How Do Environmental Knowledge, Eco-Label Knowledge, and Green Trust Impact Consumers’ Pro-Environmental Behaviour for Energy-Efficient Household Appliances?
Abstract
:1. Introduction
2. Literature Review
2.1. Theoretical Framework
2.2. Environmental Knowledge
2.3. Eco-Label Knowledge
2.4. Attitudes
2.5. Green Trust
2.6. Mediation Effects as Consumer Attitude
2.7. Mediation Effects as Green Trust
3. Methods
3.1. Instrument Development
3.2. Data Collection Procedure
3.3. Data Analysis Approach
4. Analysis and Results
4.1. Model Assessment Using PLS-SEM
4.2. Assessment of the Measurement Model
4.3. Assessment of the Structural Model
4.4. Mediation Analysis
4.5. Importance-Performance Map Analysis
5. Discussion and Conclusions
5.1. Implications
5.2. Limitations and Recommendations for Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Constructs | Items | Sources |
---|---|---|
Environmental knowledge | EK1: I am familiar with energy-saving products EK2: I am very knowledgeable about energy-saving products EK3: I am knowledgeable about energy and the environment | [57,58] |
Eco-label knowledge | ELK1: I know the meaning of the term ‘recycled’ ELK2: I know the meaning of the term ‘eco-friendly’ ELK3: I know the meaning of the term ‘energy-efficiency | [54] |
Attitude | ATT1: It is important to me whether the household appliance is energy-efficient or not ATT2: Environmental protection is important to me when making purchases ATT3: If I can choose between energy-efficient household appliances and conventional products, I prefer energy-efficient ones ATT4: I have a favorable attitude toward purchasing energy-efficient appliances | [10,60] |
Trust | GT1: Energy-saving products are more reliable than other comparative products GT2: Energy-saving products are more trustworthy than other comparative products GT3: Energy-saving products are more secure and keep commitments for environmental protection than other comparative products | [57,61,62] |
Pro-environmental Behaviour | PEB1: I try to buy energy-saving household appliances that don’t harm the environment PEB2: I have purchased a household appliance because it uses less electricity than other brands PEB3: I have replaced household appliance in my home with those of smaller wattage so that will conserve on the electricity I use PEB4: I have purchased light bulbs that were more expensive but saved energy PEB5: PIU1: I hope to use energy-saving products as much as possible PEB6: PIU2: I am likely to use energy-saving products in my life continually PEB7: PIU3: I recommend others to use energy-saving products in their houses | [1,57,63,64] |
References
- Taufique, K.M.R.; Vaithianathan, S. A fresh look at understanding Green consumer behavior among young urban Indian consumers through the lens of Theory of Planned Behavior. J. Clean. Prod. 2018, 183, 46–55. [Google Scholar] [CrossRef]
- Li, Y.; Siddik, A.B.; Masukujjaman, M. Bridging Green Gaps: The Buying Intention of Energy Efficient Home Appliances and Moderation of Green Self-Identity. Appl. Sci. 2021, 11, 9878. [Google Scholar] [CrossRef]
- Nekmahmud, M.; Rahman, S.; Sobhani, F.A.; Olejniczak-Szuster, K.; Fekete-Farkas, M. A systematic literature review on development of green supply chain management. Polish J. Manag. Stud. 2020, 22, 351–370. [Google Scholar] [CrossRef]
- Tanwir, N.S. Predicting Purchase Intention of Hybrid Electric Vehicles: Evidence from an Emerging Economy. World Electr. Veh. J. 2020, 11, 35. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Nuruzzaman, M.; Su, B. Nexus between household energy consumption and economic growth in Bangladesh (1975–2018). Energy Policy 2021, 156, 112420. [Google Scholar] [CrossRef]
- Li, G.; Li, W.; Jin, Z.; Wang, Z. Influence of Environmental Concern and Knowledge on Households’ Willingness to Purchase Energy-Efficient Appliances: A Case Study in. Sustainability 2019, 11, 1073. [Google Scholar] [CrossRef] [Green Version]
- Kollmuss, A.; Agyeman, J. Mind the Gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 2002, 8, 239–260. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.M.; Nekmahmud, M.; Yajuan, L.; Patwary, M.A. Green business value chain: A systematic review. Sustain. Prod. Consum. 2019. [Google Scholar] [CrossRef]
- Ahmed, F.; Al Amin, A.Q.; Hasanuzzaman, M.; Saidur, R. Alternative energy resources in Bangladesh and future prospect. Renew. Sustain. Energy Rev. 2013, 25, 698–707. [Google Scholar] [CrossRef]
- Tan, C.S.; Ooi, H.Y.; Goh, Y.N. A moral extension of the theory of planned behavior to predict consumers’ purchase intention for energy-efficient household appliances in Malaysia. Energy Policy 2017, 107, 459–471. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Guo, D. Policy implications of the purchasing intentions towards energy-efficient appliances among China’s urban residents: Do subsidies work? Energy Policy 2017, 102, 430–439. [Google Scholar] [CrossRef]
- De Medeiros, J.F.; Ribeiro, J.L.D.; Cortimiglia, M.N. Influence of perceived value on purchasing decisions of green products in Brazil. J. Clean. Prod. 2016, 110, 158–169. [Google Scholar] [CrossRef]
- Yadav, R.; Pathak, G.S. Young consumers’ intention towards buying green products in a developing nation: Extending the theory of planned behavior. J. Clean. Prod. 2016, 135, 732–739. [Google Scholar] [CrossRef]
- Testa, F.; Iraldo, F.; Vaccari, A.; Ferrari, E. Why eco-labels can be effective marketing tools: Evidence from a study on italian consumers. Bus. Strateg. Environ. 2015, 24, 252–265. [Google Scholar] [CrossRef]
- Thøgersen, J. Country differences in sustainable consumption: The case of organic food. J. Macromarketing 2010, 30, 171–185. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behavior; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1980. [Google Scholar]
- Ajzen, I. From Intentions to Actions: A theory of Planned Behavior. In Action Control; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Klöckner, C.A.; Nayum, A.; Mehmetoglu, M. Positive and negative spillover effects from electric car purchase to car use. Transp. Res. Part D Transp. Environ. 2013, 21, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Boulstridge, E.; Carrigan, M. Do consumers really care about corporate responsibility? Highlighting the attitude—Behaviour gap. J. Commun. Manag. 2000, 4, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.; Foxall, G.R.; Pallister, J. Marketing Theory An integrated model of recycling. Mark. Theory 2002, 2, 29–113. [Google Scholar] [CrossRef]
- Polonsky, M.J.; Vocino, A.; Grau, S.L.; Garma, R.; Ferdous, A.S. The impact of general and carbon-related environmental knowledge on attitudes and behaviour of US consumers. J. Mark. Manag. 2012, 28, 238–263. [Google Scholar] [CrossRef]
- Rokka, J.; Uusitalo, L. Preference for green packaging in consumer product choices—Do consumers care? Int. J. Consum. Stud. 2008, 32, 516–525. [Google Scholar] [CrossRef]
- Raziuddin, K.; Siwar, C.; Chamhuri, N.; Hasan, F. Integrating General Environmental Knowledge and Eco-Label Knowledge in Understanding Ecologically Conscious Consumer Behavior. Procedia Econ. Financ. 2016, 37, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Taufique, K.M.R.; Vocino, A.; Polonsky, M.J. The influence of eco-label knowledge and trust on pro-environmental consumer behaviour in an emerging market. J. Strateg. Mark. 2017, 25, 511–529. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Q.; Qi, Y. Factors influencing sustainable consumption behaviors: A survey of the rural residents in China. J. Clean. Prod. 2014, 63, 152–165. [Google Scholar] [CrossRef]
- Fabrigar, L.R.; Petty, R.E.; Smith, S.M.; Crites, S.L. Understanding knowledge effects on attitude-behavior consistency: The role of relevance, complexity, and amount of knowledge. J. Pers. Soc. Psychol. 2006, 90, 556–577. [Google Scholar] [CrossRef] [PubMed]
- Kallgren, C.A.; Wood, W. Access to attitude-relevant information in memory as a determinant of attitude-behavior consistency. J. Exp. Soc. Psychol. 1986, 2, 328–338. [Google Scholar] [CrossRef]
- Haron, S.A.; Paim, L.; Yahaya, N. Towards sustainable consumption: An examination of environmental knowledge among Malaysians. Int. J. Consumer Stud. 2005, 29, 426–436. [Google Scholar] [CrossRef]
- Nguyen, P.; Tran, L. The influence of status orientation on green purchase intention: A case of a developing market The influence of status orientation on green purchase intention: A case of a developing market. Int. J. Sustain. Soc. 2021, 13, 129–143. [Google Scholar] [CrossRef]
- Zhang, X.V.; Ha, S.; Chan, G. Do Knowledge and Experience Value Affect Green Tourism Activity Participation and Buying Decision ? A Case Study of Natural Dyeing Experience in China. Sustainability 2021, 13, 8579. [Google Scholar] [CrossRef]
- Nekmahmud, M.; Fekete-Farkas, M. Green Marketing, Investment and Sustainable Development for Green Tourism. In Tourism in Bangladesh: Investment and Development Perspectives; Springer: Singapore, 2021. [Google Scholar]
- Wu, L.M.; Lee, J.W.C.; Lim, Y.M.; Pek, C.K. The Predictors of Electric Vehicles Adoption: An Extended Theory of Planned Behavior; Al-Emran, M., Al-Sharafi, M.A., Al-Kabi, M.N., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Waris, I.; Ahmed, W. Empirical evaluation of the antecedents of energy-efficient home appliances: Application of extended theory of planned behavior. Manag. Environ. Qual. An Int. J. 2020, 31, 915–930. [Google Scholar] [CrossRef]
- Flamm, B. The impacts of environmental knowledge and attitudes on vehicle ownership and use. Transp. Res. Part D Transp. Environ. 2009, 14, 272–279. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Verma, V.K.; Chandra, B. An application of theory of planned behavior to predict young Indian consumers’ green hotel visit intention. J. Clean. Prod. 2018, 172, 1152–1162. [Google Scholar] [CrossRef]
- Chekima, B.; Oswald, A.I.; Wafa, S.A.W.S.K.; Chekima, K. Narrowing the gap: Factors driving organic food consumption. J. Clean. Prod. 2017, 166, 1438–1447. [Google Scholar] [CrossRef]
- Naz, F.; Oláh, J.; Vasile, D.; Magda, R. Green purchase behavior of university students in Hungary: An empirical study. Sustainability 2020, 12, 10077. [Google Scholar] [CrossRef]
- Amberg, N.; Fogarassy, C. Green consumer behavior in the cosmetics market. Resources 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Khan, F.; Ahmed, W.; Najmi, A. Understanding consumers’ behavior intentions towards dealing with the plastic waste: Perspective of a developing country. Resour. Conserv. Recycl. 2019, 142, 49–58. [Google Scholar] [CrossRef]
- Amin, S.; Tarun, M.T. Effect of consumption values on customers’ green purchase intention: A mediating role of green trust. Soc. Responsib. J. 2020. [Google Scholar] [CrossRef]
- Chen, Y.S. The drivers of green brand equity: Green brand image, green satisfaction, and green trust. J. Bus. Ethics 2010, 93, 307–319. [Google Scholar] [CrossRef]
- Ahmad, W.; Zhang, Q. Green purchase intention: Effects of electronic service quality and customer green psychology. J. Clean. Prod. 2020, 267, 122053. [Google Scholar] [CrossRef]
- Muhammad, S.; Raza, M.; Yaseen, M. EconStor. 2019. Available online: www.econstor.eu (accessed on 1 February 2022).
- Chen, M.F.; Lee, C.L. The impacts of green claims on coffee consumers’ purchase intention. Br. Food J. 2015, 117, 195–209. [Google Scholar] [CrossRef]
- Wasaya, A.; Saleem, M.A.; Ahmad, J.; Nazam, M.; Khan, M.M.A.; Ishfaq, M. Impact of green trust and green perceived quality on green purchase intentions: A moderation study. Environ. Dev. Sustain. 2021, 23, 13418–13435. [Google Scholar] [CrossRef]
- Reichheld, F.F.; Schefter, P. E-Loyalty: Your secret weapon on the web. Harv. Bus. Rev. 2000, 78, 105–113. [Google Scholar]
- Alkhurshan, M.; Rjoub, H. The scope of an integrated analysis of trust, switching barriers, customer satisfaction, and loyalty. J. Compet. 2020, 12, 5–21. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Reports 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Nekmahmud, M.; Fekete-Farkas, M. Why not green marketing? Determinates of consumers’ intention to green purchase decision in a new developing nation. Sustainability 2020, 12, 7880. [Google Scholar] [CrossRef]
- Daugbjerg, C.; Smed, S.; Andersen, L.M.; Schvartzman, Y. Improving Eco-labelling as an Environmental Policy Instrument: Knowledge, Trust and Organic Consumption. J. Environ. Policy Plan. 2014, 16, 559–575. [Google Scholar] [CrossRef]
- Brécard, D.; Hlaimi, B.; Lucas, S.; Perraudeau, Y.; Salladarré, F. Determinants of demand for green products: An application to eco-label demand for fish in Europe. Ecol. Econ. 2009, 69, 115–125. [Google Scholar] [CrossRef]
- Park, E.; Kwon, S.J. What motivations drive sustainable energy-saving behavior?: An examination in South Korea. Renew. Sustain. Energy Rev. 2017, 79, 494–502. [Google Scholar] [CrossRef]
- Chang, C. The interplay of product class knowledge and trial experience in attitude formation. J. Advert. 2004, 33, 83–92. [Google Scholar] [CrossRef]
- Ha, H.Y.; Janda, S. Predicting consumer intentions to purchase energy-efficient products. J. Consum. Mark. 2012, 29, 461–469. [Google Scholar] [CrossRef]
- Pavlou, P.A. International Journal of Electronic Commerce. Int. J. Electron. Commer. 2003, 7, 101–134. [Google Scholar]
- Roberts, J.A. Green consumers in the 1990s: Profile and implications for advertising. J. Bus. Res. 1996, 36, 217–231. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Lohmöller, J.-B. Predictive vs. Structural Modeling: PLS vs. ML. In Latent Variable Path Modeling with Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 1989; pp. 199–226. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed.; Sage: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3.0; SmartPLS: Bönningstedt, Germany, 2015. [Google Scholar]
- Aguirre-Urreta, M.I.; Rönkkö, M. Statistical inference with PLSc using bootstrap confidence intervals1. MIS Q. Manag. Inf. Syst. 2018, 42, 1001–1020. [Google Scholar] [CrossRef]
- Cheah, J.; Amran, A.; Yahya, S. External oriented resources and social enterprises’ performance: The dominant mediating role of formal business planning. J. Clean. Prod. 2019, 236, 117693. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Basirat, M.; Yousefi, A.; Nekmahmud, M.; Gholampour, A.; Fekete-Farkas, M. Social Networks Marketing and Consumer Purchase Behavior: The Combination of SEM and Unsupervised Machine Learning Approaches. Big Data Cogn. Comput. 2022, 6, 35. [Google Scholar] [CrossRef]
- Vinzi, V.E.; Chin, W.W.; Henseler, J.; Wang, H. Handbook of Partial Least Squares. Handb. Partial. Least Sq. 2010, 171–193. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and.pdf. J. Mark. Res. 1981, XVIII, 39–50. [Google Scholar] [CrossRef]
- Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. J. e-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.C.; Gerbing, D.W. Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychol. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Thiele, K.O. Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. J. Acad. Mark. Sci. 2017, 45, 616–632. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modelling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F., Jr.; Sarstedt, M.; Ringle, C.M.; Gudergan, S.P. Advanced Issues in Partial Least Squares Structural Equation Modeling; SAGE Publications Ltd: London, UK, 2017. [Google Scholar]
- Atkinson, L.; Rosenthal, S. Signaling the green sell: The influence of eco-label source, argument specificity, and product involvement on consumer trust. J. Advert. 2014, 43, 33–45. [Google Scholar] [CrossRef]
- Hasan, M.M.; Popp, J.; Oláh, J. Current landscape and influence of big data on finance. J. Big Data 2020, 7. [Google Scholar] [CrossRef]
- Hasan, M.M.; Yajuan, L.; Khan, S. Promoting China’s Inclusive Finance Through Digital Financial Services. Glob. Bus. Rev. 2020, 1–23. [Google Scholar] [CrossRef]
- Hasan, M.; Noor, T.; Gao, J.; Usman, M.; Abedin, M.Z. Rural Consumers’ Financial Literacy and Access to FinTech Services. J. Knowl. Econ. 2022. [Google Scholar] [CrossRef]
Variables | Frequency | Percent | |
---|---|---|---|
Gender | Male | 950 | 63 |
Female | 560 | 37 | |
Age | 21–30 years | 280 | 19 |
31–40 years | 268 | 17 | |
41–50 years | 482 | 32 | |
51–60 years | 240 | 15 | |
61–70 years | 200 | 14 | |
Above 70 years | 40 | 3 | |
Level of Education | Secondary | 250 | 17 |
Higher secondary | 380 | 25 | |
Undergraduate | 510 | 34 | |
Master/Postgraduate | 370 | 24 | |
Family Size | 2–3 | 160 | 11 |
4–5 | 540 | 36 | |
6–7 | 612 | 40 | |
More than 7 | 198 | 13 | |
Income (monthly) | USD 120–240 | 440 | 29 |
USD 241–360 | 468 | 31 | |
USD 361–480 | 256 | 17 | |
USD 481–600 | 148 | 10 | |
USD 601–720 | 84 | 5 | |
Above USD 720 | 1144 | 8 | |
Profession | Farmer | 452 | 30 |
Government job | 268 | 18 | |
Private job | 180 | 12 | |
Entrepreneur | 380 | 25 | |
Others | 230 | 15 | |
N = | 1510 |
Constructs | Items | Factor Loading | CR | Cronbach’s a | rho_A | (AVE) | Full Collinearity VIFs | Model Types |
---|---|---|---|---|---|---|---|---|
Environmental knowledge | EK1 | 0.769 | 0.829 | 0.690 | 0.691 | 0.618 | 1.281 | |
EK2 | 0.829 | 1.527 | Reflective | |||||
EK3 | 0.758 | 1.352 | ||||||
Eco-label knowledge | ELK1 | 0.852 | 0.891 | 0.816 | 0.816 | 0.731 | 1.915 | |
ELK2 | 0.878 | 2.055 | ||||||
ELK3 | 0.834 | 1.614 | Reflective | |||||
Attitude | ATT1 | 0.728 | 0.826 | 0.684 | 0.692 | 0.613 | 1.267 | |
ATT2 | 0.805 | 1.377 | ||||||
ATT3 | 0.812 | 1.374 | ||||||
Green trust | GT1 | 0.788 | 0.848 | 0.732 | 0.735 | 0.651 | 1.464 | |
GT2 | 0.828 | 1.642 | Reflective | |||||
GT3 | 0.803 | 1.362 | ||||||
Pro-environmental behaviour | PEB1 | 0.736 | 0.868 | 0.816 | 0.823 | 0.526 | 1.602 | |
PEB2 | 0.744 | 1.611 | ||||||
PEB3 | 0.559 | 1.210 | Reflective | |||||
PEB5 | 0.778 | 1.816 | ||||||
PEB6 | 0.764 | 1.749 | ||||||
PEB7 | 0.746 | 1.580 |
Fornell–Larcker Criterion | |||||
---|---|---|---|---|---|
Constructs | ATT | ELK | EK | GT | PEB |
ATT | 0.783 | ||||
ELK | 0.295 | 0.855 | |||
EK | 0.357 | 0.343 | 0.786 | ||
GT | 0.367 | 0.314 | 0.395 | 0.807 | |
PEB | 0.450 | 0.410 | 0.373 | 0.527 | 0.725 |
Heterotrait–Monotrait Ratio (HTMT) | |||||
ATT | |||||
ELK | 0.392 | ||||
EK | 0.517 | 0.461 | |||
GT | 0.515 | 0.396 | 0.553 | ||
PEB | 0.597 | 0.496 | 0.494 | 0.689 |
R Square | R Square Adjusted | |
---|---|---|
Attitude | 0.161 | 0.16 |
Green trust | 0.192 | 0.191 |
Pro-environmental behaviour | 0.402 | 0.4 |
Hypothesis | Relationship | Mean | Std. | T Statistics | p Values | Supported |
---|---|---|---|---|---|---|
H1 | Environmental knowledge → Attitude | 0.290 | 0.026 | 11.152 | 0.000 | Yes |
H2 | Environmental knowledge → Green trust | 0.327 | 0.024 | 13.498 | 0.000 | Yes |
H3 | Environmental knowledge → Pro-environmental behaviour | 0.081 | 0.026 | 3.178 | 0.001 | Yes |
H4 | Eco-label knowledge → Attitude | 0.196 | 0.027 | 7.353 | 0.000 | Yes |
H5 | Eco-label knowledge → Green trust | 0.200 | 0.027 | 7.341 | 0.000 | Yes |
H6 | Eco-label knowledge → Pro-environmental behaviour | 0.233 | 0.026 | 9.087 | 0.000 | Yes |
H7 | Attitude → Pro-environmental behaviour | 0.204 | 0.029 | 7.093 | 0.000 | Yes |
H8 | Green trust → Pro-environmental behaviour | 0.348 | 0.024 | 14.340 | 0.000 | Yes |
H9 | Green trust → Attitude | 0.209 | 0.034 | 8.093 | 0.000 | Yes |
Hypotheses | Relationships | Original Sample | Mean | Std. | T Statistics | p-Values | Results |
---|---|---|---|---|---|---|---|
H10a | EK → ATT→ PEB | 0.067 | 0.067 | 0.010 | 6.749 | 0.000 | supported |
H10b | ELK → ATT → PEB | 0.046 | 0.046 | 0.008 | 5.392 | 0.000 | supported |
H10c | GT → ATT → PEB | 0.052 | 0.0527 | 0.009 | 7.745 | 0.000 | supported |
H10d | EK → GT → PEB | 0.113 | 0.114 | 0.011 | 10.007 | 0.000 | supported |
H10e | ELK → GT → PEB | 0.070 | 0.070 | 0.011 | 6.397 | 0.000 | supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, I.; Nekmahmud, M.; Fekete-Farkas, M. How Do Environmental Knowledge, Eco-Label Knowledge, and Green Trust Impact Consumers’ Pro-Environmental Behaviour for Energy-Efficient Household Appliances? Sustainability 2022, 14, 6513. https://doi.org/10.3390/su14116513
Hossain I, Nekmahmud M, Fekete-Farkas M. How Do Environmental Knowledge, Eco-Label Knowledge, and Green Trust Impact Consumers’ Pro-Environmental Behaviour for Energy-Efficient Household Appliances? Sustainability. 2022; 14(11):6513. https://doi.org/10.3390/su14116513
Chicago/Turabian StyleHossain, Imran, Md. Nekmahmud, and Maria Fekete-Farkas. 2022. "How Do Environmental Knowledge, Eco-Label Knowledge, and Green Trust Impact Consumers’ Pro-Environmental Behaviour for Energy-Efficient Household Appliances?" Sustainability 14, no. 11: 6513. https://doi.org/10.3390/su14116513