Influence of Source Apportionment of PAHs Occurrence in Aquatic Suspended Particulate Matter at a Typical Post-Industrial City: A Case Study of Freiberger Mulde River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. PMF Receptor Model
2.3. Wavelet Analysis
2.4. Ecological Risk Assessment
2.5. Carcinogenic Risk Assessment
3. Results and Discussion
3.1. Distribution Characteristics of PAHs
3.2. Composition Profiles of PAHs
3.3. Source Apportionment Derived by PMF
3.4. Potential Driving Force of PAHs
3.5. Risk Assessment of PAHs
3.5.1. Potential Biological Effects
3.5.2. Potential Human Toxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, R.; Hua, P.; Zhang, J.; Krebs, P. Effect of anthropogenic activities on the occurrence of polycyclic aromatic hydrocarbons in aquatic suspended particulate matter: Evidence from Rhine and Elbe Rivers. Water Res. 2020, 179, 115901. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, X.; Lu, S.; Zhang, T.; Jin, B.; Wang, Q.; Tang, Z.; Liu, Y.; Guo, X.; Zhou, J.; et al. A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China. Sci. Total. Environ. 2019, 651, 2497–2506. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, J. Predicting polycyclic aromatic hydrocarbons in surface water by a multiscale feature extraction-based deep learning approach. Sci. Total Environ. 2021, 799, 149509. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; EPA/600/R-14/108; U.S. Environmental Protection Agency: Washington, DC, USA, 2014; pp. 1–136. [Google Scholar]
- Manoli, E.; Samara, C.; Konstantinou, I.; Albanis, T. Polycyclic aromatic hydrocarbons in the bulk precipitation and surface waters of Northern Greece. Chemosphere 2000, 41, 1845–1855. [Google Scholar] [CrossRef]
- Simcik, M.F.; Eisenreich, S.J.; Lioy, P.J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos. Environ. 1999, 33, 5071–5079. [Google Scholar] [CrossRef]
- Lohmann, R.; Gioia, R.; Jones, K.C.; Nizzetto, L.; Temme, C.; Xie, Z.; Schulz-Bull, D.; Hand, I.; Morgan, E.; Jantunen, L. Organochlorine Pesticides and PAHs in the Surface Water and Atmosphere of the North Atlantic and Arctic Ocean. Environ. Sci. Technol. 2009, 43, 5633–5639. [Google Scholar] [CrossRef]
- Lin, Y.; Qiu, X.; Ma, Y.; Ma, J.; Zheng, M.; Shao, M. Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs. Environ. Pollut. 2015, 196, 164–170. [Google Scholar] [CrossRef]
- Tan, X.; Yu, X.; Cai, L.; Wang, J.; Peng, J. Microplastics and associated PAHs in surface water from the Feilaixia Reservoir in the Beijiang River, China. Chemosphere 2019, 221, 834–840. [Google Scholar] [CrossRef]
- Bao, K.; Zaccone, C.; Tao, Y.; Wang, J.; Shen, J.; Zhang, Y. Source apportionment of priority PAHs in 11 lake sediment cores from Songnen Plain, Northeast China. Water Res. 2019, 168, 115158. [Google Scholar] [CrossRef]
- Dudhagara, D.R.; Rajpara, R.K.; Bhatt, J.K.; Gosai, H.B.; Sachaniya, B.K.; Dave, B.P. Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environ. Pollut. 2016, 213, 338–346. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, C.S.; Xu, J.; Tian, Y.Z.; Shi, G.L.; Feng, Y.C. Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: Comparison of three receptor models. Water Res. 2012, 46, 3065–3073. [Google Scholar] [CrossRef]
- Lang, Y.H.; Li, G.L.; Wang, X.M.; Peng, P. Combination of Unmix and PMF receptor model to apportion the potential sources and contributions of PAHs in wetland soils from Jiaozhou Bay, China. Mar. Pollut. Bull. 2015, 90, 129–134. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Dai, H.; Gui, D.; Hu, B.X.; Zhang, J. Spatial distribution and source apportionment of polycyclic aromatic hydrocarbons in typical oasis soil of north-western China and the bacterial community response. Environ. Res. 2021, 204, 112401. [Google Scholar] [CrossRef]
- Wilcke, W. SYNOPSIS Polycyclic Aromatic Hydrocarbons (PAHs) in Soil. J. Plant Nutr. Soil Sci. 2000, 163, 229–248. [Google Scholar] [CrossRef]
- Zhang, J.; Li, R.; Zhang, X.; Bai, Y.; Cao, P.; Hua, P. Vehicular contribution of PAHs in size dependent road dust: A source apportionment by PCA-MLR, PMF, and Unmix receptor models. Sci. Total Environ. 2018, 649, 1314–1322. [Google Scholar] [CrossRef]
- Majumdar, D.; Rajaram, B.; Meshram, S.; Chalapati Rao, C.V. PAHs in Road Dust: Ubiquity, Fate, and Summary of Available Data. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1191–1232. [Google Scholar] [CrossRef]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Tavakol, T.; Lahijanzadeh, A.R.; Jaafarzadeh, N.; Kermani, M. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci. Total Environ. 2015, 505, 712–723. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, S.B.; Ou, D.N.; Hou, L.J.; Gao, L.L.; Wang, L.; Xie, Y.S.; Yang, Y.; Xu, S.Y. Characterization, identification of road dust PAHs in central Shanghai areas, China. Atmos. Environ. 2007, 41, 8785–8795. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, X.; Liu, M.; Zhu, J.; Yang, J.; Du, W.; Zhang, X.; Gao, D.; Qadeer, A.; Xie, Y.; et al. A multimedia fugacity model to estimate the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in a largely urbanized area, Shanghai, China. Chemosphere 2018, 217, 298–307. [Google Scholar] [CrossRef]
- Du, J.; Jing, C. Anthropogenic PAHs in lake sediments: A literature review (2002–2018). Environ. Sci. Process. Impacts 2018, 20, 1649–1666. [Google Scholar] [CrossRef]
- Wang, C.; Zou, X.; Zhao, Y.; Li, B.; Song, Q.; Li, Y.; Yu, W. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in the water and suspended sediments from the middle and lower reaches of the Yangtze River, China. Environ. Sci. Pollut. Res. 2016, 23, 17158–17170. [Google Scholar] [CrossRef]
- Guo, W.; He, M.; Yang, Z.; Lin, C.; Quan, X.; Wang, H. Distribution of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed, China. Chemosphere 2007, 68, 93–104. [Google Scholar] [CrossRef]
- Li, G.; Xia, X.; Yang, Z.; Wang, R.; Voulvoulis, N. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environ. Pollut. 2006, 144, 985–993. [Google Scholar] [CrossRef]
- Yang, D.; Qi, S.; Zhang, Y.; Xing, X.; Liu, H.; Qu, C.; Liu, J.; Li, F. Levels, sources and potential risks of polycyclic aromatic hydrocarbons (PAHs) in multimedia environment along the Jinjiang River mainstream to Quanzhou Bay, China. Mar. Pollut. Bull. 2013, 76, 298–306. [Google Scholar] [CrossRef]
- Shi, G.L.; Zeng, F.; Li, X.; Feng, Y.C.; Wang, Y.Q.; Liu, G.X.; Zhu, T. Estimated contributions and uncertainties of PCA/MLR–CMB results: Source apportionment for synthetic and ambient datasets. Atmos. Environ. 2011, 45, 2811–2819. [Google Scholar] [CrossRef]
- Song, Y.; Xie, S.; Zhang, Y.; Zeng, L.; Salmon, L.G.; Zheng, M. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci. Total Environ. 2006, 372, 278–286. [Google Scholar] [CrossRef]
- Lee, S.; Russell, A.G. Estimating uncertainties and uncertainty contributors of CMB PM2.5 source apportionment results. Atmos. Environ. 2007, 41, 9616–9624. [Google Scholar] [CrossRef]
- Sheesley, R.J.; Schauer, J.J.; Zheng, M.; Wang, B. Sensitivity of molecular marker-based CMB models to biomass burning source profiles. Atmos. Environ. 2007, 41, 9050–9063. [Google Scholar] [CrossRef]
- Dai, Q.; Hopke, P.K.; Bi, X.; Feng, Y. Improving apportionment of PM2.5 using multisite PMF by constraining G-values with a prioriinformation. Sci. Total Environ. 2020, 736, 139657. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Karmaker, S.C.; Doza, B.; Rakib, A.; Saha, B.B. Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM, PMF and GIS methods. Chemosphere 2020, 263, 128339. [Google Scholar] [CrossRef]
- Li, R.; Cai, J.; Li, J.; Wang, Z.; Pei, P.; Zhang, J.; Krebs, P. Characterizing the long-term occurrence of polycyclic aromatic hydrocarbons and their driving forces in surface waters. J. Hazard. Mater. 2021, 423, 127065. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.G.; Eberly, S.; Paatero, P.; Norris, G.A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 2015, 518–519, 626–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paatero, P.; Hopke, P.K.; Song, X.-H.; Ramadan, Z. Understanding and controlling rotations in factor analytic models. Chemom. Intell. Lab. Syst. 2002, 60, 253–264. [Google Scholar] [CrossRef]
- Zanotti, C.; Rotiroti, M.; Fumagalli, L.; Stefania, G.A.; Canonaco, F.; Stefenelli, G.; Prévôt, A.S.H.; Leoni, B.; Bonomi, T. Groundwater and surface water quality characterization through positive matrix factorization combined with GIS approach. Water Res. 2019, 159, 122–134. [Google Scholar] [CrossRef]
- Liu, R.; Men, C.; Yu, W.; Xu, F.; Wang, Q.; Shen, Z. Uncertainty in positive matrix factorization solutions for PAHs in surface sediments of the Yangtze River Estuary in different seasons. Chemosphere 2018, 191, 922–936. [Google Scholar] [CrossRef]
- Yang, B.; Zhou, L.; Xue, N.; Li, F.; Li, Y.; Vogt, R.D.; Cong, X.; Yan, Y.; Liu, B. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Sci. Total Environ. 2013, 443, 31–39. [Google Scholar] [CrossRef]
- Salim, I.; Sajjad, R.U.; Paule-Mercado, M.C.; Memon, S.A.; Lee, B.-Y.; Sukhbaatar, C.; Lee, C.-H. Comparison of two receptor models PCA-MLR and PMF for source identification and apportionment of pollution carried by runoff from catchment and sub-watershed areas with mixed land cover in South Korea. Sci. Total Environ. 2019, 663, 764–775. [Google Scholar] [CrossRef]
- Tichomirowa, M.; Heidel, C.; Junghans, M.; Haubrich, F.; Matschullat, J. Sulfate and strontium water source identification by O, S and Sr isotopes and their temporal changes (1997–2008) in the region of Freiberg, central-eastern Germany. Chem. Geol. 2010, 276, 104–118. [Google Scholar] [CrossRef]
- Schreiber, M.; Otto, M.; Fedotov, P.S.; Wennrich, R. Dynamic studies on the mobility of trace elements in soil and sediment samples influenced by dumping of residues of the flood in the Mulde River region in 2002. Chemosphere 2005, 61, 107–115. [Google Scholar] [CrossRef]
- Sprößig, C.; Buchholz, S.; Dziock, F. Defining the baseline for river restoration: Comparing carabid beetle diversity of natural and human-impacted riparian habitats. J. Insect Conserv. 2020, 24, 805–820. [Google Scholar] [CrossRef]
- Jiang, J.; Zheng, Y.; Pang, T.; Wang, B.; Chachan, R.; Tian, Y. A comprehensive study on spectral analysis and anomaly detection of river water quality dynamics with high time resolution measurements. J. Hydrol. 2020, 589, 125175. [Google Scholar] [CrossRef]
- Kang, S.; Lin, H. Wavelet analysis of hydrological and water quality signals in an agricultural watershed. J. Hydrol. 2007, 338, 1–14. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Niu, J.; Hu, B.X.; Soltanian, M.R.; Qiu, H.; Yang, L. Prediction of groundwater level in seashore reclaimed land using wavelet and artificial neural network-based hybrid model. J. Hydrol. 2019, 577. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Pejman, A.; Bidhendi, G.N.; Ardestani, M.; Saeedi, M.; Baghvand, A. A new index for assessing heavy metals contamination in sediments: A case study. Ecol. Indic. 2015, 58, 365–373. [Google Scholar] [CrossRef]
- Gu, Y.G.; Li, H.B.; Lu, H.B. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the largest deep plateau lake in China: Occurrence, sources and biological risk. Ecol. Eng. 2017, 101, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Cai, P.; Cai, G.; Chen, X.; Li, S.; Zhao, L. The concentration distribution and biohazard assessment of heavy metal elements in surface sediments from the continental shelf of Hainan Island. Mar. Pollut. Bull. 2021, 166, 112254. [Google Scholar] [CrossRef]
- Long, E.R.; Macdonald, D.D.; Smith, S.L.; Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 1995, 19, 81–97. [Google Scholar] [CrossRef]
- Pradeep, P.; Carlson, L.M.; Judson, R.; Lehmann, G.M.; Patlewicz, G. Integrating data gap filling techniques: A case study predicting TEFs for neurotoxicity TEQs to facilitate the hazard assessment of polychlorinated biphenyls. Regul. Toxicol. Pharmacol. 2018, 101, 12–23. [Google Scholar] [CrossRef]
- Savinov, V.M.; Savinova, T.N.; Matishov, G.G.; Dahle, S.; Næs, K. Polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia. Sci. Total Environ. 2003, 306, 39–56. [Google Scholar] [CrossRef]
- Sharma, M.D.; Elanjickal, A.I.; Mankar, J.S.; Krupadam, R.J. Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2020, 398, 122994. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Xu, L.; Zhang, L.; Chen, J.C.; Wong, Y.S.; Wan, T.S.M. Special guest paper: Environmental fate and chemistry of organic pollutants in the sediment of Xiamen and Victoria Harbours. Mar. Pollut. Bull. 1995, 31, 229–236. [Google Scholar] [CrossRef]
- Chen, C.W.; Chen, C.F. Distribution, origin, and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan. Mar. Pollut. Bull. 2011, 63, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.J.; Chen, S.J.; Mai, B.X.; Yang, Q.S.; Sheng, G.Y.; Fu, J.M. Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China. Environ. Pollut. 2006, 139, 9–20. [Google Scholar] [CrossRef]
- Sun, J.H.; Wang, G.L.; Chai, Y.; Zhang, G.; Li, J.; Feng, J. Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China. Ecotoxicol. Environ. Saf. 2009, 72, 1614–1624. [Google Scholar] [CrossRef]
- Storelli, M.M.; Marcotrigiano, G.O. Polycyclic aromatic hydrocarbon distributions in sediments from the Mar Piccolo, Ionian Sea, Italy. Bull. Environ. Contam. Toxicol. 2000, 65, 537–544. [Google Scholar] [CrossRef]
- Kim, G.B.; Maruya, K.A.; Lee, R.F.; Lee, J.H.; Koh, C.H.; Tanabe, S. Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Sediments from Kyeonggi Bay, Korea. Mar. Pollut. Bull. 1999, 38, 7–15. [Google Scholar] [CrossRef]
- Song, W.W.; He, K.B.; Wang, J.X.; Wang, X.T.; Shi, X.Y.; Yu, C.; Chen, W.M.; Zheng, L. Emissions of EC, OC, and PAHs from Cottonseed Oil Biodiesel in a Heavy-Duty Diesel Engine. Environ. Sci. Technol. 2011, 45, 6683–6689. [Google Scholar] [CrossRef]
- Oen, A.M.; Cornelissen, G.; Breedveld, G.D. Relation between PAH and black carbon contents in size fractions of Norwegian harbor sediments. Environ. Pollut. 2006, 141, 370–380. [Google Scholar] [CrossRef]
- Mostafa, A.R.; Barakat, A.O.; Qian, Y.; Wade, T.L. Composition, distribution and sources of polycyclic aromatic hydrocarbons in sediments of the western harbour of alexandria, egypt. J. Soils Sediments 2003, 3, 173–179. [Google Scholar] [CrossRef]
- Baumard, P.; Budzinski, H.; Garrigues, P. Polycyclic Aromatic Hydrocarbons in Sediments and Mussels of the Western Med-iterranean Sea. Environ. Toxicol. Chem. 1998, 17, 765–776. [Google Scholar] [CrossRef]
- Niu, L.; Cai, H.; van Gelder, P.; Luo, P.H.A.J.M.; Liu, F.; Yang, Q. Dynamics of polycyclic aromatic hydrocarbons (PAHs) in water column of Pearl River estuary (China): Seasonal pattern, environmental fate and source implication. Appl. Geochem. 2018, 90, 39–49. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S.; Giri, B.; Biswas, J.K.; Bauddh, K. Characterization, Behavior, and Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in the Estuary Sediments. Bull. Environ. Contam. Toxicol. 2021, 108, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, M.; Sethi, N. Impact of industrialization, urbanization, and financial development on energy consumption: Empirical evidence from India. J. Public Aff. 2020, 20, e2089. [Google Scholar] [CrossRef]
- Boy, E.; Bruce, N.; Smith, K.R.; Hernandez, R. Fuel efficiency of an improved wood-burning stove in rural Guatemala: Implications for health, environment and development. Energy Sustain. Dev. 2000, 4, 23–31. [Google Scholar] [CrossRef]
- Thai, P.K.; Heffernan, A.L.; Toms, L.-M.L.; Li, Z.; Calafat, A.M.; Hobson, P.; Broomhall, S.; Mueller, J.F. Monitoring exposure to polycyclic aromatic hydrocarbons in an Australian population using pooled urine samples. Environ. Int. 2015, 88, 30–35. [Google Scholar] [CrossRef]
- Ghanavati, N.; Nazarpour, A.; Watts, M.J. Status, source, ecological and health risk assessment of toxic metals and polycyclic aromatic hydrocarbons (PAHs) in street dust of Abadan, Iran. CATENA 2019, 177, 246–259. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, J.; Mei, S.; Krebs, P. Impact of antecedent dry-weather period and rainfall magnitude on the performance of low impact development practices in urban flooding and non-point pollution mitigation. J. Clean. Prod. 2021, 320, 128946. [Google Scholar] [CrossRef]
- Khalili, N.R.; Scheff, P.A.; Holsen, T.M. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmos. Environ. 1995, 29, 533–542. [Google Scholar] [CrossRef]
- Wang, C.; Meng, Z.; Yao, P.; Zhang, L.; Wang, Z.; Lv, Y.; Tian, Y.; Feng, Y. Sources-specific carcinogenicity and mutagenicity of PM2.5-bound PAHs in Beijing, China: Variations of contributions under diverse anthropogenic activities. Ecotoxicol. Environ. Saf. 2019, 183, 109552. [Google Scholar] [CrossRef]
- Harrison, R.M.; Smith, D.J.T.; Luhana, L. Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. Environ. Sci. Technol. 1996, 30, 825–832. [Google Scholar] [CrossRef]
- Guo, J.; Wu, F.; Luo, X.; Liang, Z.; Liao, H.; Zhang, R.; Li, W.; Zhao, X.; Chen, S.; Mai, B. Anthropogenic input of polycyclic aromatic hydrocarbons into five lakes in Western China. Environ. Pollut. 2010, 158, 2175–2180. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Junaid, M.; Wang, Z.; Li, T.; Xu, N. Spatiotemporal distribution, source apportionment and ecological risk assessment of PBDEs and PAHs in the Guanlan River from rapidly urbanizing areas of Shenzhen, China. Environ. Pollut. 2019, 250, 695–707. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, Y.; Han, C.; Fang, H.; Weng, J.; Shu, X.; Pan, Y.; Ma, L. Polycyclic aromatic hydrocarbons in surface waters from the seven main river basins of China: Spatial distribution, source apportionment, and potential risk assessment. Sci. Total Environ. 2020, 752, 141764. [Google Scholar] [CrossRef]
- Duodu, G.O.; Ogogo, K.N.; Mummullage, S.; Harden, F.; Goonetilleke, A.; Ayoko, G.A. Source apportionment and risk assessment of PAHs in Brisbane River sediment, Australia. Ecol. Indic. 2017, 73, 784–799. [Google Scholar] [CrossRef]
- Christensen, E.R.; Bzdusek, P.A. PAHs in sediments of the Black River and the Ashtabula River, Ohio: Source apportionment by factor analysis. Water Res. 2005, 39, 511–524. [Google Scholar] [CrossRef]
- Saffari, A.; Daher, N.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Karagkiozidou, O.; Vlachokostas, C.; Moussiopoulos, N.; Shafer, M.M.; et al. Increased Biomass Burning Due to the Economic Crisis in Greece and Its Adverse Impact on Wintertime Air Quality in Thessaloniki. Environ. Sci. Technol. 2013, 47, 13313–13320. [Google Scholar] [CrossRef]
- European Council. Directive 2010/75/EU Industrial Emissions. Off. J. Eur. Union 2010, L334, 17–119. [Google Scholar] [CrossRef]
- European Parliament; European Council. Directive 2008/50/EC on Ambient Air Quality and Cleaner Air for Europe. Off. J. Eur. Communities 2008, 152, 1–44. [Google Scholar]
- Schreiberová, M.; Vlasáková, L.; Vlček, O.; Šmejdířová, J.; Horálek, J.; Bieser, J. Benzo[a]pyrene in the Ambient Air in the Czech Republic: Emission Sources, Current and Long-Term Monitoring Analysis and Human Exposure. Atmosphere 2020, 11, 955. [Google Scholar] [CrossRef]
- Machado, K.S.; Figueira, R.C.L.; Côcco, L.C.; Froehner, S.; Fernandes, C.V.; Ferreira, P.A. Sedimentary record of PAHs in the Barigui River and its relation to the socioeconomic development of Curitiba, Brazil. Sci. Total Environ. 2014, 482–483, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hua, P.; Zhang, J.; Krebs, P. A decline in the concentration of PAHs in Elbe River suspended sediments in response to a source change. Sci. Total Environ. 2019, 663, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Borillo, G.C.; Tadano, Y.S.; Godoi, A.F.L.; Pauliquevis, T.; Sarmiento, H.; Rempel, D.; Yamamoto, C.I.; Marchi, M.R.R.; Potgieter-Vermaak, S.; Godoi, R.H.M. Polycyclic Aromatic Hydrocarbons (PAHs) and nitrated analogs associated to particulate matter emission from a Euro V-SCR engine fuelled with diesel/biodiesel blends. Sci. Total Environ. 2018, 644, 675–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Wang, Q.; Qin, W.; Guo, L. Sustainable Policy Evaluation of Vehicle Exhaust Control—Empirical Data from China’s Air Pollution Control. Sustainability 2019, 12, 125. [Google Scholar] [CrossRef] [Green Version]
- European Union. Directive 2009/28/EC on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union 2009, 140, 16–62. [Google Scholar]
- Long, E.R.; MacDonald, D.D.; Severn, C.G.; Hong, C.B. Classifying probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines. Environ. Toxicol. Chem. 2000, 19, 2598–2601. [Google Scholar] [CrossRef]
- Li, B.; Ma, L.X.; Sun, S.J.; Thapa, S.; Lu, L.; Wang, K.; Qi, H. Polycyclic aromatic hydrocarbons and their nitro-derivatives in urban road dust across China: Spatial variation, source apportionment, and health risk. Sci. Total Environ. 2020, 747, 141194. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Biometrika 1957, 44, 298. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Smith, L.C. Trends in Russian Arctic River-Ice Formation and Breakup, 1917 to 1994. Phys. Geogr. 2000, 21, 46–56. [Google Scholar] [CrossRef]
- Chen, X.; Yin, L.; Fan, Y.; Song, L.; Ji, T.; Liu, Y.; Tian, J.; Zheng, W. Temporal Evolution Characteristics of PM2.5 Concentration Based on Continuous Wavelet Transform. Sci. Total Environ. 2020, 699, 134244. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, X.; Yan, Y.; Zhou, L.; Ma, W. Spatiotemporal Characteristics of PM2.5 Concentration in the Yangtze River Delta Urban Agglomeration, China on the Application of Big Data and Wavelet Analysis. Sci. Total Environ. 2020, 724, 138134. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; He, S.; Guo, J.; Sun, W. A Multi-Scale Periodic Study of PM2.5 Concentration in the Yangtze River Delta of China Based on Empirical Mode Decomposition-Wavelet Analysis. J. Clean. Prod. 2021, 281, 124853. [Google Scholar] [CrossRef]
- Casado-Martínez, M.C.; Buceta, J.L.; Belzunce, M.J.; DelValls, T.A. Using Sediment Quality Guidelines for Dredged Material Management in Commercial Ports from Spain. Environ. Int. 2006, 32, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Ünlü, S.; Alpar, B. Distribution and Sources of Hydrocarbons in Surface Sediments of Gemlik Bay (Marmara Sea, Turkey). Chemosphere 2006, 64, 764–777. [Google Scholar] [CrossRef] [PubMed]
- de Luca, G.; Furesi, A.; Micera, G.; Panzanelli, A.; Piu, P.C.; Pilo, M.I.; Spano, N.; Sanna, G. Nature, Distribution and Origin of Polycyclic Aromatic Hydrocarbons (PAHs) in the Sediments of Olbia Harbor (Northern Sardinia, Italy). Mar. Pollut. Bull. 2005, 50, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Salvo, V.S.; Gallizia, I.; Moreno, M.; Fabiano, M. Fungal Communities in PAH-Impacted Sediments of Genoa-Voltri Harbour (NW Mediterranean, Italy). Mar. Pollut. Bull. 2005, 50, 369–373. [Google Scholar] [CrossRef]
- Viguri, J.; Verde, J.; Irabien, A. Environmental Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments of the Santander Bay, Northern Spain. Chemosphere 2002, 48. [Google Scholar] [CrossRef]
- Tolun, L.G.; Okay, O.S.; Gaines, A.F.; Tolay, M.; Tüfekçi, H.; Kiratli, N. The Pollution Status and the Toxicity of Surface Sediments in Izmit Bay (Marmara Sea), Turkey. Environ. Int. 2001, 26, 163–168. [Google Scholar] [CrossRef]
- Pereira, W.E.; Hostettler, F.D.; Luoma, S.N.; van Geen, A.; Fuller, C.C.; Anima, R.J. Sedimentary Record of Anthropogenic and Biogenic Polycyclic Aromatic Hydrocarbons in San Francisco Bay, California. Mar. Chem. 1999, 64, 99–113. [Google Scholar] [CrossRef]
- Fang, M.D.; Lee, C.L.; Yu, C.S. Distribution and Source Recognition of Polycyclic Aromatic Hydrocarbons in the Sediments of Hsin-Ta Harbour and Adjacent Coastal Areas, Taiwan. Mar. Pollut. Bull. 2003, 46, 941–953. [Google Scholar] [CrossRef]
- Patrolecco, L.; Ademollo, N.; Capri, S.; Pagnotta, R.; Polesello, S. Occurrence of Priority Hazardous PAHs in Water, Suspended Particulate Matter, Sediment and Common Eels (Anguilla Anguilla) in the Urban Stretch of the River Tiber (Italy). Chemosphere 2010, 81, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiari, A.R.; Zakaria, M.P.; Yaziz, M.I.; Lajis, M.N.H.; Bi, X. Polycyclic Aromatic Hydrocarbons and N-Alkanes in Suspended Particulate Matter and Sediments from the Langat River, Peninsular Malaysia. EnvironmentAsia 2009, 2, 1–10. [Google Scholar]
- Guitart, C.; García-Flor, N.; Bayona, J.M.; Albaigés, J. Occurrence and Fate of Polycyclic Aromatic Hydrocarbons in the Coastal Surface Microlayer. Mar. Pollut. Bull. 2007, 54, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.B.; Sicre, M.A.; Boireau, A.; Tronczynski, J. Polyaromatic Hydrocarbon (PAH) Distributions in the Seine River and Its Estuary. Mar. Pollut. Bull. 1997, 34, 857–867. [Google Scholar] [CrossRef]
- Countway, R.E.; Dickhut, R.M.; Canuel, E.A. Polycyclic Aromatic Hydrocarbon (PAH) Distributions and Associations with Organic Matter in Surface Waters of the York River, VA Estuary. Proc. Org. Geochem. 2003, 34, 209–224. [Google Scholar] [CrossRef]
- Sprovieri, M.; Feo, M.L.; Prevedello, L.; Manta, D.S.; Sammartino, S.; Tamburrino, S.; Marsella, E. Heavy Metals, Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Surface Sediments of the Naples Harbour (Southern Italy). Chemosphere 2007, 67, 998–1009. [Google Scholar] [CrossRef]
- Qiao, M.; Wang, C.; Huang, S.; Wang, D.; Wang, Z. Composition, Sources, and Potential Toxicological Significance of PAHs in the Surface Sediments of the Meiliang Bay, Taihu Lake, China. Environ. Int. 2006, 32, 28–33. [Google Scholar] [CrossRef]
- Merhaby, D.; Ouddane, B.; Net, S.; Halwani, J. Assessment of Persistent Organic Pollutants in Surface Sediments along Lebanese Coastal Zone. Mar. Pollut. Bull. 2020, 153, 110947. [Google Scholar] [CrossRef]
PAHs | Katzenstein | Halsbrucke | Hilbersdorf | Erlln | Siebenlehn | Dobeln | Sum | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
NAP | 37.7 | 31.3 | 98.6 | 60.9 | 90.7 | 121.7 | 93.1 | 94.8 | 77.5 | 43.9 | 38.3 | 25.5 | 81.2 | 83.8 |
ACY | 20.8 | 10.4 | 45.5 | 18.7 | 41.2 | 24.4 | 26.2 | 10.8 | 34.7 | 16.8 | 20.4 | 18.7 | 33.1 | 19.4 |
ACE | 19.1 | 9.0 | 35.2 | 21.3 | 32.6 | 20.6 | 26.1 | 16.9 | 35.7 | 26.2 | 17.7 | 8.4 | 29.8 | 20.9 |
FLU | 23.9 | 10.3 | 55.0 | 34.7 | 54.2 | 41.0 | 49.5 | 52.0 | 60.0 | 68.1 | 22.9 | 12.9 | 50.0 | 50.1 |
PHE | 319.8 | 120.6 | 677.4 | 393.9 | 584.5 | 302.5 | 385.6 | 215.1 | 578.8 | 292.9 | 261.0 | 128.7 | 496.6 | 300.0 |
ANT | 82.9 | 40.6 | 180.7 | 94.4 | 160.1 | 86.8 | 99.5 | 65.2 | 183.6 | 192.5 | 73.0 | 50.2 | 140.0 | 122.2 |
FLUH | 698.0 | 315.5 | 1311.7 | 625.5 | 1077.0 | 507.3 | 622.8 | 238.0 | 1117.3 | 536.6 | 536.5 | 229.0 | 922.5 | 517.4 |
PYR | 580.4 | 260.7 | 1013.5 | 442.4 | 871.3 | 410.4 | 501.7 | 189.2 | 860.0 | 398.8 | 443.5 | 176.6 | 731.1 | 392.6 |
BaA | 377.9 | 169.0 | 580.0 | 234.6 | 487.7 | 189.6 | 335.9 | 130.3 | 490.4 | 240.7 | 260.5 | 108.8 | 431.2 | 211.0 |
CHR | 390.9 | 190.1 | 624.8 | 250.7 | 507.2 | 192.0 | 330.6 | 131.7 | 512.5 | 239.2 | 264.5 | 100.3 | 445.8 | 220.5 |
BbF | 385.0 | 167.7 | 631.3 | 270.6 | 485.9 | 186.0 | 298.5 | 100.5 | 479.6 | 193.3 | 276.0 | 109.9 | 425.9 | 206.7 |
BkF | 275.7 | 147.9 | 477.8 | 217.0 | 390.1 | 179.2 | 235.0 | 91.2 | 385.7 | 168.0 | 216.5 | 116.0 | 335.5 | 177.3 |
BaP | 394.1 | 170.1 | 547.0 | 214.3 | 476.7 | 182.2 | 308.2 | 111.4 | 455.5 | 199.1 | 258.5 | 112.1 | 409.6 | 191.0 |
DBA | 122.9 | 87.9 | 101.3 | 49.8 | 101.1 | 56.6 | 55.2 | 25.2 | 86.3 | 43.2 | 43.6 | 13.5 | 80.8 | 50.2 |
IDP | 368.3 | 170.1 | 521.3 | 256.4 | 412.6 | 183.7 | 254.0 | 91.6 | 394.5 | 210.5 | 230.0 | 88.4 | 358.6 | 195.5 |
BgP | 292.7 | 150.7 | 396.5 | 176.1 | 324.0 | 148.1 | 207.8 | 75.2 | 323.3 | 142.2 | 185.0 | 62.1 | 286.3 | 144.1 |
Σ16PAHs | 4390.1 | 1893.8 | 7297.5 | 2958.3 | 6096.9 | 2429.2 | 3829.6 | 1429.6 | 6075.5 | 2627.5 | 3147.8 | 1196.5 | 5258.0 | 2569.2 |
PAHs | Ring Number | Katzenstein | Hilbersdorf | Halsbrucke | Siebenlehn | Dobeln | Erlln | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C × TEF | Contribution | C × TEF | Contribution | C × TEF | Contribution | C × TEF | Contribution | C × TEF | Contribution | C × TEF | Contribution | ||
NAP | 2 | 0.04 | 0.9 | 0.2 | 2.1 | 0.1 | 1.4 | 0.08 | 1.3 | 0.04 | 1.2 | 0.09 | 2.4 |
ACY | 3 | 0.02 | 0.5 | 0.07 | 0.8 | 0.05 | 0.6 | 0.04 | 0.6 | 0.02 | 0.6 | 0.03 | 0.7 |
ACE | 3 | 0.02 | 0.4 | 0.06 | 0.7 | 0.04 | 0.5 | 0.04 | 0.6 | 0.02 | 0.6 | 0.03 | 0.7 |
FLU | 3 | 0.02 | 0.5 | 0.1 | 1.7 | 0.06 | 0.8 | 0.06 | 1.0 | 0.02 | 0.7 | 0.05 | 1.3 |
PHE | 3 | 0.3 | 7.3 | 1.0 | 11.9 | 0.7 | 9.3 | 0.6 | 9.5 | 0.3 | 8.3 | 0.4 | 10.1 |
ANT | 3 | 0.9 | 1.9 | 2.8 | 3.5 | 1.8 | 2.5 | 1.8 | 3.0 | 0.7 | 2.3 | 1.0 | 2.6 |
FLUH | 4 | 0.7 | 16.0 | 1.5 | 18.4 | 1.3 | 18.0 | 1.1 | 18.4 | 0.5 | 17.0 | 0.6 | 16.3 |
PYR | 4 | 0.6 | 13.3 | 1.2 | 15.2 | 1.0 | 13.9 | 0.9 | 14.2 | 0.4 | 14.1 | 0.5 | 13.1 |
CHR | 4 | 4.1 | 9.0 | 6.2 | 7.6 | 6.2 | 8.6 | 5.1 | 8.4 | 2.6 | 8.4 | 3.3 | 8.6 |
BaA | 4 | 39.5 | 8.7 | 60.7 | 7.4 | 58.0 | 7.9 | 49.0 | 8.1 | 26.0 | 8.3 | 33.6 | 8.8 |
BbF | 5 | 39.2 | 8.6 | 55.0 | 6.7 | 63.1 | 8.7 | 48.0 | 8.0 | 27.6 | 8.8 | 29.9 | 7.8 |
BkF | 5 | 28.5 | 6.3 | 43.9 | 5.4 | 47.8 | 6.6 | 38.6 | 6.3 | 21.7 | 6.9 | 23.5 | 6.1 |
BaP | 5 | 409.0 | 9.0 | 549.1 | 6.7 | 547.0 | 7.5 | 455.5 | 7.5 | 258.5 | 8.212 | 308.2 | 5.4 |
DBA | 5 | 131.3 | 2.9 | 113.5 | 1.4 | 396.5 | 1.4 | 86.2 | 1.4 | 43.6 | 1.4 | 55.2 | 1.4 |
IDP | 6 | 37.5 | 8.2 | 47.9 | 5.9 | 52.1 | 7.1 | 39.5 | 6.5 | 23.0 | 7.3 | 25.4 | 6.6 |
BgP | 6 | 0.3 | 6.6 | 3.8 | 4.7 | 4.0 | 5.4 | 3.2 | 5.3 | 1.9 | 5.9 | 2.1 | 8.0 |
- | 692.2 | 100.0 | 887.1 | 100.0 | 1179.8 | 100.0 | 729.7 | 100.0 | 407.0 | 100.0 | 483.8 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Z.; Wang, Z.; Xu, J.; Liu, Y.; Zhang, J. Influence of Source Apportionment of PAHs Occurrence in Aquatic Suspended Particulate Matter at a Typical Post-Industrial City: A Case Study of Freiberger Mulde River. Sustainability 2022, 14, 6646. https://doi.org/10.3390/su14116646
Qiu Z, Wang Z, Xu J, Liu Y, Zhang J. Influence of Source Apportionment of PAHs Occurrence in Aquatic Suspended Particulate Matter at a Typical Post-Industrial City: A Case Study of Freiberger Mulde River. Sustainability. 2022; 14(11):6646. https://doi.org/10.3390/su14116646
Chicago/Turabian StyleQiu, Zhuotao, Zhenyu Wang, Jie Xu, Yi Liu, and Jin Zhang. 2022. "Influence of Source Apportionment of PAHs Occurrence in Aquatic Suspended Particulate Matter at a Typical Post-Industrial City: A Case Study of Freiberger Mulde River" Sustainability 14, no. 11: 6646. https://doi.org/10.3390/su14116646