The Impact of Firm Heterogeneity and External Factor Change on Innovation: Evidence from the Vehicle Industry Sector
Abstract
:1. Introduction
2. Literature Review
2.1. Public Subsidies and STI Capability
2.2. Financial Performance and STI Capability
2.3. Firm Characteristics and STI Capability
2.4. Internal and External Factor of Traditional Fuel Vehicle Firm
3. Sample and Data Collection
3.1. Scientific, Technological and Innovative (STI) Capacity
3.2. Financial Performance
3.3. Firm Characteristics
4. Model Specification
4.1. Basic Regression Model
4.2. GMM Regression Model
5. Empirical Analysis
5.1. Panel Framework Tests
5.2. Panel Estimator and Empirical Results
5.2.1. Firms’ External Factor
5.2.2. Firms’ External Factor: Financial Performance
5.2.3. Firms’ External Factor: Firm Characteristics
5.3. Heterogeneity Test
5.4. Robustness Check
6. Conclusions
7. Contributions, Limitation, Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Ye, R.-K.; Gao, Z.-F.; Fang, K.; Liu, K.-L.; Chen, J.-W. Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China’s NEVs in the post-subsidy era. Technol. Forecast. Soc. Change 2021, 168, 120757. [Google Scholar] [CrossRef]
- Wu, Z.; Shao, Q.; Su, Y.; Zhang, D. A socio-technical transition path for new energy vehicles in China: A multi-level perspective. Technol. Forecast. Soc. Chang. 2021, 172, 121007. [Google Scholar] [CrossRef]
- He, H.; Li, S.; Wang, S.; Chen, Z.; Zhang, J.; Zhao, J.; Ma, F. Electrification decisions of traditional automakers under the dual-credit policy regime. Transp. Res. Part D-Transp. Environ. 2021, 98, 102956. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, F. Carbon Emission Reduction and Coordination Strategies for New Energy Vehicle Closed-Loop Supply Chain under the Carbon Trading Policy. Complexity 2021, 2021, 3720373. [Google Scholar] [CrossRef]
- Qin, S.; Xiong, Y. Differential impact of subsidised and nonsubsidized policies on the innovation of new energy vehicle enterprises: Evidence from China. Asian J. Technol. Innov. 2022, 1–24. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, X.; Fang, F.; Zhang, X.; Guo, N. A trust-enhanced and preference-aware collaborative method for recommending new energy vehicle. Environ. Sci. Pollut. Res. 2021, 28, 7901–7917. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Zhang, X.; Wei, J. Research on the effect of enterprise financial flexibility on sustainable innovation. J. Innov. Knowl. 2022, 7, 100184. [Google Scholar] [CrossRef]
- Luo, X.; Huang, F.; Tang, X.; Li, J. Government subsidies and firm performance: Evidence from high-tech start-ups in China. Emerg. Mark. Rev. 2021, 49, 100756. [Google Scholar] [CrossRef]
- Yu, F.; Wang, L.; Li, X. The effects of government subsidies on new energy vehicle enterprises: The moderating role of intelligent transformation. Energy Policy 2020, 141, 111463. [Google Scholar] [CrossRef]
- Bohnsack, R.; Kurtz, H.; Hanelt, A. Re-examining path dependence in the digital age: The evolution of connected car business models. Res. Policy 2021, 50, 104328. [Google Scholar] [CrossRef]
- Chen, Y.; Ni, L.; Liu, K. Innovation efficiency and technology heterogeneity within China’s new energy vehicle industry: A two-stage NSBM approach embedded in a three-hierarchy meta-frontier framework. Energy Policy 2022, 161, 112708. [Google Scholar] [CrossRef]
- Sung, B.; Soh, J.Y.; Park, C.G. Comparing government support, firm heterogeneity, and inter-firm spillovers for productivity enhancement: Evidence from the Korean solar energy technology industry. Energy 2022, 246, 123250. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Shaikh, R.; Ranjha, A.R.; Batala, L.K. Do government subsidies promote financial performance? Fresh evidence from China’s new energy vehicle industry. Sustain. Prod. Consum. 2021, 28, 142–153. [Google Scholar] [CrossRef]
- Qi, X.; Guo, Y.; Guo, P.; Yao, X.; Liu, X. Do subsidies and R&D investment boost energy transition performance? Evidence from Chinese renewable energy firms. Energy Policy 2022, 164, 112909. [Google Scholar]
- Ledna, C.; Muratori, M.; Brooker, A.; Wood, E.; Greene, D. How to support EV adoption: Tradeoffs between charging infrastructure investments and vehicle subsidies in California. Energy Policy 2022, 165, 112931. [Google Scholar] [CrossRef]
- Trencher, G.; Truong, N.; Temocin, P.; Duygan, M. Top-down sustainability transitions in action: How do incumbent actors drive electric mobility diffusion in China, Japan, and California? Energy Res. Soc. Sci. 2021, 79, 102184. [Google Scholar] [CrossRef]
- Zhang, W.; Chiu, Y.-B.; Hsiao, C.Y.-L. Effects of country risks and government subsidies on renewable energy firms’ performance: Evidence from China. Renew. Sustain. Energy Rev. 2022, 158, 112164. [Google Scholar] [CrossRef]
- Lim, S.; Dolsak, N.; Prakash, A.; Tanaka, S. Distributional concerns and public opinion: EV subsidies in the U.S. and Japan. Energy Policy 2022, 164, 112883. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, G.; Wang, X.; Wei, G.; Han, G.; Zhu, J.; Wei, X.; Dai, H. Investigating the critical characteristics of thermal runaway process for LiFePO4/graphite batteries by a ceased segmented method. iScience 2021, 24, 103088. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Y.; Zhao, X. Investment in renewable energy resources, sustainable financial inclusion and energy efficiency: A case of US economy. Resour. Policy 2022, 77, 102680. [Google Scholar] [CrossRef]
- Damrich, S.; Kealey, T.; Ricketts, M. Crowding in and crowding out within a contribution good model of research. Res. Policy 2022, 51, 104400. [Google Scholar] [CrossRef]
- Fernández, S.; Torrecillas, C.; Labra, R.E. Drivers of eco-innovation in developing countries: The case of Chilean firms. Technol. Forecast. Soc. Chang. 2021, 170, 120902. [Google Scholar] [CrossRef]
- Pham, T.T.T.; Nguyen, K.S.; Nguyen, H.H.; Nguyen, L.T.; Vo, V.X. Dynamic entrepreneurship, planned innovation, and firm profitability: Evidence from a Southeast Asian country. Heliyon 2021, 7, e07599. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Y.; Liu, X.; Zhang, H. Can public R&D subsidy facilitate firms’ exploratory innovation? The heterogeneous effects between central and local subsidy programs. Res. Policy 2021, 50, 104221. [Google Scholar]
- Becker, A.; Hottenrott, H.; Mukherjee, A. Division of labor in R&D? Firm size and specialization in corporate research. J. Econ. Behav. Organ. 2022, 194, 1–23. [Google Scholar]
- Khurana, S.; Haleem, A.; Luthra, S.; Mannan, B. Evaluating critical factors to implement sustainable oriented innovation practices: An analysis of micro, small, and medium manufacturing enterprises. J. Clean. Prod. 2021, 285, 125377. [Google Scholar] [CrossRef]
- Maltz, E.; Pierson, K. Maximizing corporate social innovation to enhance social and shareholder value: A systems thinking model of industry transformation. J. Bus. Res. 2022, 138, 12–25. [Google Scholar] [CrossRef]
- Shao, W.; Yang, K.; Bai, X. Impact of financial subsidies on the R&D intensity of new energy vehicles: A case study of 88 listed enterprises in China. Energy Strategy Rev. 2021, 33, 100580. [Google Scholar]
- Jin, C.; Liu, A.; Liu, H.; Gu, J.; Shao, M. How business model design drives innovation performance: The roles of product innovation capabilities and technological turbulence. Technol. Forecast. Soc. Chang. 2022, 178, 121591. [Google Scholar] [CrossRef]
- Wan, Q.; Chen, J.; Yao, Z.; Yuan, L. Preferential tax policy and R&D personnel flow for technological innovation efficiency of China’s high-tech industry in an emerging economy. Technol. Forecast. Soc. Chang. 2022, 174, 121228. [Google Scholar]
- Zhang, X.; Zhou, H. The effect of market competition on corporate cash holdings: An analysis of corporate innovation and financial constraint. Int. Rev. Financ. Anal. 2022, 82, 102163. [Google Scholar] [CrossRef]
- Amin, Q.A.; Cumming, D. Blockholders and real earnings management-the emerging markets context. J. Int. Financ. Mark. Inst. Money 2021, 75, 101434. [Google Scholar] [CrossRef]
- Bai, R.; Lin, B.; Liu, X. Government subsidies and firm-level renewable energy investment: New evidence from partially linear functional-coefficient models. Energy Policy 2021, 159, 112610. [Google Scholar] [CrossRef]
- Luan, R.; Lin, B. Positive or negative? Study on the impact of government subsidy on the business performance of China’s solar photovoltaic industry. Renew. Energy 2022, 189, 1145–1153. [Google Scholar] [CrossRef]
- Fan, D.; Liang, T.; Yeung, A.C.L.; Zhang, H. The impact of capacity-reduction initiatives on the stock market value of Chinese manufacturing firms. Int. J. Prod. Econ. 2020, 223, 107533. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Zhang, D.; Xie, C. The capital market responses to new energy vehicle (NEV) subsidies: An event study on China. Energy Econ. 2022, 105, 105677. [Google Scholar] [CrossRef]
- Riquelme-Medina, M.; Stevenson, M.; Barrales-Molina, V.; Llorens-Montes, F.J. Coopetition in business Ecosystems: The key role of absorptive capacity and supply chain agility. J. Bus. Res. 2022, 146, 464–476. [Google Scholar] [CrossRef]
- Maldonado-Guzmán, G.; Pinzón-Castro, S.Y.P.-C. Financial resources, eco-innovation and sustainability performance in automotive industry. TEC Empresarial 2022, 16, 34–54. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, Y.; Dowling, N.M. An analysis of factors predicting memory loss in Alzheimer’s disease prevention. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1281–1288. [Google Scholar]
- Wang, H.; Zhao, L.; Hu, M. The Morbidity of Multivariable Grey Model MGM (1, m). Int. J. Differ. Equ. 2017, 2017, 2495686. [Google Scholar] [CrossRef] [Green Version]
Type of Variables | Variable | Definition |
---|---|---|
Dependent Variables | ||
STI capability (STI) | Scientific, technological and innovative capability | |
Input | R&D expenditures | Research and development expenses |
R&D personnel | Number of Research and Development personnel | |
Output | Patent | Number of patents granted |
Operating Income | Total operating income | |
Independent Variables | ||
External factor | Public subsidy | Total Public Subsidy |
Internal factors | Financial Performance | |
Return on Total Assets (ROA) | The ratio of net income to the total assets | |
Capital Leverage (LEV) | Assets and Liabilities | |
Dividend Payout Ratio (Payouts) | Share of dividends in net income | |
Equity Attributable to Shareholders of Parent Company (Equity Attributable) | Equity of the parent company in the consolidated statements | |
Firm Characteristics | ||
Herfindahl Index (Herf) | Ownership concentration | |
Number of employees (No. of Employee) | Firm size | |
Employee education level (Education) | Graduate degree or above | |
Gender | Gender of executives | |
Control variables | Regional Economic Development level (REDI) | Annual regional GDP value |
Panel A: Sample Characteristics—NEV Firms | ||||||||||
STI | Subsidy | ROA | LEV | Payouts | Equity Attributable | Herf | No. of Employees | Gender | Education | |
Mean | 0.5155 | 12.9601 | 2.7509 | 3.6727 | 3.4055 | 15.0119 | 4.0732 | 7.4752 | 0.0408 | 3.7992 |
Std. Dev | 0.1685 | 7.8159 | 0.6962 | 0.6999 | 0.6872 | 0.3263 | 0.2883 | 1.2994 | 0.1978 | 1.3516 |
Minimum | 0.2350 | 0.0000 | −1.1802 | 0.8855 | 0.8890 | 1.6958 | 2.1724 | 3.7612 | 0.0000 | 0.0000 |
Maximum | 1.0000 | 21.4164 | 4.9451 | 15.3630 | 10.4839 | 16.0639 | 4.6051 | 12.3207 | 1.0000 | 8.0983 |
Sample Characteristics—Traditional Fuel Vehicle Firms | ||||||||||
Mean | 0.3909 | 9.0254 | 2.8110 | 3.7062 | 3.5574 | 11.9789 | 4.0968 | 7.6587 | 0.0409 | 3.3254 |
Std. Dev | 0.0983 | 7.7565 | 0.5918 | 0.5388 | 0.6352 | 1.1235 | .2572 | 1.2157 | 0.1981 | 1.5582 |
Minimum | 0.2038 | 0.0000 | −1.8127 | 0.9303 | 0.8902 | 5.3188 | 2.6012 | 1.6094 | 0.0000 | 0.0000 |
Maximum | 1.0000 | 22.1095 | 7.6442 | 7.9880 | 7.2373 | 17.0736 | 4.6167 | 12.2900 | 1.0000 | 10.1821 |
Panel B: Correlation Between Independent Variables | ||||||||||
Subsidy | ROA | LEV | Payouts | Equity Attributable | Herf | No. of Employees | Gender | Education | ||
Subsidy | 1.0000 | |||||||||
ROA | 0.0362 ** | 1.0000 | ||||||||
LEV | 0.0033 | −0.0515 *** | 1.0000 | |||||||
Payouts | 0.0122 | −0.0149 | −0.1200 *** | 1.0000 | ||||||
Equity Attributable | −0.3746 *** | −0.0436 *** | −0.0088 | −0.1083 *** | 1.0000 | |||||
Herf | 0.0396 ** | 0.1371 *** | −0.1449 *** | −0.0049 | −0.0078 | 1.0000 | ||||
No. of Employee | 0.1620 *** | −0.0586 *** | 0.3178 *** | −0.0424 *** | 0.2253 *** | −0.0680 *** | 1.0000 | |||
Gender | 0.0182 | −0.0296 ** | −0.0488*** | 0.0144 | −0.0216 | −0.0090 | −0.0507 | 1.0000 | ||
Education | −0.0132 | −0.0796 *** | 0.2211 *** | −0.0760 *** | 0.4429 *** | −0.1116 *** | 0.6573 | −0.0696 *** | 1.0000 | |
Panel C: Multicollinearity | ||||||||||
Subsidy | ROA | LEV | Payouts | Equity Attributable | Herfindahl Index | No. of Employees | Gender | Education | ||
Variance inflation factor | 1.02 | 1.03 | 1.13 | 1.02 | 1.07 | 1.04 | 1.95 | 1.03 | 1.84 | |
Tolerance | 0.9834 | 0.9662 | 0.8847 | 0.9334 | 0.9141 | 0.9636 | 0.5123 | 0.9664 | 0.5438 |
Independent Variables | Dependent Variable STIit | ||||||
---|---|---|---|---|---|---|---|
Panel A: Fixed-Effect Regressions | Panel B: Group Test for Regional Factors | ||||||
(1) NEV | (2) Traditional Fuel Vehicle | (3) Automobile Industry | (4) First-Tier Cities | (5) Non-First-Tier Cities | (6) First-Tier Cities | (7) Non-First-Tier Cities | |
Subsidy | 0.0024 *** (0.0005) | 0.0009 *** (0.0002) | 0.0023 *** (0.0005) | 0.0038 *** (0.0009) | 0.0016 ** (0.0007) | 0.0017 *** (0.0006) | 0.0006 *** (0.0002) |
ROA | 0.0051 (0.0042) | 0.0054 *** (0.0018) | 0.0047 * (0.0032) | −0.0028 (0.0083) | 0.0008 (0.0058) | 0.0102 ** (0.0039) | 0.0038 * (0.0020) |
LEV | 0.0059 (0.0052) | −0.0038 (0.0048) | 0.0051 (0.0046) | −0.0131 * (0.0224) | 0.0073 (0.0049) | −0.0043 (0.0090) | −0.0025 (0.0053) |
Payouts | 0.0049 * (0.0054) | 0.0066 *** (0.0019) | 0.0034 ** (0.0035) | −0.0056 (0.0126) | 0.0083 (0.0061) | 0.0088 (0.0059) | 0.0054 *** (0.0019) |
Equity Attributable | −0.0099 *** (0.0027) | −0.0129 *** (0.0030) | −0.0279 *** (0.0061) | 0.0293 ** (0.0721) | −0.0086 *** (0.0032) | −0.0135 ** (0.0056) | −0.0116 *** (0.0032) |
Herf | 0.0513 ** (0.0206) | 0.0063 (0.0091) | 0.0491 *** (0.0150) | 0.0414 (0.0308) | 0.0540 ** (0.0252) | 0.0002 (0.0302) | −0.0074 (0.0080) |
No. of Employees | −0.0132 *** (0.0038) | −0.0307 *** (0.0037) | −0.0157 *** (0.0037) | −0.0103 * (0.0094) | −0.0207 *** (0.0070) | −0.0172 *** (0.0042) | −0.0388 *** (0.0043) |
Education | 0.0031 (0.00489) | −0.0089 *** (0.0020) | −0.0041 (0.0030) | 0.0101 (0.0106) | 0.0104 * (0.0058) | −0.0156 *** (0.0047) | −0.0060 *** (0.0020) |
Gender | 0.01241 (0.0338) | 0.0018 (0.0109) | 0.0035 (0.0166) | 0.0012 (0.0511) | 0.0322 (0.0495) | 0.0196 (0.0235) | 0.0019 (0.0135) |
REDL | 0.1107 *** (0.0127) | 0.0081 * (0.0043) | 0.0817 *** (0.0094) | −0.0156 (1.1177) | 0.4685 (0.1200) | 0.7045 (0.1808) | 0.8440 (0.0607) |
_cons | −0.4572 ** (0.2081) | 0.7183 *** (0.0814) | 0.2686 *** (0.0947) | ||||
Individual effect | controlled | controlled | controlled | controlled | controlled | controlled | controlled |
Time effect | controlled | controlled | controlled | controlled | controlled | controlled | controlled |
F (N (0,1)) | 13.86 | 27.46 | 47.08 | 3.43 | 4.15 | 24.35 | 57.56 |
Observations | 1918 | 2882 | 4818 | 660 | 1257 | 638 | 2244 |
Dependent Variable | Dependent Variable STIit | |||||
---|---|---|---|---|---|---|
Panel A New Energy Vehicle Firms | Panel B Traditional Fuel Vehicle Firms | |||||
(1) | (2) | (3) | (4) | (5) | (6) | |
ROA | 0.0092 ** (0.0043) | 0.0074 * (0.0043) | 0.0097 *** (0.0019) | 0.0054 *** (0.0018) | ||
LEV | −0.0025 (0.0074) | 0.0055 (0.0056) | −0.0251 *** (0.0042) | −0.0054 (0.0048) | ||
Payouts | 0.0052 (0.0052) | 0.0042 (0.0052) | 0.0036 * (0.0020) | 0.0055 *** (0.0020) | ||
Equity Attributable | −0.0187 ** (−0.0187) | −0.0103 *** (0.0029) | −0.0414 *** (0.0025) | −0.0134 *** (0.0030) | ||
Herf | 0.0655 *** (0.0215) | 0.0680 *** (0.0213) | −0.0042 (0.0090) | 0.0005 (0.0087) | ||
No. of Employees | −0.0141 *** (0.0047) | −0.0137 *** (0.0048) | −0.0360 *** (0.0036) | −0.0300 *** (0.0037) | ||
Education | 0.0060 * (0.0049) | 0.0057 (0.0048) | −0.0135 *** (0.0017) | −0.0099 *** (0.0020) | ||
Gender | 0.0175 (0.0355) | 0.0108 (0.0335) | 0.0010 (0.0105) | 0.0005 (0.0106) | ||
REDL | 0.0984 *** (0.0984) | 0.1090 *** (0.0133) | 0.1106 *** (0.0133) | 0.0050 (0.0045) | 0.0040 (0.0042) | 0.0070 (0.0043) |
_cons | −0.2780 (0.1939) | −0.7764 *** (0.1549) | −0.7074 *** (0.1676) | 0.8880 *** (0.0596) | 0.6872 *** (0.0721) | 0.7246 *** (0.0803) |
Individual effect | controlled | controlled | controlled | controlled | controlled | controlled |
Time effect | controlled | controlled | controlled | controlled | controlled | controlled |
F (N (0,1)) | 13.98 | 18.21 | 28.36 | 69.11 | 105.10 | 48.28 |
Observations | 1918 | 1918 | 1918 | 2882 | 2882 | 2882 |
Dependent Variable | Dependent Variable STIit | |||
---|---|---|---|---|
Panel A New Energy Vehicle Firms | Panel B Traditional Automobile Firms | |||
(1) Difference_GMM | (2) System_GMM | (3) Difference_GMM | (4) System_GMM | |
STIi-1,t | 0.3657 *** (0.0680) | 0.4942 *** (0.0353) | 0.2109 *** (0.0555) | 0.5043 *** (0.0729) |
STIi-2,t | 0.1705 ** (0.0624) | 0.2582 *** (0.0381) | 0.0084 (0.0369) | 0.0929 *** (0.0280) |
Subsidyi-1,t | 0.0025 *** (0.0015) | 0.0013 * (0.0010) | 0.0094 *** (0.0022) | 0.0075 *** (0.0022) |
Subsidyi-2,t | 0.0033 * (0.0016) | 0.0017 (0.0012) | −0.0041 * (0.0023) | −0.0054 * (0.0031) |
ROA | 0.0011 (0.0096) | 0.0105 (0.0087) | 0.0041 (0.0055) | 0.0052 (0.0061) |
LEV | 0.0215 (0.0168) | −0.0082 (0.0126) | 0.0044 * (0.0044) | −0.0003 (0.0083) |
Payouts | −0.0222 (0.0172) | −0.0156 (0.0105) | 0.0087 (0.0087) | 0.0095 * (0.0050) |
Equity Attributable | −0.0390 (0.0304) | −0.0026 (0.0150) | 0.0008 (0.0068) | −0.0056 (0.0061) |
Herf | 0.0776 * (0.0448) | 0.0761 ** (0.0307) | 0.0346 * (0.0197) | 0.0116 (0.0178) |
No. of Employees | 0.0042 *** (0.0189) | 0.0142 (0.0091) | −0.0303 *** (0.0109) | −0.0023 (0.0096) |
Education | 0.0029 (0.0109) | 0.0110 * (0.0065) | −0.0036 (0.0031) | −0.0083 ** (0.0040) |
Gender | −0.0007 (0.0478) | −0.0396 ** (0.0174) | 0.0012 (0.0273) | −0.0020 (0.0093) |
REDL | 0.0038 (0.0265) | 0.0010 (0.0062) | 0.0147 (0.0114) | 0.0168 *** (0.0051) |
AR(1) | 0.000 | 0.000 | 0.000 | 0.000 |
AR(2) | 0.588 | 0.993 | 0.619 | 0.630 |
Sagan Test | 109.15 | 166.43 | 284.33 | 323.65 |
Hansen Test | 110.94 | 157.54 | 162.56 | 161.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, D.; Hu, M.; Zhao, L.; Liu, S. The Impact of Firm Heterogeneity and External Factor Change on Innovation: Evidence from the Vehicle Industry Sector. Sustainability 2022, 14, 6507. https://doi.org/10.3390/su14116507
Feng D, Hu M, Zhao L, Liu S. The Impact of Firm Heterogeneity and External Factor Change on Innovation: Evidence from the Vehicle Industry Sector. Sustainability. 2022; 14(11):6507. https://doi.org/10.3390/su14116507
Chicago/Turabian StyleFeng, Danlei, Mingzhao Hu, Lingdi Zhao, and Sha Liu. 2022. "The Impact of Firm Heterogeneity and External Factor Change on Innovation: Evidence from the Vehicle Industry Sector" Sustainability 14, no. 11: 6507. https://doi.org/10.3390/su14116507
APA StyleFeng, D., Hu, M., Zhao, L., & Liu, S. (2022). The Impact of Firm Heterogeneity and External Factor Change on Innovation: Evidence from the Vehicle Industry Sector. Sustainability, 14(11), 6507. https://doi.org/10.3390/su14116507