Multiscale Spatial Distribution Pattern and Influencing Factors on Inland Fishing Gardens in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction and Processing of Fishing Garden Data
2.2. Spatial Data Sources
2.3. Official Data
2.4. Study Methods
2.4.1. Kernel Density Estimate
2.4.2. Geographic Detectors Model
2.4.3. Factors Affecting the Heterogeneity of Fishing Gardens
3. Results
3.1. Multiscale Spatial Characteristics of Fishing Gardens in China
3.1.1. Spatial Distribution Characteristics of Fishing Gardens in China
3.1.2. Spatial Density Characteristics of Fishing Gardens in China
3.1.3. Provincial-Level Characteristics of Fishing Gardens
3.1.4. Municipal-Level Distribution Characteristics of Fishing Gardens
3.2. Natural Environment Factors Influencing on Spatial Heterogeneity of Fishing Gardens
3.3. Assessing the Influence of Social Development Factors on the Spatial Heterogeneity of Fishing Gardens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arlinghaus, R.; Cooke, S.J. Recreational fisheries: Socioeconomic importance, conservation issues and management challenges. In Recreational Hunting, Conservation and Rural Livelihoods: Science and Practice; Blackwell Publishing: Oxford, UK, 2009; pp. 39–58. [Google Scholar]
- Mordue, T. Angling in modernity: A tour through society, nature and embodied passion. Curr. Issues Tour. 2009, 12, 529–552. [Google Scholar] [CrossRef]
- Hyder, K.; Weltersbach, M.S.; Armstrong, M.; Ferter, K.; Townhill, B.; Ahvonen, A.; Strehlow, H.V.; Zolubas, T.; Levrel, H.; Martinez, R.; et al. Recreational sea fishing in Europe in a global context—Participation rates, fishing effort, expenditure, and implications for monitoring and assessment. Fish Fish. 2018, 19, 225–243. [Google Scholar] [CrossRef]
- FAO. GLOBEFISH Highlights; FAO: Rome, Italy, 2017; Volume 2, pp. 65–68. Available online: https://www.fao.org/3/i7332e/i7332e.pdf (accessed on 5 January 2022).
- Quick reading of Chinese recreational fishery development monitoring report (2019). China Fish. 2019, 11, 21. (In Chinese)
- Chinese recreational fishery development monitoring report (2020–2021). China Fish. 2021, 10, 35–41. (In Chinese)
- Ivancso-Horváth, Z.; Ercsey, I. A regional-based analysis of angling tourism. Int. Leis. Rev. 2016, 5, 71–98. [Google Scholar]
- Analysis Report on the Development Trend of Chinese Angling Market in 2020–2026. China Industry Research Report Net. 2020. Available online: http://www.chinairr.org/report/R09/R0904/202006/02-350018.html (accessed on 18 March 2022).
- Xu, X. A small fishing rod catches a big industry. Workers’ Daily, 10 August 2021. [Google Scholar] [CrossRef]
- Hoitsy, G.; Woynarovich, A.; Moth-Poulsen, T. Guide to Trout Farming Based Angling Tourism; Regional Office for Europe and Central Asia: Budapest, Hungary, 2012. Available online: https://www.fao.org/3/ap340e/ap340e.pdf (accessed on 1 January 2022).
- Chinese Fishing Industry Development Plan of the 14th Five Year Period. Available online: http://www.moa.gov.cn/govpublic/YYJ/202201/t20220106_6386439.htm (accessed on 20 March 2022).
- Curtis, J.; Stanley, B. Water quality and recreational angling demand in Ireland. J. Outdoor Recreat. Tour. 2016, 14, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Bonnichsen, O.; Jensen, C.L.; Olsen, S.B. Fishing for more tourists-An empirical investigation of tourist anglers’ preferences for angling site quality. Mar. Policy 2019, 106, 103532. [Google Scholar] [CrossRef]
- Paulrud, A.; Laitila, T. A cost-benefit analysis of restoring the Em River in Sweden: Valuation of angling site characteristics and visitation frequency. Appl. Econ. 2013, 45, 2255–2266. [Google Scholar] [CrossRef]
- Skeate, E.R.; Perrow, M.R.; Tomlinson, M.L.; Madgwick, G.; Harwood, A.J.; Ottewell, D.; Berridge, R.; Winfield, I.J. Fish stocking for recreational angling is culpable for the poor condition of many English lakes designated for conservation purposes. Inland Waters 2022, 12, 19–32. [Google Scholar] [CrossRef]
- O’Toole, A.C.; Hanson, K.C.; Cooke, S.J. The effect of shoreline recreational angling activities on aquatic and riparian habitat within an urban environment: Implications for conservation and management. Environ. Manag. 2009, 44, 324–334. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, K.S. Assessing the value of recreational sea angling in South West England. Fish. Manag. Ecol. 2005, 12, 369–375. [Google Scholar] [CrossRef]
- Rolfe, J.; Prayaga, P. Estimating values for recreational fishing at freshwater dams in Queensland. Aust. J. Agric. Resour. Econ. 2007, 51, 157–174. [Google Scholar] [CrossRef]
- Roberts, A.; Munday, M.; Roche, N.; Brown, A.; Armstrong, M.; Hargreaves, J.; Pilgrim-Morrison, S.; Williamson, K.; Hyder, K. Assessing the contribution of recreational sea angling to the English economy. Mar. Policy 2017, 83, 146–152. [Google Scholar] [CrossRef]
- Zhu, T.H.; Tian, S.; Wang, J.X.; Xu, Z.Y. The current situation and standardized management of fishing industry in Qiandao Lake. China Fish. 2010, 9, 18–20. (In Chinese) [Google Scholar]
- Wang, G.; Zhang, L. Recreation angling—Current situation and countermeasures of new tourism development in Tianjin Binhai New Area. China Fish. 2011, 10, 20–21. (In Chinese) [Google Scholar]
- Xia, H.L.; Dong, H.A. Economic research on the development of leisure fisheries in the coastal area of the seaport tourism city. Agric. Econ. 2013, 1, 45–47. (In Chinese) [Google Scholar]
- Liu, Z.Q.; Zhu, W. The Typology and Distribution of Recreational Fishing Space in Beijing. Urban Des. 2016, 6, 88–95. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, E.D. A study of island tourism development strategy based on SWOT analysis method-A case of 9 island in Wangjia town. Contemp. Econ. Manag. 2009, 31, 47–52. (In Chinese) [Google Scholar]
- Liu, J. Research on the management system of fishing from the perspective of industrial development and resource protection. China Fish. 2021, 7, 42–45. (In Chinese) [Google Scholar]
- Xue, B.; Xiao, X.; Li, J. Identification method and empirical study of urban industrial spatial relationship based on POI big data: A case of Shenyang City, China. Geogr. Sustain. 2020, 1, 152–162. [Google Scholar] [CrossRef]
- Wu, M.; Pei, T.; Wang, W.; Guo, S.; Song, C.; Chen, J.; Zhou, C. Roles of locational factors in the rise and fall of restaurants: A case study of Beijing with POI data. Cities 2021, 113, 103185. [Google Scholar] [CrossRef]
- Miao, R.; Wang, Y.; Li, S. Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing. Sustainability 2021, 13, 647. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Zhang, Z.; Xu, Q.; Li, W. Risk Factor Detection and Landslide Susceptibility Mapping Using Geo-Detector and Random Forest Models: The 2018 Hokkaido Eastern Iburi Earthquake. Remote Sens. 2021, 13, 1157. [Google Scholar] [CrossRef]
- Polykretis, C.; Grillakis, M.G.; Argyriou, A.V.; Papadopoulos, N.; Alexakis, D.D. Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece. Land 2021, 10, 973. [Google Scholar] [CrossRef]
- Zheng, A.; Wang, T.; Li, X. Spatiotemporal Characteristics and Risk Factors of the COVID-19 Pandemic in New York State: Implication of Future Policies. ISPRS Int. J. Geo-Inf. 2021, 10, 627. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Gao, Y.; Chen, X.; Shuai, X.; Mi, J. Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects. J. Remote Sens. 2021, 2021, 5289697. [Google Scholar] [CrossRef]
- Peng, S.Z. Monthly Average Temperature Dataset of China at 1 km Resolution (1901–2017). Northwest Agriculture and Forestry University (Dataset Creation). National Tibetan Plateau/Third Pole Environmental Data Center (Dataset Publication). 29 December 2020. Available online: http://hdl.pid21.cn/21.86109/casearth.5feae826819aec33049b7c3b (accessed on 12 December 2021).
- Sun, Z.C.; Sun, J.; Guo, H.D.; Jiang, H.P.; Gao, J.; Wang, J.B. Dataset on Urban Built-Up Areas of China. (V1). Science Data Bank. 15 December 2022. Available online: https://www.scidb.cn/en/detail?dataSetId=5876ca6bf2064a9f9b8d4b092a7a7ba9&dataSetType=journal (accessed on 5 January 2022). [CrossRef]
- Lin, G. 1:100000 Spatial Distribution Data for Ecosystem Types of China (2010). Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (Dataset Creation). 19 December 2018. Available online: http://hdl.pid21.cn/21.86109/casearth.5c19a5670600cf2a3c557aea (accessed on 16 January 2022).
- Kazmi, S.S.A.; Ahmed, M.; Mumtaz, R.; Anwar, Z. Spatiotemporal clustering and analysis of road accident hotspots by exploiting GIS technology and Kernel density estimation. Comput. J. 2022, 65, 155–176. [Google Scholar] [CrossRef]
- Le, K.G.; Liu, P.; Lin, L.T. Determining the road traffic accident hotspots using GIS-based temporal-spatial statistical analytic techniques in Hanoi, Vietnam. Geo-Spat. Inf. Sci. 2020, 23, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.; Liu, Y.; Cai, E.; Liu, Y.; Zhang, Y. Quantifying the spatiality of urban leisure venues in Wuhan, Central China–GIS-based spatial pattern metrics. Sustain. Cities Soc. 2018, 40, 638–647. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospectiv. Acta Geogr. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Wang, J.F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Huanyong, H. Distribution of China’s population: Accompanying charts and density map. Acta Geogr. Sin. 1935, 2, 33–74. (In Chinese) [Google Scholar]
- Wang, F.; Liu, C.; Xu, Y. Analyzing population density disparity in China with GIS-automated regionalization: The hu line revisited. Chin. Geogr. Sci. 2019, 29, 541–552. [Google Scholar] [CrossRef] [Green Version]
- China Fishery Statistical Yearbook 2019; China Agriculture Publishing Company: Beijing, China, 2019; pp. 17–45. (In Chinese)
- Ding, Q.; Shan, X.; Jin, X.; Gorfine, H.; Wang, Y. Dynamic evolution analysis of recreational fisheries development in China. Fish. Manag. Ecol. 2021, 28, 305–316. [Google Scholar] [CrossRef]
- Zhang, S. Current status and strategies of recreational fishery development in Weiyuan County. Sci. Technol. Mod. Agric. 2014, 21, 277–278. (In Chinese) [Google Scholar]
- Brownscombe, J.W.; Hyder, K.; Potts, W.; Wilson, K.L.; Pope, K.L.; Danylchuk, A.J.; Cooke, S.J.; Clarke, A.; Arlinghaus, R.; Post, J.R. The future of recreational fisheries: Advances in science, monitoring, management, and practice. Fish. Res. 2019, 211, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.J.; Chen, Y.; Wang, D.; Liu, L.T.; Liu, C.; Hughes, R.M.; Liu, Y. Responsible recreational fisheries: A Chinese perspective. Fisheries 2017, 42, 303–307. [Google Scholar] [CrossRef]
Region | Provinces | Number | Percentage of the Total % | Region | Provinces | Number | Percentage of the Total % |
---|---|---|---|---|---|---|---|
Eastern | Hainan | 40 | 0.27 | Western | Tibet | 2 | 0.01 |
Tianjin | 266 | 1.76 | Qinghai | 19 | 0.13 | ||
Shanghai | 284 | 1.88 | Ningxia | 87 | 0.58 | ||
Fujian | 337 | 2.23 | Gansu | 99 | 0.66 | ||
Beijing | 482 | 3.19 | Xinjiang | 120 | 0.8 | ||
Zhejiang | 617 | 4.09 | Inner Mongolia | 132 | 0.87 | ||
Hebei | 692 | 4.59 | Guizhou | 285 | 1.89 | ||
Shandong | 837 | 5.55 | Chongqing | 352 | 2.33 | ||
Jiangsu | 1335 | 8.85 | Guangxi | 371 | 2.46 | ||
Guangdong | 2439 | 16.16 | Shaanxi | 381 | 2.52 | ||
subtotal | 7329 | 48.57 | Yunnan | 444 | 2.94 | ||
Sichuan | 1046 | 6.93 | |||||
Central | Shanxi | 142 | 0.94 | subtotal | 3338 | 22.12 | |
Jiangxi | 227 | 1.5 | |||||
Hunan | 629 | 4.17 | Northeastern | Heilongjiang | 292 | 1.94 | |
Anhui | 713 | 4.72 | Jilin | 315 | 2.09 | ||
Hubei | 807 | 5.35 | Liaoning | 406 | 2.69 | ||
Henan | 892 | 5.91 | subtotal | 1013 | 6.71 | ||
subtotal | 3410 | 22.6 | |||||
Total | - | - | - | - | - | 15,090 | 100 |
Parameters | GDP | POP | TR | PCI | UR | FOV | FPP |
---|---|---|---|---|---|---|---|
q-statistic | 0.651 | 0.644 | 0.507 | 0.393 | 0.258 | 0.122 | 0.075 |
p-value | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Kang, Q.; Wang, Q.; Luo, L.; Wang, T.; Chang, Q. Multiscale Spatial Distribution Pattern and Influencing Factors on Inland Fishing Gardens in China. Sustainability 2022, 14, 6542. https://doi.org/10.3390/su14116542
Huang Y, Kang Q, Wang Q, Luo L, Wang T, Chang Q. Multiscale Spatial Distribution Pattern and Influencing Factors on Inland Fishing Gardens in China. Sustainability. 2022; 14(11):6542. https://doi.org/10.3390/su14116542
Chicago/Turabian StyleHuang, Yong, Qinjun Kang, Qi Wang, Lili Luo, Tingting Wang, and Qingrui Chang. 2022. "Multiscale Spatial Distribution Pattern and Influencing Factors on Inland Fishing Gardens in China" Sustainability 14, no. 11: 6542. https://doi.org/10.3390/su14116542