In Support of Sustainability: The Historical Ecology of Vertebrate Biodiversity and Native American Harvest Practices in the Florida Keys, USA
Abstract
:1. Introduction
“America’s Climate Exodus is Starting in the Florida Keys”.
- (1)
- The Keys supported a more generalist approach to marine taxa harvest in the past, relative to the exclusively targeted fisheries dominant in the archipelago since the nineteenth century. This finding supports contemporary observations from other coastal and island regions where generalist fisheries tend to be more resilient and adaptable to environmental and cultural pressures or changes (e.g., [39,40]), suggesting historical precedent for generalist fisheries in the Keys that may be applicable to contemporary fisheries management and conservation strategies.
- (2)
- The Keys likely supported more taxonomically diverse and geographically broad terrestrial, non-marine aquatic, and marine fauna in the past, including land-based turtle species that were possibly extirpated, more widely distributed endemic Keys raccoon and deer subspecies populations, and more abundant, regionally popular carnivorous fish populations. These findings indicate the additional loss of terrestrial and marine animal biodiversity than presently accounted for in contemporary conservation planning in the Keys (e.g., [41,42]).
2. Background
2.1. Florida Keys Environment and Vertebrate Biodiversity
2.1.1. Terrestrial and Non-Marine Aquatic Habitats
2.1.2. Marine Habitats
2.2. Florida Keys Sustainability, Conservation, and Historical Ecology
2.3. Florida Keys Archaeology and Culture History
3. Material and Methods
3.1. The Clupper Site (8MO17), Upper Matecumbe Key
3.2. Zooarchaeological Sample and Methods of Analysis
4. Results
4.1. Assemblage Summary
4.2. Marine-Associated Fauna
4.3. Terrestrial and Non-Marine Aquatic Associated Fauna
5. Discussion: Toward a Millennial-Scale Biocultural Vertebrate Baseline
5.1. Marine Vertebrate Diversity and Harvest
5.2. Terrestrial and Non-Marine Aquatic Vertebrate Diversity and Harvest
6. Conclusions: Supporting Biodiversity Conservation and Sustainability in the Florida Keys
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hauer, M.E.; Evans, J.M.; Mishra, D.R. Millions projected to be at risk from sea-level rise in the continental United States. Nat. Clim. Chang. 2016, 6, 691–695. [Google Scholar] [CrossRef]
- Hauer, M.E.; Fussell, E.; Mueller, V.; Burkett, M.A.; Abel, K.; McLeman, R.; Wrathall, D. Sea-level rise and human migration. Nat. Rev. Earth Environ. 2020, 1, 28–39. [Google Scholar] [CrossRef]
- Ardren, T.; Fitzpatrick, S.; Thompson, V.D. Island chain coastlines: A history of human adaptation in the Florida Keys. In The Archaeology of Human-Environmental Dynamics on the North American Atlantic Coast; Reeder-Myers, L., Turck, J.A., Rick, T.C., Eds.; University Press of Florida: Gainesville, FL, USA, 2019; pp. 232–259. [Google Scholar]
- Carr, R.S.; Day, J.S.; Harrington, T.A.; Beriault, J.; Noe, A.M.; White, J.W. Monroe County Cultural Resource Assessment Update Certified Local Government Grant #F1503, Monroe County, Florida; AHC Technical Report No. 1114; Archaeological and Historical Conservancy, Inc.: Davie, FL, USA, 2016. [Google Scholar]
- Carr, R.S.; Harrington, T.A.; Noe, A.M.; Jacobs, E.M.; White, J.W. Monroe County Cultural Resource Assessment II Certified Local Government Grant #19.h.sm.200-040, Monroe County, Florida; AHC Technical Report No. 1230; Archaeological and Historical Conservancy, Inc.: Davie, FL, USA, 2019. [Google Scholar]
- Harke, R. Archaeology and Seasonality of Stock Island (8Mo2), a Glades-Tradition Village on Key West. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2021. [Google Scholar]
- McClenachan, L.; Kittenger, J.N. Multicentury trends and the sustainability of coral reef fisheries in Hawai‘I and Florida. Fish Fish. 2013, 14, 239–255. [Google Scholar] [CrossRef]
- Ardren, T.; Thompson, V.D.; Fitzpatrick, S.M.; Stevenson, J.; Sierra, R.L. When foragers are managers: Social complexity and persistence in the Florida Keys. In The Archaeology of Caribbean and Circum-Caribbean Farmers 6000 BC–AD 1500; Reid, B.A., Ed.; Routledge: New York, NY, USA, 2018; pp. 311–326. [Google Scholar]
- Pisano, U. Resilience and Sustainable Development: Theory of Resilience, Systems Thinking and Adaptive Governance; European Sustainable Development Network (ESDN) Quarterly Report N°26; Research Institute for Managing Sustainability: Vienna, Austria, 2012; Available online: https://www.cjwalsh.ie/wp-content/uploads/2013/01/ESDN_Resilience-and-Sustainable-Development_September-2012.pdf (accessed on 15 February 2022).
- Haider, L.J.; Schlüter, M.; Reyers, B. Rethinking and development: A coevolutionary perspective. Ambio 2021, 50, 1304–1312. [Google Scholar] [CrossRef]
- Rands, M.R.W.; Adams, W.M.; Bennun, L.; Butchart, S.H.M.; Clements, A.; Coomes, D.; Entwistle, A.; Hodge, I.; Kapos, V.; Scharlemann, J.P.W.; et al. Biodiversity conservation: Challenges beyond 2010. Science 2010, 329, 1298–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braje, T.J.; Rick, T.C.; Szpak, P.; Newsome, S.D.; McCain, J.M.; Elliot Smith, E.A.; Glassow, M.; Hamilton, S.L. Historical ecology and the conservation of large, hermaphroditic fishes in Pacific Coast kelp forest ecosystems. Sci. Adv. 2017, 3, e1601759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barak, R.S.; Hipp, A.L.; Cavender-Bares, J.; Pearse, W.D.; Hotchkiss, S.C.; Lynch, E.A.; Callway, J.C.; Calcote, R.; Larkin, D.J. Taking the long view: Integrating recorded, archaeological, paleoecological, and evolutionary data into ecological restoration. Int. J. Plant Sci. 2016, 177, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Boivin, N.; Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 2021, 5, 273–284. [Google Scholar] [CrossRef]
- Guttman-Bond, E. Reinventing Sustainability: How Archaeology Can Save the Planet; Oxbow Books: Oxford, UK, 2019; ISBN 978-1-178570-992-0. [Google Scholar]
- Rick, T.C.; Lockwood, R. Integrating paleobiology, archaeology, and history to inform biological conservation. Conserv. Biol. 2013, 27, 45–54. [Google Scholar] [CrossRef]
- Rockman, M.; Hritz, C. Expanding use of archaeology in climate change response by changing its social environment. Proc. Natl. Acad. Sci. USA 2020, 117, 8295–8302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotherham, I.D. Bio-cultural heritage and biodiversity: Emerging paradigms in conservation and planning. Biodivers. Conserv. 2015, 24, 3405–3429. [Google Scholar] [CrossRef] [Green Version]
- Thompson, V.D.; Rick, T.; Garland, C.J.; Hurst Thomas, D.; Smith, K.Y.; Bergh, S.; Sanger, M.; Tucker, B.; Lulewicz, I.; Semon, A.M.; et al. Ecosystem stability and Native American oyster harvesting along the Atlantic coast of the United States. Sci. Adv. 2020, 6, eaba9652. [Google Scholar] [CrossRef] [PubMed]
- Willis, K.J.; Birks, H.J.B. What is natural? The need for long-term perspective in biodiversity conservation. Science 2006, 314, 1261–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, V.L.; Delacorte, M.G. Doing zooarchaeology as if it mattered: Use of faunal data to address current issues in fish conservation biology in Owens Valley, California. In Zoorchaeology and Conservation Biology; Lyman, R.L., Cannon, K.P., Eds.; The University of Utah Press: Salt Lake City, UT, USA, 2004; pp. 25–44. [Google Scholar]
- Erlandson, J.M.; Rick, T.C. Archaeology meets marine ecology: The antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Ann. Rev. Mar. Sci. 2010, 2, 231–251. [Google Scholar] [CrossRef] [Green Version]
- Fossile, T.; Ferreira, J.; da Rochca Bandeira, D.; Dias-da-Silva, S.; Carlo Colonese, A. Integrating zooarchaeology in the conservation of coastal-marine ecosystems in Brazil. Quat. Int. 2020, 545, 38–44. [Google Scholar] [CrossRef]
- McKenchnie, I.; Lepofsky, D.; Moss, M.L.; Butler, V.L.; Orchard, T.J.; Coupland, G.; Foster, F.; Caldwell, M.; Lertzman, K. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl. Acad. Sci. USA 2014, 111, E807–E816. [Google Scholar] [CrossRef] [Green Version]
- Wolverton, S.; Lyman, R.L. (Eds.) Conservation Biology and Applied Zooarchaeology; The University of Arizona Press: Tucson, AZ, USA, 2012. [Google Scholar]
- DiNapoli, R.J.; Leppard, T.P. Islands as model environments. J. Isl. Coast. Archaeol. 2018, 13, 157–160. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, S.M.; Erlandson, J.M. Island archaeology, model systems, the Anthropocene, and how the past informs the future. J. Isl. Coast. Archaeol. 2010, 13, 283–299. [Google Scholar] [CrossRef]
- Fitzpatrick, S.M.; Giovas, C.M. Tropical islands of the Anthropocene: Deep histories of anthropogenic terrestrial-marine entanglement in the Pacific and Caribbean. Pro. Natl. Acad. Sci. USA 2021, 118, e2022209118. [Google Scholar] [CrossRef]
- Kirch, P.V. Hawaii as a model system for human ecodynamics. Am. Anthropol. 2007, 109, 8–26. [Google Scholar] [CrossRef]
- Rick, T.C.; Kirch, P.V.; Erlandson, J.M.; Fitzpatrick, S.M. Archaeology, deep history, and the human transformation of island ecosystems. Anthropocene 2013, 4, 33–45. [Google Scholar] [CrossRef]
- Aswani, S.; Allen, M.S. A Marquesan coral reef (French Polynesia) in historical context: An integrated socio-ecological approach. Aquat. Conserv. 2009, 19, 614–625. [Google Scholar] [CrossRef]
- Carder, N.; Crock, J.G. A pre-Columbian fisheries baseline from the Caribbean. J. Archaeol. Sci. 2012, 39, 3115–3124. [Google Scholar] [CrossRef]
- Grealy, A.; Douglass, K.; Haile, J.; Bruwer, C.; Gough, C.; Bunce, M. Tropical ancient DNA from bulk archaeological fish one reveals the subsistence practices of a historic coastal community in southwest Madagascar. J. Archaeol. Sci. 2016, 75, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Lambrides, A.B.J.; Weisler, M.I. Pacific islands ichthyarchaeology: Implications for the development of prehistoric fishing studies and global sustainability. J. Archaeol. Res. 2016, 24, 275–324. [Google Scholar] [CrossRef]
- Oswald, J.A.; Allen, J.M.; LeFebvre, M.J.; Stucky, B.J.; Folk, R.A.; Albury, N.A.; Morgan, G.S.; Guralnick, R.P.; Steadman, D.W. Ancient DNA and high resolution chronometry reveal a long-term human role in the historical diversity and biogeography of the Bahamian hutia. Sci. Rep. 2020, 1373. [Google Scholar] [CrossRef] [Green Version]
- Steadman, D.W.; Albury, N.A.; Carlson, L.A.; Franz, R.; LeFebvre, M.J.; Kakuk, B.; Keegan, W.F. The paleoecology and extinction of endemic tortoises in the Bahamian Archipelago. Holocene 2019, 30, 420–427. [Google Scholar] [CrossRef]
- Swift, J.A.; Roberts, P.; Boivin, N.; Kirch, P.V. Restructuring of nutrient flows in island ecosystems following human colonization evidenced by isotopic analysis of commensal rats. Proc. Natl. Acad. Sci. USA 2018, 115, 6392–6397. [Google Scholar] [CrossRef] [Green Version]
- Douglass, K.; Antonites, A.R.; Quintana Morales, E.M.; Grealy, A.; Bunce, M.; Bruwer, C.; Gough, C. Multi-analytical approach to zooarchaeological assemblages elucidates Late Holocene coastal lifeways in southwest Madagascar. Quat. Int. 2018, 471, 111–131. [Google Scholar] [CrossRef]
- Finkbeiner, E.M. The role of diversification in dynamic small-scale fisheries: Lessons from Baja California Sur, Mexico. Global Environ. Chang. 2015, 32, 139–152. [Google Scholar] [CrossRef]
- Yletyinen, J.; Hentati-Sundberg, J.; Blenckner, T.; Bodin, Ö. Fishing strategy diversification and fishers’ ecological dependency. Ecol. Soc. 2018, 23, 28. [Google Scholar] [CrossRef]
- Benedict, L.; Glazer, B.; Bergh, C.; Traxler, S.; Sys, B.; Evans, J. Florida Keys Cast Study on Incorporating Climate Change Considerations into Conservation Planning and Actions for Threatened and Endangered Species; USFWS Cooperative Agreement F16ACO1213; Florida Fish and Wildlife Conservation Commission: Tallahassee, FL, USA, 2018.
- Hepner, M.E. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary. Master’s Thesis, University of South Florida, Tampa, FL, USA, 2017. [Google Scholar]
- Schomer, N.M.; Drew, R.D. An Ecological Characterization of the Lower Everglades, Florida Bay and the Florid Keys; U.S. Fish and Wildlife Service, Office of Biological Services: Washington, DC, USA, 1982.
- Schneider, M.J.; Ardren, T.; Jorissen, P.; Bertelli, B.; Purkis, S. Spanish wells: Freshwater lenses and the Florida Keys. J. Isl. Coast. Archaeol. 2022, 1–19. [Google Scholar] [CrossRef]
- Wanless, H.R.; Parkinson, R.W.; Tedesco, L.P. Sea level control on stability of Everglades Wetlands. In Everglades: The Ecosystem and Its Restoration; Davis, S., Ogden, J.C., Eds.; St. Lucie Press: Delray Beach, FL, USA, 1994; pp. 199–223. [Google Scholar]
- Marquardt, W.H.; Walker, K.J. Southwest Florida during the Mississippi period. In Late Prehistoric Florida; Ashley, K., White, N.M., Eds.; University Press of Florida: Gainesville, FL, USA, 2012; pp. 29–61. [Google Scholar]
- Walker, K.J. The Pineland site complex: Environmental contexts. In The Archaeology of Pineland: A Coastal Southwest Florida Site Complex, A.D. 50-1710; Monograph Number 4; Marquardt, W.H., Walker, K.J., Eds.; Institute of Archaeology and Paleoenvironmental Studies: Gainesville, FL, USA, 2013; pp. 23–52. [Google Scholar]
- Wang, T.; Surge, D.; Walker, K.J. Seasonal climate change across the Roman Warm Period/Vandal Minimum transition using isotope sclerochronology in archaeological shells and otoliths, southwest Florida, USA. Quat. Int. 2013, 308–309, 230–241. [Google Scholar] [CrossRef]
- Snyder, J.R.; Herndon, A.; Robertson, W.B., Jr. South Florida Rockland. In Ecosystems of Florida; Myers, R.L., Ewel, J.E., Eds.; University of Central Florida Press: Orlando, FL, USA, 1990; pp. 230–276. [Google Scholar]
- Odum, W.E.; McIvor, C.C.; Smith, T.J. The Ecology of the Mangroves of South Florida: A Community Profile. U.S. Fish and Wildlife Service; FWS/OBS-81/24; Office of Biological Services: Washington, DC, USA, 1982. [Google Scholar]
- Snodgrass, D.; Harnden, C.W. Composition of fish species on ocean-side beach habitats in the Florida Keys. Fla. Sci. 2009, 72, 153–170. [Google Scholar]
- Valverde, R.; Holzwart, K.R. Sea turtles of the Gulf of Mexico. In Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill Volume 2; Ward, H., Ed.; Springer Nature: New York, NY, USA, 2017; pp. 1189–1352. [Google Scholar]
- Acosta, A.; Bartels, C.; Colvocoresses, J.; Greenwood, M.F. Fish assemblages in seagrass habitats of the Florida Keys, Florida: Spatial and temporal characteristics. Bull. Mar. Sci. 2007, 81, 1–19. [Google Scholar]
- Bjorndal, K.A.; Jackson, J.B.C. Role of sea turtles in marine ecosystems: Reconstructing the past. In The Biology of Sea Turtles; Lutz, P.L., Musick, J.A., Wyneken, J., Eds.; CRC Press: Boca Raton, FL, USA, 2003; Volume 2, pp. 259–273. [Google Scholar]
- Heithaus, M.R.; Burkholder, D.; Hueter, R.E.; Heithaus, L.I.; Pratt, H.L.; Carrier, J.C. Spatial and temporal variation in shark communities of the lower Florida Keys and evidence for historical population declines. Can. J. Fish Aquat. Sci. 2007, 64, 1302–1313. [Google Scholar] [CrossRef]
- Jaap, W.C.; Hallock, P. Coral Reefs. In Ecosystems of Florida; Myers, R.L., Ewel, J.E., Eds.; University of Central Florida Press: Orlando, FL, USA, 1990; pp. 574–616. [Google Scholar]
- Florida’s Coral Reefs. Available online: https://floridadep.gov/rcp/rcp/content/floridas-coral-reefs (accessed on 2 March 2022).
- GreenKeys! Available online: www.greenkeys.info (accessed on 2 March 2022).
- Maschinski, J.; Ross, M.S.; Liu, H.; O’Brien, J.; von Wettber, E.J.; Haskins, K.E. Sinking ships: Conservation options for endemic taxa threatened by sea level rise. Clim. Chang. 2011, 107, 147–167. [Google Scholar] [CrossRef]
- Reece, J.S.; Noss, R.F. Prioritizing species by conservation value and vulnerability: A new index applied to species threatened by sea-level rise and other risks in Florida. Nat. Areas J. 2014, 34, 31–45. [Google Scholar] [CrossRef]
- Forida Keys National Marine Sanctuary Administration and Legislation. Available online: https://floridakeys.noaa.gov/legislation.html (accessed on 2 March 2022).
- Key Deer. Available online: https://myfwc.com/wildlifehabitats/profiles/mammals/land/key-deer/ (accessed on 2 March 2022).
- Carrol, S.P.; Love, J. Invasion, colonization, and disturbance; historical ecology of the endangered Miami blue butterfly. J. Insect Conserv. 2006, 10, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.C.; McClenachan, L. Historical ecology for the paleontologist. In Conservation Paleobiology: Using the Past to Manage for the Future; Dietl, P.G., Flessa, K.W., Eds.; The Paleontological Society Papers; Geological Society of America: Portland, OR, USA, 2009; pp. 87–100. [Google Scholar]
- Jackson, J.B.C.; Kirby, M.X.; Berger, W.H.; Bjorndal, K.A.; Botsford, L.W.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.; Erlandson, J.; Estes, J.A.; et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 2001, 293, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Karim, A.; Main, M.B. Habitat fragmentation and conservation strategies for a rare forest habitat in the Florida Keys archipelago. Urban Ecosys. 2009, 12, 359–370. [Google Scholar] [CrossRef]
- McClenachan, L. Documenting loss of large trophy fish from the Florida Keys with historical photographs. Conserv. Biol. 2009, 23, 636–643. [Google Scholar] [CrossRef] [PubMed]
- McClenachan, L. Recreation and the “Right to Fish” movement: Anglers and ecological degradation in the Florida Keys. Environ. Hist. 2012, 18, 76–87. [Google Scholar] [CrossRef]
- McClenachan, L.; O’Connor, G.; Neal, B.P.; Pandolfi, J.M.; Jackson, J.B.C. Ghost reefs: Nautical charts document large spatial scale of coral reef loss over 240 years. Sci. Adv. 2017, 3, e1603155. [Google Scholar] [CrossRef] [Green Version]
- Ross, M.S.; O’Brien, J.; da Silveira Lobo Sternberg, L. Sea-level rise and the reduction in pine forests in the Florida Keys. Ecol. App. 1994, 4, 144–156. [Google Scholar] [CrossRef]
- Office of National Marine Sanctuaries. Draft Environmental Impact Statement for the Florida Keys National Marine Sanctuary: A Restoration Blueprint; U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries: Silver Spring, MD, USA, 2019.
- Worth, J.E. Discovering Florida: First Narratives from Spanish Expeditions along the Lower Gulf Coast; University Press of Florida: Gainesville, FL, USA, 2014; ISBN 978-0-8130-4988-5. [Google Scholar]
- Carr, R.S. Digging Miami; University of Florida Press: Gainesville, FL, USA, 2012; ISBN 978-0-8130-4206-0. [Google Scholar]
- Goggin, J.M. Archaeological Investigations of the Upper Florida Keys. Tequesta 1944, 4, 13–35. [Google Scholar]
- Goggin, J.M.; Sommer, F. Excavations on Upper Matecumbe Key, Florida; Yale University Publications in Anthropology 41; Yale University Press: New Haven, CT, USA, 1949. [Google Scholar]
- Ardren, T.; Lowry, J.P.; Memory, M.; Flanagan, K.; Busot, A. Prehistoric human impact on tree island lifecycles in the Florida Everglades. Holocene 2016, 26, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, M.F.; DiNapoli, R.J.; Fitzpatrick, S.M.; Ardren, T.; Thompson, V.D.; Cherkinsky, A.; LeFebvre, M.J. New marine reservoir corrections for the Florida Keys and implications for chronology building at the Clupper site, Upper Matecumbe Key. 2022; in review. [Google Scholar]
- Emery, K.F. Enduring foundations to a holistic science: Lessons in environmental archaeology from Elizabeth, S. Wing. Bull. Fla. Mus. Nat. Hist. 2003, 44, 3–10. [Google Scholar]
- Reitz, E.J.; Wing, E.S. Zooarchaeology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Grouard, S.; Perdikaris, S.; Rodrigues, N.; Quitmyer, I.R. Size estimation of pre-Columbian Caribbean fish. Int. J. Osteoarchaeol. 2019, 29, 452–468. [Google Scholar] [CrossRef]
- Harvey, V.L.; LeFebvre, M.J.; deFrance, S.D.; Toftgaard, C.; Drosou, K.; Kitchener, A.C.; Buckley, M. Preserved collagen reveals species identify in archaeological marine turtle bones from Caribbean and Florida sites. R. Soc. Open Sci. 2019, 6, 1911137. [Google Scholar] [CrossRef] [Green Version]
- Surge, D.; Walker, K.J. Oxygen isotope composition of modern and archaeological otoliths from the estuarine hardhead catfish (Ariopsis felis) and their potential to record low-latitude climate change. Palaeogeorgr. Palaeoclimatol. Palaeoecol. 2005, 228, 179–191. [Google Scholar] [CrossRef]
- Foley, A.M.; Schroeder, B.A.; Hardy, R.; MacPherson, S.L.; Nicholas, M.; Coyne, M.S. Postnesting migratory behavior of loggerhead sea turtles Caretta caretta from three Florida rookeries. Endanger. Species Res. 2013, 21, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Williard, A.S.; Goodman Hall, A.; Fujisaki, I.; Braun McNeill, J. Oceanic overwintering in juvenile green turtles Chelonia mydas from a temperate latitude foraging ground. Mar. Ecol. Prog. Ser. 2017, 564, 235–240. [Google Scholar] [CrossRef] [Green Version]
- McGuire, H.L.; Taylor, S.S.; Sheldon, F.H. Evaluating the taxonomic status of the Great White Heron (Ardea Herodias occidentalis) using morphological, behavioral and genetic evidence. Auk 2019, 136, uky010. [Google Scholar] [CrossRef]
- Iverson, J.B.; Etchberger, C.R. The distributions of the turtles of Florida. Fla. Sci. 1989, 52, 119–144. [Google Scholar]
- Nelson, E.W. Four new raccoons from The Keys of southern Florida. Smithson. Misc. Collect. 1930, 83, 1–12. [Google Scholar]
- Trujillo, A.L.; Hoffman, E.A. Uncovering discordance between taxonomy and evolutionary history in Florida raccoons. Syst. Biodivers. 2017, 15, 74–86. [Google Scholar] [CrossRef]
- Goldman, E.A. Racoons of North and Middle America; North American Fauna 60; United States Department of the Interior: Washington, DC, USA, 1950.
- Kennedy, M.L.; Lindsay, S.L. Morphologic variation in the raccoon, Procyon lotor, and its relationship to genic and environmental variation. J. Mammal. 1984, 65, 195–205. [Google Scholar] [CrossRef]
- Boughton, R.K.; Wight, B.; Wisely, S.; Hood, K.; Main, M.B. White-Tail Deer of Florida; IFAS Extension Publication #WEC133; University of Florida: Gainesville, FL, USA, 2019. [Google Scholar] [CrossRef]
- Alagona, P.S.; Sandlos, J.; Wiersma, Y.F. Conservation and restoration projects in North America. Environ. Philos. 2012, 9, 49–70. [Google Scholar] [CrossRef] [Green Version]
- Lotze, H.K.; Erlandson, J.M.; Hardt, M.J.; Norris, R.D.; Roy, K.; Smith, T.D.; Whitcraft, C.R. Uncovering the ocean’s past. In Shifting Baselines: The Past and the Future of Ocean Fisheries; Jackson, J.B.C., Alexander, K.E., Sala, E., Eds.; Island Press: Washington, DC, USA, 2011; pp. 137–161. [Google Scholar]
- Faunce, C.H.; Serafy, J.E. Nearshore habitat use by gray snapper (Lutjanus griseus) and bluestriped grunt (Haemulon sciurus): Environmental gradients and ontogenetic shifts. Bull. Mar. Sci. E 2007, 80, 473–495. [Google Scholar]
- “Unregulated” Species. Available online: https://myfwc.com/fishing/saltwater/recreational/unregulated/ (accessed on 2 March 2022).
- Downs, C.A.; Fauth, J.E.; Wetzel, D.; Hallock, P.; Halas, J.F.; Halas, J.C.; Curry, R.; Woodley, C.M. Investigating coral reef degradation at Alina’s Reef in the Florida Keys: Cellular physiology of white grunt (Haemulon plumieri) as a biological factor. Environ. Forensics 2006, 7, 15–32. [Google Scholar] [CrossRef]
- Fradkin, A. Colonial and modern fisheries I the Indian River Lagoon, Florida, USA. Int. J. Osteoarchaeol. 2019, 29, 477–486. [Google Scholar] [CrossRef]
- Walker, K.J. The Zooarchaeology of Charlotte Harbor’s Prehistoric Maritime Adaptation: Spatial and Temporal Perspectives. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1992. [Google Scholar]
- Jackson, J.B.C. Reefs since Columbus. Coral Reefs 1997, 16, S23–S32. [Google Scholar] [CrossRef]
- Schroeder, W.C. Fisheries of Key West and the Clam Industry of Southern Florida; Document No. 962; Department of Commerce, Bureau of Fisheries: Washington, DC, USA, 1924.
- Salas, S.; Gaertner, D. The behavioural dynamics of fishers: Management implications. Fish Fish 2004, 5, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Galappaththi, E.K.; Ford, J.D.; Bennett, E.M.; Berkes, F. Adapting to climate change in small-scale fisheries: Insights from indigenous communities in the global north and south. Environ. Sci. Policy 2021, 116, 160–170. [Google Scholar] [CrossRef]
- Berkes, F. Sacred Ecology, 4th ed.; Routledge: New York, NY, USA, 2018; ISBN 978-1-138-07149-0. [Google Scholar]
- Dunne, J.A.; Maschner, H.; Betts, M.W.; Huntly, N.; Russell, R.; Williams, R.J.; Wood, S.A. The roles and impacts of human hunter-gatherers in north Pacific marine food webs. Sci. Rep. 2016, 6, 21179. [Google Scholar] [CrossRef] [PubMed]
- Rick, T.C.; Reeder-Meyers, L.; Braje, T.J.; Wake, T. Human ecology, paleogeography, and biodiversity on California’s small islands. J. Isl. Coast. Archaeol. 2020. [Google Scholar] [CrossRef]
- Lidour, K.; Béarez, P.; Charpentier, V.; Méry, S. The prehistoric fisheries of Akab Island (United Arab Emirates): New insights into coastal subsistence during Neolithic in eastern Arabia. J. Isl. Coast. Archaeol. 2020, 15, 80–103. [Google Scholar] [CrossRef]
- Franz, R.; Quitmyer, I.R. A fossil and zooarchaeological history of the gopher tortoise (Gopherus polyphemus) in the southeastern United States. Bull. Fla. Mus. Nat. Hist. 2005, 45, 179–199. [Google Scholar]
- Peres, T.M.; McLean, E. Zooarchaeological Analysis of Faunal Remains Recovered from Totten Key (8DA3439) (SEAC Accession #2628), Biscayne National Park, Miami-Dade County Florida; Southeastern Archaeological Center, National Park Service: Tallahassee, FL, USA, 2018.
- Steeves, R. A Zooarchaeological Perspective of West Kendall Tree Island Site (8DA1081). Master’s. Thesis, Florida Atlantic University, Boca Raton, FL, USA, 2018. [Google Scholar]
- Bjorndal, K.A. Significance of anecdotes for historical perspective: Black bear predation on sea turtle eggs. Endanger. Species Res. 2020, 43, 353–357. [Google Scholar] [CrossRef]
- Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 1995, 10, 430. [Google Scholar] [CrossRef]
- Pauly, D. Vanishing Fish: Shifting Baselines and the Future of Global Fisheries; Greystone Books: Vancouver, BC, CA, 2019. [Google Scholar]
- The Turtle Hospital. Available online: https://www.turtlehospital.org/ (accessed on 2 March 2022).
- Bjorndal, K.A.; Bolten, A.B. From ghosts to key species: Restoring Sea turtle populations to fulfill their ecological roles. Mar. Turt. Newsl. 2003, 100, 16–21. [Google Scholar]
- McClenachan, L. Historical decline of goliath grouper populations in South Florida, USA. Endanger. Species Res. 2009, 7, 175–181. [Google Scholar] [CrossRef]
- Villanova, V.L.; Hughes, P.T.; Hoffman, E.A. Combining genetic structure and demographic analyses to estimate persistence in endangered Key deer (Odocoileus virginianus clavium). Conserv. Genet. 2017, 18, 1061–1076. [Google Scholar] [CrossRef]
- Danielsen, F.; Burgess, N.D.; Blamford, A. Monitoring matters: Examining the potential of locally-based approaches. Biodivers. Conserv. 2005, 14, 2507–2542. [Google Scholar] [CrossRef]
- Wittmayer, J.M.; Schäpke, N.; van Steenbergen, F.; Omann, I. Making sense of sustainability transitions locally: How action research contributes to addressing societal challenges. Crit. Policy Stud. 2014, 8, 465–485. [Google Scholar] [CrossRef]
- Niesenbaum, R.A. The integration of conservation, biodiversity, and sustainability. Sustainability 2019, 11, 4676. [Google Scholar] [CrossRef] [Green Version]
- Erlandson, J.M. Racing a rising tide: Global warming, rising seas, and the erosion of human history. J. Isl. Coast. Archaeol. 2008, 3, 167–169. [Google Scholar] [CrossRef]
- Anderson, D.G.; Bissett, T.G.; Yerka, S.J.; Wells, J.J.; Kansa, E.C.; Kansa, S.W.; Myers, K.N.; White, D.A. Sea-level rise and archaeological site destruction: An example from the southeastern United States using DINAA (Digital Index of North American Archaeology). PLoS ONE 2017, 12, e0188142. [Google Scholar] [CrossRef] [Green Version]
General Taxon | NISP | % NISP | Weight (g) | % Weight | MNI | % MNI |
---|---|---|---|---|---|---|
Unidentifiable vertebrate (Vertebrata) | 424 | 7.29 | 89.28 | 3.16 | 0 | 0 |
Cartilaginous fish (Chondrichthyes) | 273 | 4.6 | 136.59 | 4.83 | 18 | 4.77 |
Fish (Actinopterygii) | 3027 | 52.02 | 1120.30 | 39.64 | 325 | 486.21 |
Reptile (Reptilia) | 2075 | 35.66 | 1458.62 | 51.61 | 25 | 6.63 |
Bird (Aves) | 8 | 0.14 | 2.50 | 0.09 | 5 | 1.33 |
Mammal (Mammalia) | 12 | 0.21 | 18.73 | 0.66 | 4 | 1.06 |
Total | 5819 | 100.00 | 2826.02 | 100.00 | 377 | 100 |
Taxon | Common Name | NISP | % NISP | Wt. (g) | % Wt. (g) | MNI | % MNI |
---|---|---|---|---|---|---|---|
Vertebrata | unidentified vertebrate | 424 | 7.29 | 89.28 | 3.16 | 0 | 0.00 |
Carcharhiniformes | ground sharks | 88 | 1.51 | 19.43 | 0.69 | 0 | 0.00 |
Ginglymostoma cirratum * | nurse shark | 14 | 0.24 | 3.86 | 0.14 | 2 | 0.53 |
Carcharhinidae * | requiem sharks | 40 | 0.69 | 49.98 | 1.77 | 4 | 1.06 |
Rhizoprionodon terraenovae | Atlantic sharpnose shark | 3 | 0.05 | 3.75 | 0.13 | 1 | 0.27 |
Sphyrna sp. * | hammerhead shark | 90 | 1.55 | 42.22 | 1.49 | 5 | 1.33 |
Pristis sp. * | Sawfish | 9 | 0.15 | 4.61 | 0.16 | 3 | 0.80 |
Rajiformes * | flattened cartilaginous fishes | 25 | 0.43 | 7.48 | 0.26 | 2 | 0.53 |
Aetobatus narinari * | spotted eagle ray | 4 | 0.07 | 5.26 | 0.19 | 1 | 0.27 |
Actinopterygii | ray-finned fishes | 1341 | 23.05 | 323.16 | 11.44 | 0 | 0.00 |
Elops saurus * | ladyfish | 2 | 0.03 | 0.06 | 0.00 | 2 | 0.53 |
Megalops atlanticus * | Atlantic tarpon | 3 | 0.05 | 0.74 | 0.03 | 2 | 0.53 |
Albula vulpes * | bonefish | 65 | 1.12 | 10.73 | 0.38 | 7 | 1.86 |
Gymnothorax sp. * | moray eel | 2 | 0.03 | 0.38 | 0.01 | 2 | 0.53 |
Ariidae | catfishes | 132 | 2.27 | 50.5 | 1.79 | 0 | 0.00 |
Ariopsis felis * | hardhead sea catfish | 470 | 8.08 | 230.44 | 8.15 | 162 | 42.97 |
Bagre marinus * | gafftopsail sea catfish | 19 | 0.33 | 5.04 | 0.18 | 2 | 0.53 |
Centropomus sp. * | snook | 4 | 0.07 | 4.5 | 0.16 | 2 | 0.53 |
Epinephelidae | groupers | 27 | 0.46 | 12.38 | 0.44 | 0 | 0.00 |
Epinephelus sp. * | grouper | 126 | 2.17 | 89.27 | 3.16 | 20 | 5.31 |
Mycteroperca sp. * | grouper | 43 | 0.74 | 31.14 | 1.10 | 11 | 2.92 |
Strongylura marinus * | Atlantic needlefish | 5 | 0.09 | 0.88 | 0.03 | 2 | 0.53 |
Tylosaurus crocodilus * | hound needlefish | 12 | 0.21 | 1.57 | 0.06 | 3 | 0.80 |
Pomatomus saltatrix * | bluefish | 1 | 0.02 | 0.1 | 0.00 | 1 | 0.27 |
Carangidae | jacks, pompanos, scads | 72 | 1.24 | 77.48 | 2.74 | 0 | 0.00 |
Caranx sp. * | jack | 101 | 1.74 | 58.14 | 2.06 | 16 | 4.24 |
Trachinotus sp. | pompano | 20 | 0.34 | 19.26 | 0.68 | 6 | 1.59 |
Lutjanus sp. * | snapper | 110 | 1.89 | 41.14 | 1.46 | 16 | 4.24 |
Haemulon sp. * | grunt | 343 | 5.89 | 46.18 | 1.63 | 31 | 8.22 |
Sparidae | porgies | 2 | 0.03 | 0.27 | 0.01 | 0 | 0.00 |
Calamus sp. * | porgy | 23 | 0.40 | 17.32 | 0.61 | 7 | 1.86 |
Pogonias cromis * | black drum | 6 | 0.10 | 4.87 | 0.17 | 1 | 0.27 |
Mugil sp. * | mullet | 22 | 0.38 | 2.26 | 0.08 | 5 | 1.33 |
Pomacanthidae | marine angelfish | 5 | 0.09 | 0.73 | 0.03 | 4 | 1.06 |
Lachnolaimus maximus * | hogfish | 20 | 0.34 | 24.8 | 0.88 | 9 | 2.39 |
Sparisoma sp. * | parrotfish | 2 | 0.03 | 0.34 | 0.01 | 1 | 0.27 |
Sphyraena sp. * | barracuda | 30 | 0.52 | 57.84 | 2.05 | 6 | 1.59 |
Trichiurus lepturus * | largehead hairtail | 1 | 0.02 | 0.13 | 0.00 | 1 | 0.27 |
Istiophorus albicans | Atlantic sailfish | 4 | 0.07 | 5 | 0.18 | 2 | 0.53 |
Paralichthyes sp. | flounder | 4 | 0.07 | 1.16 | 0.04 | 1 | 0.27 |
Ostraciidae * | boxfishes | 7 | 0.12 | 0.79 | 0.03 | 1 | 0.27 |
Diodontidae * | porcupinefishes | 3 | 0.05 | 1.7 | 0.06 | 2 | 0.53 |
Testudines | turtles and tortoises | 210 | 3.61 | 63.43 | 2.24 | 0 | 0.00 |
Chelydra serpentina * | common snapping turtle | 2 | 0.03 | 0.45 | 0.02 | 1 | 0.27 |
Kinosternidae | mud and musk turtles | 2 | 0.03 | 0.57 | 0.02 | 0 | 0.00 |
Kinosternon sp. | mud turtle | 5 | 0.09 | 1.7 | 0.06 | 2 | 0.53 |
Sternotherus sp. | musk turtle | 1 | 0.02 | 0.14 | 0.00 | 1 | 0.27 |
Gopherus polyphemus * | gopher tortoise | 1 | 0.02 | 1.98 | 0.07 | 1 | 0.27 |
Cheloniidae | sea turtles | 1785 | 30.68 | 1270.75 | 44.97 | 5 | 1.33 |
Caretta caretta * | loggerhead sea turtle | 4 | 0.07 | 49.71 | 1.76 | 3 | 0.80 |
Chelonia mydas * | green sea turtle | 63 | 1.08 | 69.08 | 2.44 | 10 | 2.65 |
Apalone ferox * | Florida softshell turtle | 2 | 0.03 | 0.81 | 0.03 | 2 | 0.53 |
Aves (Small) | birds (small; warblers) | 1 | 0.02 | 0.08 | 0.00 | 1 | 0.27 |
Aves (Medium) | birds (medium; e.g., gulls) | 4 | 0.07 | 1.11 | 0.04 | 1 | 0.27 |
Aves (Medium-Large) | birds (large; e.g., herons) | 1 | 0.02 | 0.23 | 0.01 | 1 | 0.27 |
Ardeidae * | Herons | 2 | 0.03 | 1.08 | 0.04 | 2 | 0.53 |
Mammalia (Medium-Large) | mammals (medium-large; e.g., raccoon, deer) | 1 | 0.02 | 0.23 | 0.01 | 0 | 0.00 |
Mammalia (Large) | mammals (large; e.g., deer) | 3 | 0.05 | 1.55 | 0.05 | 0 | 0.00 |
Procyon lotor | raccoon | 1 | 0.02 | 0.17 | 0.01 | 1 | 0.27 |
Odocoileus virginianus cf. clavium | white-tailed deer (cf. Key deer) | 7 | 0.12 | 16.78 | 0.59 | 3 | 0.80 |
Total | 5819 | 100.00 | 2826.02 | 100.00 | 377 | 100.00 |
Hepner [42] | Test Pit 4 | ||
---|---|---|---|
Family | % of Abundance of All Fish Families Observed (n = 64) | Family | % of Total NISP for Ray-Finned Fish Families (n = 24) |
Labridae | 20.46 | Ariidae | 36.83 |
Pomacentridae | 17.35 | Haemulidae | 20.34 |
Haemulidae | 16.86 | Epinephelidae | 11.63 |
Gobiidae | 10.47 | Carangidae | 11.45 |
Scaridae | 9.23 | Lutjanidae | 6.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
LeFebvre, M.J.; Ardren, T.; Thompson, V.D.; Fitzpatrick, S.M.; Ayers-Rigsby, S. In Support of Sustainability: The Historical Ecology of Vertebrate Biodiversity and Native American Harvest Practices in the Florida Keys, USA. Sustainability 2022, 14, 6552. https://doi.org/10.3390/su14116552
LeFebvre MJ, Ardren T, Thompson VD, Fitzpatrick SM, Ayers-Rigsby S. In Support of Sustainability: The Historical Ecology of Vertebrate Biodiversity and Native American Harvest Practices in the Florida Keys, USA. Sustainability. 2022; 14(11):6552. https://doi.org/10.3390/su14116552
Chicago/Turabian StyleLeFebvre, Michelle J., Traci Ardren, Victor D. Thompson, Scott M. Fitzpatrick, and Sara Ayers-Rigsby. 2022. "In Support of Sustainability: The Historical Ecology of Vertebrate Biodiversity and Native American Harvest Practices in the Florida Keys, USA" Sustainability 14, no. 11: 6552. https://doi.org/10.3390/su14116552