Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas
Abstract
:1. Introduction
2. Importance, Properties and Benefits of Biochar
2.1. Biochar and Its Importance
2.2. Properties of Biochar
2.3. Benefits of Biochar
2.3.1. Interaction of Biochar in Soil
2.3.2. Role of Biochar in Carbon Sequestration
2.3.3. Impact of Biochar on Soil Physical, Chemical, and Microbial Properties
3. Biochar as Soil Amendments
Nutrient Content and Its Transformation
4. Method of Production, Storage, and Incorporation of Biochar
5. Finding Possibilities of Biochar Introduction to Hill Ecosystem
5.1. Potential Role in Sustainable Agriculture
- The contribution of slash and burn agriculture in increasing the air CO2 concentration of the EHR cannot be ignored. Thus, the adoption of “Slash and Char: instead of “Slash and burn” can contribute immensely to reducing the GHGs in the EHR of India.
- In the hills of North East India, wood is burnt every day for cooking. Biochar could be produced commercially in ‘roadside hotels’ where a decent amount of wood is burnt every day by conventional methods. Energy-efficient smokeless stoves have been developed to produce biochar as a byproduct. Such a program is already underway in India and countries in Africa, South America, and the Asia Pacific. Programs on smoke-free and energy-efficient stoves have already been initiated in India and a general consideration on adding up the objective of producing biochar by such clean stoves program will fit better in our system.
- Soil erosion and nutrient loss are serious threats in the hill slopes of the North East. As biochar has higher surface area and is porous in nature, the application of biochar in soils of hill slopes can minimize soil erosion and nutrient loss.
5.2. Potential Feedstocks Reserve in the Region
6. Biochar Initiatives in India
7. Potential Negative Impacts of Biochar
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Layek, J.; Das, A.; Idapuganti, R.G.; Sarkar, D.; Ghosh, A.; Zodape, S.T.; Lal, R.; Yadav, G.S.; Panwar, A.S.; Ngachan, S.; et al. Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas. J. Appl. Phycol. 2018, 30, 547–558. [Google Scholar] [CrossRef]
- IPCC. 2007 Climate Change. Climate Change Impacts, Adaptation and Vulnerability; Working Group II; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Houghton, E. Climate Change 1995: The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 1995; Volume 2. [Google Scholar]
- Tripathi, R.S.; Barik, S.K. Shifting cultivation in northeast India. In Approaches for Increasing Agricultural Productivity in Hill and Mountain Ecosystems; ICAR: New Delhi, India, 2003; pp. 317–322. [Google Scholar]
- Choudhury, B.U.; Mohapatra, K.P.; Das, A.; Das, P.T.; Nongkhlaw, L.; Fiyaz, R.A.; Ngachan, S.V.; Hazarika, S.; Rajkhowa, D.J.; Munda, G.C. Spatial variability in distribution of organic carbon stocks in the soils of North East India. Curr. Sci. 2013, 104, 604–614. [Google Scholar]
- Sharma, U.C.; Singh, R.P. Acid soils of India: Their distribution, management and future strategies for higher productivity. Fertil. News. 2002, 47, 45–52. [Google Scholar]
- Izaurralde, R.C.; Rosenberg, N.J.; Lal, R. Mitigation of Climatic Change by Soil Carbon Sequestration: Issues of Science, Monitoring, and Degraded Lands. Adv. Agron. 2001, 70, 1–75. [Google Scholar]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management; Earthscan: London, UK, 2009; Volume 1. [Google Scholar]
- Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef]
- Siegelman, R.L.; Milner, P.J.; Kim, E.J.; Weston, S.C.; Long, J.R. Challenges and opportunities for adsorption based CO2 capture from natural gas combined cycle emissions. Energy Environ. Sci. 2019, 12, 2161–2173. [Google Scholar] [CrossRef]
- Downie, A.; Zwieten, L.V. Biochar: A coproduct to bioenergy from slow-pyrolysis technology. In Advanced Biofuels and Bioproducts; Springer: New York, NY, USA, 2013; pp. 97–117. [Google Scholar]
- Haefele, S.M.; Konboon, Y.; Wongboon, W.; Amarante, S.; Maarifat, A.A.; Pfeiffer, E.M.; Knoblauch, C.J.F.C.R. Effects and fate of biochar from rice residues in rice-based systems. Field Crop. Res. 2011, 121, 430–440. [Google Scholar] [CrossRef]
- Fowles, M. Black carbon sequestration as an alternative to bioenergy. Biomass Bioenergy 2007, 31, 426–432. [Google Scholar] [CrossRef]
- Vaccari, F.P.; Baronti, S.; Lugato, E.; Genesio, L.; Castaldi, S.; Fornasier, F.; Miglietta, F. Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur. J. Agron. 2011, 34, 231–238. [Google Scholar] [CrossRef]
- Baronti, S.; Vaccari, F.P.; Miglietta, F.; Calzolari, C.; Lugato, E.; Orlandini, S.; Pini, R.; Zulian, C.; Genesio, L. Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur. J. Agron. 2014, 53, 38–44. [Google Scholar] [CrossRef]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. The biochar dilemma. Soil Res. 2014, 52, 217–230. [Google Scholar] [CrossRef]
- Antal, M.J.; Grønli, M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; Van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.P.; et al. An investigation into the reactions of biochar in soil. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Chan, K.Y.; Xu, Z. Biochar: Nutrient properties and their enhancement. Biochar Environ. Manag. Sci. Technol. 2009, 1, 67–84. [Google Scholar]
- Lehmann, J.; Rondon, M. Bio-char soil management on highly weathered soils in the humid tropics. Biol. Approaches Sustain. Soil Syst. 2006, 113, 530. [Google Scholar]
- Yamato, M.; Okimori, Y.; Wibowo, I.F.; Anshori, S.; Ogawa, M. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr. 2006, 52, 489–495. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macêdo, J.L.V.; Blum, W.E.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Asai, H.; Samson, B.K.; Stephan, H.M.; Songyikhangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.; Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crop. Res. 2009, 111, 81–84. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of green waste biochar as a soil amendment. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Steiner, C.; Glaser, B.; Geraldes Teixeira, W.; Lehmann, J.; Blum, W.E.; Zech, W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutr. Soil Sci. 2008, 171, 893–899. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory- produced biochars and biochar—Soil mixtures. Geoderma 2013, 193–194, 122–130. [Google Scholar] [CrossRef]
- Berek, A.K. Exploring the potential roles of biochars on land degradation mitigation. J. Degrad. Min. Lands Manag. 2014, 1, 149–158. [Google Scholar]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Guo, M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Jha, P.; Biswas, A.K.; Lakaria, B.L.; Rao, A.S. Biochar in agriculture—Prospects and related implications. Curr. Sci. 2010, 99, 1218–1225. [Google Scholar]
- Nguyen, B.T.; Lehmann, J. Black carbon decomposition under varying water regimes. Org. Geochem. 2009, 40, 846–853. [Google Scholar] [CrossRef]
- Singh, B.; Cowie, A. A novel approach, using 13C natural abundance, for measuring decomposition of biochars in soil. In Carbon and Nutrient Management in Agriculture; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2008. [Google Scholar]
- Yao, F.X.; Arbestain, M.C.; Virgel, S.; Blanco, F.; Arostegui, J.; Maciá-Agulló, J.A.; Macìas, F. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere 2010, 80, 724–732. [Google Scholar] [CrossRef]
- Macías, F.; Camps Arbestain, M. Soil carbon sequestration in a changing global environment. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 511–529. [Google Scholar] [CrossRef]
- McBeath, A.V.; Smernik, R.J. Variation in the degree of aromatic condensation of chars. Org. Geochem. 2009, 40, 1161–1168. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Lehmann, J.; Hockaday, W.C.; Joseph, S.; Masiello, C.A. Temperature sensitivity of black carbon decomposition and oxidation. Environ. Sci. Technol. 2010, 44, 3324–3331. [Google Scholar] [CrossRef]
- Contescu, A.; Vass, M.; Contescu, C.; Putyera, K.; Schwarz, J.A. Acid buffering capacity of basic carbons revealed by their continuous pK distribution. Carbon 1998, 36, 247–258. [Google Scholar] [CrossRef]
- Feng, J.W.; Zheng, S.; Maciel, G.E. EPR investigations of the effects of inorganic additives on the charring and char/air interactions of cellulose. Energy Fuels 2004, 18, 1049–1065. [Google Scholar] [CrossRef]
- Amonette, J.E.; Joseph, S. Physical properties of biochar. In Biochar for Environmental Management; Earthscan: London, UK; Sterling, VA, USA, 2009; pp. 13–29. [Google Scholar]
- Boehm, H.P. Carbon Surface Chemistry in Graphite and Precursors; Delhaes, P., Ed.; CRC: Amsterdam, The Netherlands, 2001; pp. 141–178. [Google Scholar]
- Cheng, C.H.; Lehmann, J.; Engelhard, M.H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta 2008, 72, 1598–1610. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lehmann, J. Ageing of black carbon along a temperature gradient. Chemosphere 2009, 75, 1021–1027. [Google Scholar] [CrossRef]
- Sun, K.; Jin, J.; Keiluweit, M.; Kleber, M.; Wang, Z.; Pan, Z.; Xing, B. Polar and aliphatic domains regulate sorption of phthalic acid esters(PAEs) to biochars. Bioresour. Technol. 2012, 118, 120–127. [Google Scholar] [CrossRef]
- Violante, A.; Gianfreda, L. Formation and Reactivity Toward. Soil Biochem. 2000, 10, 207. [Google Scholar]
- Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil applied black carbon: Downward migration, leaching and soil respiration. Glob. Chang. Biol. 2010, 16, 1366–1379. [Google Scholar] [CrossRef]
- Change, O.C. Intergovernmental Panel on Climate Change; World Meteorological Organization: Geneva, Switzerland, 2007; Volume 52. [Google Scholar]
- Ehhalt, D.; Prather, M.; Dentener, F.; Derwent, R.; Dlugokencky, E.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; et al. Atmospheric Chemistry and Greenhouse Gases. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK, 2001; p. 881. [Google Scholar]
- Pacala, S.; Socolow, R. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 2004, 305, 968–972. [Google Scholar] [CrossRef] [Green Version]
- Kerr, R.A. Climate Change: Scientists Tell Policymakers We’re All Warming the World. Science 2007, 315, 754–757. [Google Scholar] [CrossRef]
- Kluger, J. What now? Our feverish planet badly needs a cure. Time 2007, 169, 50–60. [Google Scholar]
- Schrag, D.P. Preparing to capture carbon. Science 2007, 315, 812–813. [Google Scholar] [CrossRef] [Green Version]
- Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 2009, 77, 574–581. [Google Scholar] [CrossRef]
- Karimi, M.; Shirzad, M.; Silva, J.A.; Rodrigues, A.E. Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions. J. CO2 Util. 2022, 57, 101890. [Google Scholar] [CrossRef]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Van Zwieten, L.; Kammann, C.; Cayuela, M.L.; Singh, B.P.; Joseph, S.; Kimber, S.; Donne, S.; Clough, T.; Spokas, K.A. Biochar effects on nitrous oxide and methane emissions from soil. In Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: London, UK, 2015; pp. 521–552. [Google Scholar]
- Brockhoff, S.R.; Christians, N.E.; Killorn, R.J.; Horton, R.; Davis, D.D. Physical and mineral-nutrition properties of sand-based turf grass root zones amended with biochar. Agron. J. 2010, 102, 1627–1631. [Google Scholar] [CrossRef]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van der Velde, M.; Diafas, I. Biochar application to soils. In A Critical Scientific Review of Effects on Soil Properties, Processes, and Functions; Office for the Official Publications of the European Communities: Luxembourg; Rome, Italy, 2010; Volume 24099, p. 162. [Google Scholar]
- Alburquerque, J.A.; Calero, J.M.; Barrón, V.; Torrent, J.; del Campillo, M.C.; Gallardo, A.; Villar, R. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J. Plant Nutr. Soil Sci. 2014, 177, 16–25. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Abiodun, B.J.; Ajayi, A.E.; Van De Giesen, N. Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutr. Soil Sci. 2008, 171, 591–596. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Mukome, F.N.; Machado, S.; Nyamasoka, B. Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. J. Environ. Manag. 2015, 150, 250–261. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lehmann, J.; Thies, J.E.; Burton, S.D.; Engelhard, M.H. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006, 37, 1477–1488. [Google Scholar] [CrossRef]
- Lehmann, J.; Pereira da Silva, J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Baldock, J.A.; Smernik, R.J. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org. Geochem. 2002, 33, 1093–1109. [Google Scholar] [CrossRef]
- Noguera, D.; Rondón, M.; Laossi, K.R.; Hoyos, V.; Lavelle, P.; de Carvalho, M.H.C.; Barot, S. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biol. Biochem. 2010, 42, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Rondon, M.; Ramirez, J.; Lehmann, J. Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, MD, USA, 21–24 March 2005; p. 208. [Google Scholar]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Amonette, J.E.; Ippolito, J.A.; Lima, I.M.; Gaskin, J.; Das, K.C.; Steiner, C.; Ahmedna, M.; et al. Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Sci. 2012, 177, 310–320. [Google Scholar] [CrossRef] [Green Version]
- Streubel, J.D.; Collins, H.P.; Garcia-Perez, M.; Tarara, J.; Granatstein, D.; Kruger, C.E. Influence of contrasting biochar types on five soils at increasing rates of application. Soil Sci. Soc. Am. J. 2011, 75, 1402–1413. [Google Scholar] [CrossRef]
- De Gryze, S.; Cullen, M.; Durschinger, L.; Lehmann, J.; Bluhm, D.; Six, J.; Suddick, E. Evaluation of the opportunities for generating carbon offsets from soil sequestration of biochar. In An Issues Paper Commissioned by the Climate Action Reserve; Final Version; Terra Global Capital: San Francisco, CA, USA, 2010; pp. 1–99. [Google Scholar]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Jing, Y.; Li, Q.; Zhang, J.; Huang, Q. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena 2014, 123, 45–51. [Google Scholar] [CrossRef]
- McHery, M.P. Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agric. Ecosyst. Environ. 2009, 129, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kammann, C.I.; Linsel, S.; Gößling, J.W.; Koyro, H.W. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil—Plant relations. Plant Soil 2011, 345, 195–210. [Google Scholar] [CrossRef]
- Tryon, E.H. Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol. Monogr. 1948, 18, 81–115. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Folliott, P.F. Fire effects on below ground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Knoepp, J.D.; DeBano, L.F.; Neary, D.G. Soil chemistry. In Wildland Fire in Ecosystems: Effects of Fire on Soils and Water; Gen. Tech. Rep. RMRS-GTR-42-4; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2005; Volume 4, pp. 53–71. [Google Scholar]
- Bridle, T.R.; Pritchard, D. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci. Technol. 2004, 50, 169–175. [Google Scholar] [CrossRef]
- Knudsen, J.N.; Jensen, P.A.; Lin, W.; Frandsen, F.J.; Dam-Johansen, K. Sulfur transformations during thermal conversion of herbaceous biomass. Energy Fuels 2004, 18, 810–819. [Google Scholar] [CrossRef]
- Uddin Monir, M.; Abd Aziz, A.; Vo, D.V.N.; Khatun, F. Enhanced hydrogen generation from empty fruit bunches by charcoal addition into a downdraft gasifier. Chem. Eng. Technol. 2020, 43, 762–769. [Google Scholar] [CrossRef]
- Gundale, M.J. Temperature and source material influence the chemical properties of charcoal in the ponderosa pine/Douglas-fir ecosystem. For. Ecol. Manag. 2006, 231, 86–93. [Google Scholar] [CrossRef]
- Lützow, M.V.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- DeLuca, T.; Nilsson, M.C.; Zackrisson, O. Nitrogen mineralization and phenol accumulation along afire chronosequence in northern Sweden. Oecologia 2002, 133, 206–214. [Google Scholar] [CrossRef]
- Ball, P.N.; MacKenzie, M.D.; DeLuca, T.H.; Montana, W.H. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. J. Environ. Qual. 2010, 39, 1243–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, V.L.; Fansler, S.J.; Smith, J.L.; Bolton, H., Jr. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol. Biochem. 2011, 43, 296–301. [Google Scholar] [CrossRef]
- Jin, H. Characterization of Microbial Life Colonizing Biochar and Biochar-Amended Soils; Cornell University: Ithaca, NY, USA, 2010; Available online: https://ecommons.cornell.edu/handle/1813/17077 (accessed on 13 January 2022).
- Montes-Morán, M.A.; Suárez, D.; Menéndez, J.A.; Fuente, E. On the nature of basic sites on carbon surfaces: An overview. Carbon 2004, 42, 1219–1225. [Google Scholar] [CrossRef]
- Tan, Z.; Lin, C.S.; Ji, X.; Rainey, T.J. Returning biochar to fields: A review. Appl. Soil Ecol. 2017, 116, 1–11. [Google Scholar] [CrossRef]
- Dias, B.O.; Silva, C.A.; Higashikawa, F.S.; Roig, A.; Sánchez-Monedero, M.A. Use of biochar as bulking agent for the composting of poultry manure: Effect on organic matter degradation and humification. Bioresour. Technol. 2010, 101, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Nocentini, M.; Panettieri, M.; de Castro Barragán, J.M.G.; Mastrolonardo, G.; Knicker, H. Recycling pyrolyzed organic waste from plant nurseries, rice production and shrimp industry as peat substitute in potting substrates. J. Environ. Manag. 2021, 277, 111436. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Bogomolova, I.; Glaser, B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 2014, 70, 229–236. [Google Scholar] [CrossRef]
- Blackwell, P.; Krull, E.; Butler, G.; Herbert, A.; Solaiman, Z. Effect of banded biochar on dryland wheat production and fertilizer use in south-western Australia: An agronomic and economic perspective. Soil Res. 2010, 48, 531–545. [Google Scholar] [CrossRef]
- Hughes, R.F.; Kauffman, J.B.; Cummings, D.L. Fire in the Brazilian Amazon. Oecologia 2000, 124, 574–588. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 2000, 14, 777–793. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Gopinath, K.A.; Venkatesh, G.; Dubey, A.K.; Wakudkar, H.; Purakayastha, T.J.; Pathak, H.; Jha, P.; Lakaria, B.L.; Rajkhowa, D.J.; et al. Use of Biochar for Soil Health Management and Greenhouse Gas Mitigation in India: Potential and Constraints; Central Research Institute for Dryland Agriculture: Hyderabad, Andhra Pradesh, India, 2013; p. 51. [Google Scholar]
- Lehmann, J.; da Silva, J.P., Jr.; Rondon, M.; Cravo, M.D.S.; Greenwood, J.; Nehls, T.; Steiner, C.; Glaser, B. Slash-and-char-a feasible alternative for soil fertility management in the central Amazon. In Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, 14–21 August 2002; Soil and Fertilizer Society of Thailand: Bangkok, Thailand, 2002; Volume 449. [Google Scholar]
- MNRE. Ministry of New and Renewable Energy Resources, Government of India, New Delhi. 2009. Available online: www.mnre.gov.in/biomassrsources (accessed on 21 February 2022).
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K.; Matschoss, P.; Kadner, S.; Zwickel, T.; Eickemeier, P.; Hansen, G.; Schlömer, S.; et al. IPCC special report on renewable energy sources and climate change mitigation. In Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- Pathak, H.; Bhatia, A.; Jain, N.; Aggarwal, P.K. Greenhouse gas emission and mitigation in Indian agriculture—A review. ING Bull. Reg. Assess. React. Nitrogen Bull. 2010, 19, 1–34. [Google Scholar]
- Tsutomu, I.; Takashi, A.; Kuniaki, K.; Kikuo, O. Comparison of removal efficiencies for ammonia and amine gases between woody charcoal and activated carbon. J. Health Sci. 2004, 50, 148–153. [Google Scholar] [CrossRef] [Green Version]
- Radovic, L.R.; Moreno-Castilla, C.; Rivera-Utrilla, J. Carbon materials as adsorbents in aqueous solutions. Chem. Phys. Carbon 2001, 27, 227–405. [Google Scholar]
- Accardi-Dey, A.; Gschwend, P.M. Assessing the combined roles of natural organic matter and black carbon assorbents in sediments. Environ. Sci. Technol. 2002, 36, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Hiloidhari, M.; Das, D.; Baruah, D.C. Bioenergy potential from crop residue biomass in India. Renew. Sustain. Energy Rev. 2014, 32, 504–512. [Google Scholar] [CrossRef]
- Kumar, M.; Rajkhowa, D.J.; Mahanta, K.; Verma, B.C.; Choudhury, B.U.; Rao, K.K.; Saurabh, K.; Rakshit, R. Biowaste utilization for improving soil health and crop productivity in North Eastern India. Res. Biot. 2020, 2, 44–49. [Google Scholar] [CrossRef]
- Bujarbaruah, K.M.; Sharma, Y.P. Patiram. Approaches for Increasing Agricultural Productivity in Hill and Mountain Ecosystem; ICAR Ressearch Complex for NEH Region: Umiam, Meghalaya, India, 2002; pp. 317–322. [Google Scholar]
- Awasthi, A.; Singh, G.; Dhyani, V.; Kumar, J.; Reddy, Y.S.; Adarsh, V.P.; Puthiyamadam, A.; Mullepureddy, K.K.; Sukumaran, R.K.; Ummalyma, S.B.; et al. Co-pyrolysis of phumdi and para grass biomass from Loktak Lake. Bioresour. Technol. 2019, 285, 121308. [Google Scholar] [CrossRef]
- Saikia, R.; Goswami, R.; Bordoloi, N.; Senapati, K.K.; Pant, K.K.; Kumar, M.; Kataki, R. Removal of arsenic and fluoride from aqueous solution by biomass based activated biochar: Optimization through response surface methodology. J. Environ. Chem. Eng. 2017, 5, 5528–5539. [Google Scholar] [CrossRef]
- Saikia, R.; Chutia, R.S.; Kataki, R.; Pant, K.K. Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresour. Technol. 2015, 188, 265–272. [Google Scholar] [CrossRef]
- Mandal, S.; Verma, B.C.; Ramkrushna, G.I.; Singh, R.K.; Rajkhowa, D.J. Characterization of biochar obtained from weeds and its effect on soil properties of North Eastern Region of India. J. Environ. Bio. 2015, 36, 499–505. [Google Scholar]
- Konwer, D.; Kataki, R.; Saikia, M. Production of solid fuel from Ipomoea carnea wood. Energy Sources Part A 2007, 29, 817–822. [Google Scholar] [CrossRef]
- Venkatesh, G.; Venkateswarlu, B.; Gopinath, K.A.; Srinivasrao, C.; Korwar, G.R.; Reddy, B.S.; Prasad, J.N.V.S.; Grover, M.; Raju, B.M.K.; Sasikala, C.; et al. Biochar production technology for conversion of cotton stalk bioresidue into biochar and its characterization for soil amendment qualities. Indian J. Dryland Agric. Res. Dev. 2013, 28, 48–57. [Google Scholar]
- Layek, J.; Balusamy, A.; Hazarika, S.; Devi, S.; Krishnappa, R.; Mohapatra, K.P.; Mandal, S.; Choudhury, B.U.; Khnadpal, B.K. Prospect of Biochar for Sustainable Agriculture and Carbon Sequestration in Northeastern Hill Region of India; Umiam-793103; ICAR Research Complex for North Eastern Hill (NEH) Region: Umiam, Meghalaya, India, 2020; p. 46. [Google Scholar]
- Painter, T.J. Carbohydrate polymers in food preservation: An integrated view of the Maillard reaction with special reference to discoveries of preserved foods in Sphagnum-dominated peat bogs. Carbohydr. Polym. 1998, 36, 335–347. [Google Scholar] [CrossRef]
- McClellan, A.; Deenik, J.; Uehara, G.; Antal, M. Effects of Flashed Carbonized© Macadamia Nutshell Charcoal on Plant Growth and Soil Chemical Properties. Department of Tropical Plants and Soil Science, Hawaii Natural Energy Institute. Available online: http://www.ctahr.hawaii.edu/deenikj/Downloads/Tai_Charcoal_CTAHR_Sym_2007.pdf (accessed on 18 May 2022).
- Keiluweit, M.; Kleber, M.; Sparrow, M.A.; Simoneit, B.R.; Prahl, F.G. Solvent-extractable polycyclic aromatic hydrocarbons in biochar: Influence of pyrolysis temperature and feedstock. Environ. Sci. Technol. 2012, 46, 9333–9341. [Google Scholar] [CrossRef]
- Liao, S.; Pan, B.; Li, H.; Zhang, D.; Xing, B. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environ. Sci. Technol. 2014, 48, 8581–8587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zeng, G.; Huang, D.; Lai, C.; Chen, M.; Cheng, M.; Tang, W.; Tang, L.; Dong, H.; Huang, B.; et al. Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts. Chem. Eng. J. 2019, 373, 902–922. [Google Scholar] [CrossRef]
- Lee, J.W.; Kidder, M.; Evans, B.R.; Paik, S.; Buchanan Iii, A.C.; Garten, C.T.; Brown, R.C. Characterization of biochars produced from corn stovers for soil amendment. Environ. Sci. Technol. 2010, 44, 7970–7974. [Google Scholar] [CrossRef] [Green Version]
- Herath, H.M.S.K.; Camps-Arbestain, M.; Hedley, M. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 2013, 209, 188–197. [Google Scholar] [CrossRef]
Materials Used for Producing Biochar | pH | Total C (%) | Total N (%) | C: N Ratio | Ca (cmol kg −1) | Mg (cmol kg −1) | P (cmol kg −1) | K (cmol kg −1) | Cation Exchange Capacity (cmol kg −1) |
---|---|---|---|---|---|---|---|---|---|
Paper mill waste 1 (waste woodchip) | 9.4 | 50.0 | 0.48 | 104 | 6.2 | 1.20 | - | 0.22 | 9.00 |
Paper mill waste 2 (waste wood chip) | 8.2 | 52.0 | 0.31 | 168 | 11.0 | 2.60 | - | 1.00 | 18.00 |
Green waste (grass, cotton trash and plant prunings) | 9.4 | 36.0 | 0.18 | 200 | 0.4 | 0.56 | - | 21.00 | 24.00 |
Eucalyptus biochar | - | 82.4 | 0.57 | 145 | - | - | 1.87 | - | 4.69 |
Cooking biochar | - | 72.9 | 0.76 | 96 | - | - | 0.42 | - | 11.19 |
Poultry litter (450 °C) | 9.9 | 38.0 | 2.00 | 19 | - | - | 37.42 | - | 11 |
Poultry litter (550 °C) | 13 | 33.0 | 0.85 | 39 | - | - | 5.81 | - | 11 |
Wood biochar | 9.2 | 72.9 | 0.76 | 120 | 0.83 | 0.20 | 0.10 | 1.19 | 11.90 |
Hardwood sawdust | - | 66.5 | 0.3 | 221 | - | - | - | - | - |
States | Residue Generation [109] | Residue Surplus [109] | Residue Burned [110] | Residue Burned [111] |
---|---|---|---|---|
Arunachal Pradesh | 400 | 70 | 60 | 40 |
Manipur | 900 | 110 | 140 | 70 |
Meghalaya | 510 | 90 | 100 | 50 |
Mizoram | 60 | 10 | 10 | 10 |
Nagaland | 490 | 90 | 110 | 80 |
Sikkim | 150 | 20 | 10 | 10 |
Tripura | 40 | 20 | 220 | 110 |
Total | 2550 | 410 | 650 | 370 |
Source/Biomasses | Productivity | MC | Total OM | VM | Total Organic | Ash | Ref. |
---|---|---|---|---|---|---|---|
Brachariamutica | 33.33 | - | - | 30.60 | - | 32.90 | Awasthi et al. [118] |
Water hyacinth and Para grass | 58.2 | - | - | 39.44 | - | 30.50 | |
Saccharum ravannae | - | 5.88 | - | 35.46 | - | 7.15 | Saikia et al. [119] |
Arundo donax | 43.87 | 5.63 | 34.02 | 34.02 | - | 8.27 | Saikia et al. [120] |
Ageratum conyzoides | 38.7 | 10.1 | 78.8 | 26.2 | 52.6 | 21.2 | Mandal et al. [121] |
Lantana camera | 41.6 | 10.2 | 77.9 | 25.9 | 52.0 | 22.1 | |
Gynura sp. | 35.9 | 10.3 | 79.9 | 25.9 | 53.9 | 20.1 | |
Setaria sp. | 44.9 | 10.1 | 80.9 | 25.8 | 55.2 | 19.0 | |
Avenafatua | 45.5 | 8.1 | 83.8 | 27.5 | 56.2 | 16.3 | |
Pine needles | 48.2 | 9.0 | 76.9 | 22.3 | 54.6 | 23.1 | |
Ipomoea carnea | 34.18 | - | - | 56.34 | - | 5.49 | Konwer et al. [122] |
States | Cereals | Oilseeds | Sugarcane | Horticulture | Pulse | Others | State Average |
---|---|---|---|---|---|---|---|
Arunachal Pradesh | 27 | 11 | 33 | 25 | 22 | 10 | 21 |
Manipur | 28 | 21 | 40 | 25 | NA | NA | 29 |
Meghalaya | 26 | 15 | 40 | 20 | 35 | 30 | 28 |
Mizoram | 29 | 18 | 40 | 32 | 35 | 48 | 34 |
Nagaland | 27 | 16 | 40 | 43 | 35 | 38 | 33 |
Sikkim | 28 | 22 | NA | NA | NA | NA | 25 |
Tripura | 34 | 21 | 40 | 45 | 35 | 38 | 37 |
28 | 20.5 | 39 | 33.2 | 34.8 | 35.3 | 248 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Layek, J.; Narzari, R.; Hazarika, S.; Das, A.; Rangappa, K.; Devi, S.; Balusamy, A.; Saha, S.; Mandal, S.; Idapuganti, R.G.; et al. Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas. Sustainability 2022, 14, 6684. https://doi.org/10.3390/su14116684
Layek J, Narzari R, Hazarika S, Das A, Rangappa K, Devi S, Balusamy A, Saha S, Mandal S, Idapuganti RG, et al. Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas. Sustainability. 2022; 14(11):6684. https://doi.org/10.3390/su14116684
Chicago/Turabian StyleLayek, Jayanta, Rumi Narzari, Samarendra Hazarika, Anup Das, Krishnappa Rangappa, Shidayaichenbi Devi, Arumugam Balusamy, Saurav Saha, Sandip Mandal, Ramkrushna Gandhiji Idapuganti, and et al. 2022. "Prospects of Biochar for Sustainable Agriculture and Carbon Sequestration: An Overview for Eastern Himalayas" Sustainability 14, no. 11: 6684. https://doi.org/10.3390/su14116684