent variables X1–X4, and dependent variable Y = k. The
development and training of the ANN was carried out with the use of set B. The selected
ANN was used to predict permeability coefficient k on the basis of new data from field tests
(set A).

Set B was randomly assigned to 60, 30 and 30 laboratory test results of the subsets:
training Tr, testing T, and validation V, respectively. Subset testing T was used to periodi-
cally check the generalizability acquired by the ANN, while subset validation V was used
for the final evaluation of the trained ANN.

Predictive quality of the neural regression model was estimated based on performed
error analysis. Errors were determined in subset training Tr, testing T and validation V.
ANNs were optimized in terms of the training method, the number of neurons in the
hidden layer, the activation function of neurons in the hidden layer and the output layer.
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A Conjugate gradient (CG) and early stopping methods were used to train the network.
The Conjugate gradient method is an algorithm for the numerical solution of particular
systems of linear equations, namely those whose matrix is positive-definite, while the
early stopping method is a form of regularization used to avoid overfitting when training
a learner with an iterative method, such as gradient descent. Such methods update the
learner so as to make it better fit the training data with each iteration. The training was
finished after 28 training cycles. ANNs with the best predictive quality were evaluated
on the basis of the lowest values of root mean squared errors RMS, the highest values of
determination coefficient R2 and the lowest mean values of relative errors RE [52].

The performed neural network analysis allows the selection of ANN 6-8-1 (6 input
neurons, 8 neurons in one hidden layer, 1 output neuron), which best predicts the parameter
k. The selected ANN is presented in Figure 4. Activation functions were identified. For
the hidden neurons, this was a tanh sigmoid curve, and for the output neuron, this was
a logistic function. The errors measures (RMS, MAE, R2) for the developed ANN 6-8-1,
in particular, and the subsets training Tr, testing T and validation V of set B are shown in
Table 3. Prediction mean relative error Mean RE of the selected ANN 6-8-1 was a maximum
of about ±4% in all subsets of data set B.

Figure 4. Architecture of the developed ANN 6-8-1.

Table 3. Errors measures for ANN 6-8-1 in the subsets training Tr, testing T, validation V of set B.

Errors Subset Tr Subset T Subset V

RMS 0.0098 0.0096 0.0084
MAE 0.0215 0.0204 0.0119

R2 0.976 0.976 0.976

4.3. ANN Estimation

The proposed ANN 6-8-1 was tested by applying it to predict the permeability coef-
ficient k on the basis of field data from set A. Variables X1, X2, X3 and X4 (Table 1) were
introduced and Y = k values were estimated using the proposed ANN. Measured values
of parameter k determined in pumping tests and values of parameter k predicted using
developed ANN 6-8-1 are presented in Table 4. The value of the maximum single relative
error Max RE was equal to 7.59%.
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Table 4. Measured values of permeability coefficient k from field tests and predicted values of k using
developed ANN 6-8-1.

No. of
Wells Soil

Measured Values of k
in Pumping Tests di

(m/s)

Predicted Values of k
Based on ANN 6-8-1

yi (m/s)

Relative Errors of
Individual Case REi

(%)

1 FSa 2.32 × 10−5 2.25 × 10−5 3.02
2 FSa 3.69 × 10−5 3.58 × 10−5 2.98
3 FSa 2.10 × 10−5 2.23 × 10−5 6.19
4 FSa 1.24 × 10−5 1.31 × 10−5 5.65
5 FSa 5.77 × 10−5 5.70 × 10−5 1.21
6 FSa 4.68 × 10−5 4.65 × 10−5 0.64
7 FSa 3.79 × 10−5 3.80 × 10−5 0.26
8 FSa 4.40 × 10−5 4.28 × 10−5 2.73
9 FSa 4.78 × 10−5 4.69 × 10−5 1.88
10 FSa 5.59 × 10−5 5.45 × 10−5 2.50
11 FSa 9.32 × 10−5 9.28 × 10−5 0.43
12 FSa 3.85 × 10−5 3.84 × 10−5 0.26
13 FSa 8.48 × 10−5 8.48 × 10−5 0
14 FSa 4.54 × 10−5 4.53 × 10−5 0.22
15 FSa 9.86 × 10−5 9.82 × 10−5 0.41
16 FSa 5.08 × 10−5 5.03 × 10−5 0.98
17 FSa 7.20 × 10−5 6.98 × 10−5 3.06
18 FSa 8.64 × 10−5 8.63 × 10−5 0.12
19 FSa 5.30 × 10−5 5.46 × 10−5 3.02
20 FSa 6.75 × 10−5 6.84 × 10−5 1.33
21 MSa 1.69 × 10−4 1.65 × 10−4 2.37
22 MSa 2.97 × 10−4 3.05 × 10−4 2.69
23 MSa 2.28 × 10−4 2.22 × 10−4 2.63
24 MSa 1.49 × 10−4 1.49 × 10−4 0
25 MSa 1.32 × 10−4 1.31 × 10−4 0.76
26 MSa 1.35 × 10−4 1.33 × 10−4 1.48
27 MSa 1.48 × 10−4 1.47 × 10−4 0.68
28 MSa 1.36 × 10−4 1.30 × 10−4 4.41
29 MSa 2.20 × 10−4 2.18 × 10−4 0.91
30 MSa 1.17 × 10−4 1.16 × 10−4 0.85
31 MSa 2.78 × 10−4 2.73 × 10−4 1.80
32 MSa 1.45 × 10−4 1.34 × 10−4 7.59
33 MSa 1.63 × 10−4 1.60 × 10−4 1.84
34 MSa 2.08 × 10−4 2.05 × 10−4 1.44
35 MSa 2.23 × 10−4 2.28 × 10−4 2.24
36 MSa 1.85 × 10−4 1.84 × 10−4 0.54
37 MSa 2.89 × 10−4 2.89 × 10−4 0
38 MSa 2.54 × 10−4 2.53 × 10−4 0.39
39 MSa 1.29 × 10−4 1.21 × 10−4 6.20
40 MSa 1.98 × 10−4 1.99 × 10−4 0.51
41 MSa 1.75 × 10−4 1.75 × 10−4 0
42 MSa 1.70 × 10−4 1.68 × 10−4 1.18
43 CSa 3.73 × 10−4 3.71 × 10−4 0.54
44 CSa 4.14 × 10−4 4.25 × 10−4 2.66
45 CSa 4.85 × 10−4 4. 73 × 10−4 2.47
46 CSa 6.28 × 10−4 6.62 × 10−4 5.41
47 CSa 5.84 × 10−4 5.84 × 10−4 0
48 CSa 7.05 × 10−4 7.03 × 10−4 0.28
49 CSa 6.97 × 10−4 6.75 × 10−4 3.16
50 CSa 3.24 × 10−4 3.20 × 10−4 1.23

Max
RE32 = 7.59%
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5. Conclusions

The paper concerns the determination of the permeability coefficient k using an ANN
(Artificial Neural Network). In order to develop an ANN, field and laboratory tests of
the parameter k were performed and index properties of the tested soils were determined.
The research was performed in following soils: FSa, MSa and CSa. On the basis of the
conducted research, it can be stated that similar values of the permeability coefficient k
were obtained in field and laboratory tests from soils from the same test site. The influence
of the relative density ID on the permeability coefficients k is significant in the tested soils.
Higher values of permeability coefficients k were found in soils characterized by a lower
relative density ID, higher void ratio e and lower value of effective soil diameter d10.

The proposed ANN with the 6-8-1 architecture predicts the real value of the perme-
ability coefficient k based on the following data: soil type, relative density ID, void ratio e
and effective soil diameter d10. The presented ANN estimates the permeability coefficients
k with values of determination coefficient R2 = 0.97, mean relative error RE = ±4% and
single maximum relative error Max RE = 7.59%.

The presented research frames the work as an experimental campaign and character-
ization of sandy soils. Further field and laboratory tests of the permeability coefficient k
and the consideration of additional factors influencing the value of the tested parameter
should be performed because the conclusions of the analysis refer only to the tested soils.
The presented ANN model may be upgraded, new functions can be entered, including
other types of soil, and can thus be extended to more types of non-cohesive and cohesive
soils. The development of an ANN for the prediction of the soil permeability coefficient
allows the reduction of the costs and time needed to conduct laboratory or field tests to
determine this parameter.
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7. Wrzesiński, G. Permeability coefficient tests in non-cohesive soils. Sci. Rev. Eng. Environ. Sci. 2020, 29, 72–80. [CrossRef]
8. MacDonald, A.; Barker, J.; Davies, J. The bailer test: A simple effective pumping test for assessing borehole success. Hydrogeol. J.

2008, 16, 1065–1075. [CrossRef]
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41. Wrzesiński, G.; Kowalski, J.; Miszkowska, A. Numerical analysis of dewatering process of deep excavation. In Proceedings of the
18th International Multidisciplinary Scientific Geoconference SGEM 2018: Hydrogeology, Engineering Geology and Geotechnics,
Albena, Bulgaria, 30 June 2018; Issue 1.2, Science and Technologies in Geology, Exploration and Mining. Volume 18, pp. 497–504.

42. Lin, P.Y.; Ni, P.P.; Guo, C.C.; Mei, G.X. Mapping Soil Nail Loads Using FHWA Simplified Models and Artificial Neural Network
Technique. Can. Geotech. J. 2020, 57, 1453–1471. [CrossRef]

43. Lin, P.Y.; Chen, X.Y.; Jiang, M.J.; Song, X.G.; Xu, M.J.; Huang, S. Mapping shear strength and compressibility of soft soils with
artificial neural networks. Eng. Geol. 2022, 300, 106585. [CrossRef]

44. Liu, D.; Lin, P.Y.; Zhao, C.Y.; Qiu, J.J. Mapping horizontal displacement of soil nail walls using machine learning approaches. Acta
Geotech. 2021, 16, 4027–4044. [CrossRef]

45. Driscoll, F. Groundwater and Wells, 2nd ed.; Johnson Filtration Systems Inc.: St Paul, MN, USA, 1986.
46. ICRC. Technical Review: Practical Guidelines for Test Pumping in Water Wells; International Committee of the Red Cross: Geneva, The

Switzerland, 2011.
47. Kruseman, G.P.; de Ridder, N.A. Analysis and Evaluation of Pumping Test Data, 2nd ed.; Publication 47; International Institute for

Land Reclamation and Improvement: Wageningen, The Netherlands, 1994.
48. EN ISO 14688-1; Geotechnical Investigation and Testing-Identification and Classification of Soil-Part 1: Identification and

Description. International Organization for Standardization: Geneva, Switzerland, 2002.
49. EN ISO 14688-2; Geotechnical Investigation and Testing-Identification and Classification of Soil-Part 2: Principles for a Classifica-

tion. International Organization for Standardization: Geneva, Switzerland, 2004.
50. Head, K. Manual of Soil Laboratory Testing. Vol. 1. Soil Classification and Compaction Test; Pentech Press: London, UK, 1996.
51. Tymosiak, D.; Sulewska, M.J. The study of compactibility parameters in non-cohesive soils by Proctor compaction test. Acta Sci.

Pol. Archit. 2016, 15, 43–54.
52. Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995.

http://doi.org/10.1139/cgj-2019-0440
http://doi.org/10.1016/j.enggeo.2022.106585
http://doi.org/10.1007/s11440-021-01345-z

	Introduction 
	Materials and Methods 
	Results 
	ANN (Artificial Neural Network) Analysis 
	Architecture of ANN 
	Data Sets, Training and Testing the ANN 
	ANN Estimation 

	Conclusions 
	References

