Effect of Graphene Oxide and Fly Ash on Frost Resistance of the Steel Fiber Reinforced Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Parameters
2.2. Test Design
2.3. Experiment Method
2.3.1. Freeze-Thaw Cycle Test
2.3.2. Industrial CT Scanning
2.3.3. Mechanical Property Test
3. Results and Discussion
3.1. Macroscopic Mechanism Analysis
3.1.1. Analysis of GO on the Frost Resistance of the Ordinary SFRC
Mass Loss and Relative Dynamic Modulus of Elasticity with GO-SFRC
Mechanical Properties of GO-SFRC
3.1.2. Analysis of GO-FA on the Frost Resistance of the Ordinary SFRC
Mass Loss of GO-FA-SFRC
Relative Dynamic Elastic Modulus of GO-FA-SFRC
Mechanical Properties of GO-FA-SFRC
3.2. Microscopic Mechanism Analysis
3.2.1. Distribution of the Microscopic Pore Structure of GO-SFRC
3.2.2. Distribution of the Microscopic Pore Structure of GO-FA-SFRC
3.3. Pore Size Distribution
3.3.1. Pore Distribution of GO-SFRC
3.3.2. Pore Distribution of GO-FA-SFRC
4. Conclusions
- (1)
- The addition of GO and FA to SFRC has different degrees of improvement on the frost resistance. According to the analysis of compressive strength loss, relative dynamic elastic modulus and mass loss, it is determined that frost resistance of GO-FA-SFRC is the best when the GO content is 0.03% and the FA content is 30%.
- (2)
- The frost resistance indexes of GO-SFRC are better than ordinary steel fiber concrete. Compared with SFRC, the pore distribution of GO-SFRC is more uniform, and the pore shape of GO-SFRC is similar to the spherical and ellipsoidal closed pore. This pore shape has a significant effect in improving the frost resistance of concrete.
- (3)
- Since GO has a powerful regulatory effect, the pore morphology of GO-SFRC is spherical and ellipsoidal by adding 0.03% GO. Furthermore, the addition of 30% FA makes the large volume pores of GO-SFRC become tiny volume pores so that GO-FA-SFRC presents better frost resistance.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sanchez, F.; Sobolev, K. Nanotechnology in concrete—A review. Constr. Build. Mater. 2010, 24, 2060–2071. [Google Scholar] [CrossRef]
- Li, W.; Ji, W.; Forood-Torabian, I.; Wang, Y.; Li, G.; Liu, Y.; Xing, F. Nano-Silica Sol-Gel and Carbon Nanotube Coupling Effect on the Performance of Cement-Based Materials. Nanomaterials 2017, 7, 185. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.X.; Li, C.; Zhao, Z.; Qi, Y.Z.; Yang, Z.H.; Jia, D.C.; Zhong, J.; Zhou, Y. 3D printing geopolymer nanocomposites: Graphene oxide size effects on a reactive matrix. Carbon 2020, 164, 215–223. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, D.; Zhang, S.; Cui, H.; Li, D. Effect of Nano-SiO2 on the Hydration and Microstructure of Portland Cement. Nanomaterials 2016, 6, 241. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.Y.; Kim, S.; Park, G.J.; Park, J.J.; Kim, S.W. Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites. Compos. Struct. 2017, 174, 375–388. [Google Scholar] [CrossRef]
- Alrekabi, S.; Cundy, A.B.; Lampropoulos, A.; Whitby, R.L.D.; Savina, I. Mechanical performance of novel cement-based composites prepared with nano-fibres, and hybrid nano- and micro-fibers. Compos. Struct. 2017, 178, 145–156. [Google Scholar] [CrossRef]
- Qureshi, T.S.; Panesar, D.K. Impact of graphene oxide and highly reduced graphene oxide on cement based composites. Constr. Build. Mater. 2015, 206, 71–83. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Shi, T.; Gu, Y.; Zheng, B.; Zhang, K.; Xu, J.; Fu, Y.; Shi, S. Study of mechanical properties and early-stage deformation properties of graphene-modified cement-based materials. Constr. Build. Mater. 2020, 257, 119498. [Google Scholar] [CrossRef]
- Yao, X.; Shamsaei, E.; Chen, S.; Zhang, Q.H.; de Souza, F.B.; Sagoe-Crentsil, K.; Duan, W. Graphene oxide-coated Poly(vinyl alcohol) fibers for enhanced fiber-reinforced cementitious composites. Compos. Part B Eng. 2019, 174, 107010. [Google Scholar] [CrossRef]
- Yao, X.; Shamsaei, E.; Wang, W.; Zhang, S.; Sagoe-Crentsil, K.; Duan, W. Graphene-based modification on the interface in fibre reinforced cementitious composites for improving both strength and toughness. Carbon 2020, 170, 493–502. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Faraj, R.H.; Hilal, N.; Mohammed, A.A.; Sherwani, A.F.H. Use of recycled fibers in concrete composites: A systematic comprehensive review. Compos. Part B Eng. 2021, 215, 108769. [Google Scholar] [CrossRef]
- Uygunoğlu, T.; Şimşek, B.; Ceran, Ö.B.; Eryeşil, Ö. Novel hybrid fiber reinforced mortar production using polyvinyl alcohol with a blend of graphene oxide and silver nanoparticles. J. Build. Eng. 2021, 44, 102641. [Google Scholar] [CrossRef]
- Wilson, N.R.; Pandey, P.A.; Beanland, R.; Young, R.J.; Kinloch, I.A.; Gong, L.; Liu, Z.; Suenaga, K.; Rourke, J.P.; York, S.J. Graphene oxide: Structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 2009, 3, 2547–2556. [Google Scholar] [CrossRef]
- Shamsaei, E.; de Souza, F.B.; Yao, X.; Benhelal, E.; Akbari, A.; Duan, W. Graphene-based nanosheets for stronger and more durable concrete: A review. Constr. Build. Mater. 2018, 183, 642–660. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiong, C.; Peng, Z.; Huang, J.; Chang, H. Molecular dynamics simulation of the interfacial interaction mechanism between functional groups on graphene-based two-dimensional matrix and calcium silicate hydrate. Constr. Build. Mater. 2021, 284, 122804. [Google Scholar] [CrossRef]
- Lu, S.; Luo, X.; Zhang, J. Graphere oxide controlled cement materials formation of large-scale ordered structure and its properties characterization. Mater. Rep. 2017, 31, 10–14. (In Chinese) [Google Scholar]
- Yujie, F.; Jianping, Z.; Li, W. Effect of graphene oxide on compressive strength and microstructure of slag cement. J. Henan Polytech. Univ. 2021, 40, 169–175. (In Chinese) [Google Scholar]
- Shenghua, L.; Li, S.; Jia, Z. High/Ultra-high performance graphene oxide/cement-based composites with large-scale, ordered and compact flower-like microstructures. Mater. Rep. 2017, 31, 78–84. (In Chinese) [Google Scholar]
- Lu, L.; Ouyang, D. Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets. Nanomaterials 2017, 7, 187. [Google Scholar] [CrossRef]
- Wan, H.; Zhang, Y. Interfacial bonding between graphene oxide and calcium silicate hydrate gel of ultra-high performance concrete. Mater. Struct. 2020, 53, 34. [Google Scholar] [CrossRef]
- Szeląg, M. Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load. Nanomaterials 2017, 7, 267. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.K.U.; Ibrahim, Z.; Memon, S.A.; Aunkor, T.H.; Javed, M.F.; Mehmood, K.; Shah, S.M.A. Influence of Graphene Nanosheets on Rheology, Microstructure, Strength Development and Self-Sensing Properties of Cement Based Composites. Sustainability 2018, 10, 822. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Cui, H.; Tang, W.; Li, Z.; Han, N.; Xing, F. A critical review on research progress of graphene/cement based composites. Compos. Part A Appl. Sci. Manuf. 2017, 102, 273–296. [Google Scholar] [CrossRef]
- Xixi, S.; Guangjun, S. Effect of graphene oxide on mechanical properties of cement based materials. Non-Met. Mines 2021, 44, 47–50. (In Chinese) [Google Scholar]
- Tong, T.; Fan, Z.; Liu, Q.; Wang, S.; Tan, S.; Yu, Q. Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro- and macro-properties of cementitious materials. Constr. Build. Mater. 2016, 106, 102–114. [Google Scholar] [CrossRef]
- Mohammed, A.; Sanjayan, J.G.; Duan, W.H.; Nazari, A. Incorporating graphene oxide in cement composites: A study of transport properties. Constr. Build. Mater. 2015, 84, 341–347. [Google Scholar] [CrossRef]
- Chuah, S.; Pan, Z.; Sanjayan, J.G.; Wang, C.M.; Duan, W.H. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr. Build. Mater. 2014, 73, 113–124. [Google Scholar] [CrossRef]
- Kai, M.F.; Zhang, L.W.; Liew, K.M. Graphene and graphene oxide in calcium silicate hydrates: Chemical reactions, mechanical behavior and interfacial sliding. Carbon 2019, 146, 181–193. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.; Zhang, Z. Interface mechanics in carbon nanomaterials-based nanocomposites. Compos. Part A Appl. Sci. Manuf. 2021, 141, 106212. [Google Scholar] [CrossRef]
- Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C. Mechanical properties and microstructure of a graphene oxide-cement composite. Cem. Concr. Compos. 2015, 58, 140–147. [Google Scholar] [CrossRef]
- Meiyan, H.; Zhongke, S.; Yanmei, G. Effect of fly ash on property and microstructure of UHPC. China Concr. Cem. Prod. 2020, 11, 14–19. (In Chinese) [Google Scholar]
- Qianyun, W.; Qinyong, M.; Ying, W. Compression-tensile tests and meso-structure of basalt fiber-slag powder-fly ash concrete under freeze-thaw cycles. Acta Mater. Compos. Sin. 2021, 38, 953–965. (In Chinese) [Google Scholar]
- Jianwu, Z.; Xiao, W.; Zhixin, L. Influence and mechanism of GO on the property of high content fly ash cement-based material. New Chem. Mater. 2021, 49, 240–243. (In Chinese) [Google Scholar]
- Dongpo, L.; Cang, D. Study on freeze-thaw damage mechanical properties of cement-based materials based on the synergistic effect of slag powder and graphene oxide. Chin. J. Appl. Mech. 2021, 38, 1431–1440. (In Chinese) [Google Scholar]
- Xiaosa, Y.; Baomin, W.; Peng, C.; Tao, L. Study on the Frost Resistance of Concrete Modified with Steel Balls Containing Phase Change Material (PCM). Materials 2021, 14, 4497. [Google Scholar]
- Li, L.G.; Feng, J.J.; Lu, Z.C.; Xie, H.Z.; Xiao, B.F.; Kwan, A.K.H. Effects of aggregate bulking and film thicknesses on water permeability and strength of pervious concrete. Powder Technol. 2022, 396, 743–753. [Google Scholar] [CrossRef]
- Devi, S.C.; Khan, R.A. Effect of graphene oxide on mechanical and durability performance of concrete. J. Build. Eng. 2020, 27, 101007. [Google Scholar] [CrossRef]
- Herath, C.; Gunasekara, C.; Law, D.W.; Setunge, S. Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Constr. Build. Mater. 2020, 258, 120606. [Google Scholar] [CrossRef]
- Sun, J.; Ma, Y.; Li, J.; Zhang, J.; Ren, Z.; Wang, X. Machine learning-aided design and prediction of cementitious composites containing graphite and slag powder. J. Build. Eng. 2021, 43, 102544. [Google Scholar] [CrossRef]
- Sun, J.; Wang, J.; Zhu, Z.; He, R.; Peng, C.; Zhang, C.; Wang, X. Mechanical Performance Prediction for Sustainable High-Strength Concrete Using Bio-Inspired Neural Network. Buildings 2022, 12, 65. [Google Scholar] [CrossRef]
- Sun, J.; Lin, S.; Zhang, G.; Sun, Y.; Zhang, J.; Chen, C.; Wang, X. The effect of graphite and slag on electrical and mechanical properties of electrically conductive cementitious composites. Constr. Build. Mater. 2021, 281, 122606. [Google Scholar] [CrossRef]
- Sun, J.; Tang, Y.; Wang, J.; Wang, X.; Wang, J.; Yu, Z.; Wang, Y. A multi-objective optimisation approach for activity excitation of waste glass mortar. J. Mater. Res. Technol. 2022, 17, 2280–2304. [Google Scholar] [CrossRef]
- Tang, Y.; Feng, W.; Chen, Z.; Nong, Y.; Guan, S.; Sun, J. Fracture behavior of a sustainable material: Recycled concrete with waste crumb rubber subjected to elevated temperatures. J. Clean. Prod. 2021, 318, 128553. [Google Scholar] [CrossRef]
- Sun, J.; Aslani, F.; Lu, J.; Wang, L.; Huang, Y.; Ma, G. Fibre-reinforced lightweight engineered cementitious composites for 3D concrete printing. Ceram. Int. 2021, 47, 27107–27121. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Feng, W.; Nong, Y.; Yao, M.; Tang, Y. Shrinkage compensation design and mechanism of geopolymer pastes. Constr. Build. Mater. 2021, 299, 123916. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Liu, S.; Dehghani, A.; Xiang, X.; Wei, J.; Wang, X. Mechanical, chemical and hydrothermal activation for waste glass reinforced cement. Constr. Build. Mater. 2021, 301, 124361. [Google Scholar] [CrossRef]
Category | Chemical Component | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Fe2O3 | Al2O3 | CaO | MgO | SO3 | Na2O | K2O | Alkali Content | Loss on Ignition | |
cement | 21.58 | 3.36 | 5.62 | 61.31 | 2.32 | 2.41 | 0 | 0 | 0.54 | 2.86 |
FA | 49.02 | 6.97 | 31.56 | 4.88 | 0.83 | 0 | 1.05 | 0.73 | 0 | 0 |
Density (G/cm3) | Specific Surface Area (M2/Kg) | Fineness (%) | Setting Time (Min) | Compressive Strength (Mpa) | Breaking Strength (Mpa) | |||
---|---|---|---|---|---|---|---|---|
Initial Set | Final Set | 3d | 28d | 3d | 28d | |||
3.10 | 360 | 3.8 | 125 | 180 | 24.0 | 50.5 | 4.7 | 8.3 |
Fineness (45 μm) | Water Demand Ratio | Ignition Loss | Moisture Content | SO3 |
---|---|---|---|---|
18% | 94% | 3.65% | 0.3% | 1.2% |
Length (Mm) | Diameter (Mm) | Thickness (Mm) | Strength of Extension (Mpa) | Density (G/cm3) |
---|---|---|---|---|
37 | 1 | 0.8 | 400 | 7.83 |
Designation | Apparent Density (Kg/cm3) | Stacking Density (Kg/cm3) | Water Absorption/% |
---|---|---|---|
coarse aggregate | 2840 | 1730 | 0.55 |
Appearance | Hydroxyl (-Oh) | Ph | Moisture | Solubility |
---|---|---|---|---|
Pale yellow to white flaky | 22~27 | 5.0~7.0 | ≤0.5 | Soluble in water and a variety of organic matter |
Purity (Wt%) | Thickness (Nm) | Diameter Lamella (Nm) | The Layer Number | Specific Surface Area (M2/G) | Appearance |
---|---|---|---|---|---|
>95 | 3.4–7 | 10–50 | 6–10 | 100–300 | Dark brown |
Components | Area (CPS) | Contents |
---|---|---|
C | 23,326.9 | 68.44% |
O | 27,825.9 | 30.92% |
S | 467.1 | 0.63% |
Specimen Number | Cement | Grit | Stone | Water | GO | FA | Steel Fiber | Water Reducer |
---|---|---|---|---|---|---|---|---|
G0.00S25 | 456 | 687 | 1030.5 | 164 | 0 | 0 | 25 | 2 |
G0.01S25 | 456 | 687 | 1030.5 | 157.13 | 0.0687 | 0 | 25 | 2 |
G0.03S25 | 456 | 687 | 1030.5 | 143.39 | 0.2061 | 0 | 25 | 2 |
G0.05S25 | 456 | 687 | 1030.5 | 129.65 | 0.3435 | 0 | 25 | 2 |
G0.07S25 | 456 | 687 | 1030.5 | 115.91 | 0.4809 | 0 | 25 | 2 |
G0.01F15S25 | 387.4 | 687 | 1030.5 | 157.13 | 0.0687 | 68.4 | 25 | 2 |
G0.03F15S25 | 387.4 | 687 | 1030.5 | 143.39 | 0.2061 | 68.4 | 25 | 2 |
G0.05F15S25 | 387.4 | 687 | 1030.5 | 129.65 | 0.3435 | 68.4 | 25 | 2 |
G0.07F15S25 | 387.4 | 687 | 1030.5 | 115.91 | 0.4809 | 68.4 | 25 | 2 |
G0.01F30S25 | 319.2 | 687 | 1030.5 | 157.13 | 0.0687 | 136.8 | 25 | 2 |
G0.03F30S25 | 319.2 | 687 | 1030.5 | 143.39 | 0.2061 | 136.8 | 25 | 2 |
G0.05F30S25 | 319.2 | 687 | 1030.5 | 129.65 | 0.3435 | 136.8 | 25 | 2 |
G0.07F30S25 | 319.2 | 687 | 1030.5 | 115.91 | 0.4809 | 136.8 | 25 | 2 |
G0.01F45S25 | 250.8 | 687 | 1030.5 | 115.91 | 0.0687 | 205.2 | 25 | 2 |
G0.03F45S25 | 250.8 | 687 | 1030.5 | 115.91 | 0.2061 | 205.2 | 25 | 2 |
G0.05F45S25 | 250.8 | 687 | 1030.5 | 115.91 | 0.3435 | 205.2 | 25 | 2 |
G0.07F45S25 | 250.8 | 687 | 1030.5 | 115.91 | 0.4809 | 205.2 | 25 | 2 |
Go (%) | Compressive Strength Value after Freeze-Thaw Cycle (Mpa) | ||||
---|---|---|---|---|---|
0 Times | 25 Times | 50 Times | 75 Times | 100 Times | |
G0.00S25 | 47.87 | 40.7 | 38.34 | 36.69 | 36.28 |
G0.01S25 | 58.2 | 52.48 | 51.21 | 48.51 | 46.2 |
G0.03S25 | 61.37 | 55.63 | 54.17 | 49.77 | 47.78 |
G0.05S25 | 57.6 | 52.01 | 51.25 | 46.73 | 45.68 |
G0.07S25 | 52 | 47.41 | 44.87 | 44.14 | 42.09 |
Specimen Number | Compressive Strength Value After Freeze-Thaw Cycle (Mpa) | ||||
---|---|---|---|---|---|
0 Times | 25 Times | 50 Times | 75 Times | 100 Times | |
G0.01F15S25 | 41.73 | 38.25 | 37.05 | 34.58 | 32.94 |
G0.03F15S25 | 41 | 37.13 | 35.39 | 33.53 | 32.55 |
G0.05F15S25 | 40.97 | 36.18 | 33.54 | 32.06 | 31.92 |
G0.07F15S25 | 44.19 | 39.39 | 39.13 | 35.49 | 34.22 |
G0.01F30S25 | 45.53 | 43.02 | 38.25 | 36.48 | 34.99 |
G0.03F30S25 | 46.11 | 43.27 | 40.2 | 38.7 | 36.8 |
G0..05F30S25 | 46.67 | 43.92 | 41.66 | 39.08 | 35.45 |
G0.07F30S25 | 44.8 | 41.59 | 39.91 | 37.11 | 34.84 |
G0.01F45S25 | 45.97 | 45.72 | 44.37 | 37.38 | 35.63 |
G0.03F45S25 | 43.63 | 43.3 | 43.7 | 36.48 | 34.27 |
G0.05F45S25 | 40.63 | 40.4 | 40.66 | 35.93 | 34.16 |
G0.07F45S25 | 39.4 | 38.98 | 38.17 | 34.65 | 32.59 |
Go (%) | Number of Holes | Porosity (%) |
---|---|---|
G0.00S25 | 41,074 | 0.914 |
G0.01S25 | 22,378 | 0.828 |
G0.03S25 | 13,342 | 0.729 |
G0.05S25 | 16,321 | 0.937 |
G0.07S25 | 57,131 | 1.026 |
Fa(%) | Number of Holes | Porosity (%) |
---|---|---|
G0.03F15S25 | 22,345 | 0.915 |
G0.03F30S25 | 39,838 | 0.821 |
G0.03F45S25 | 38,126 | 0.886 |
GO (%) | Pore Volume (%) | ||||||
---|---|---|---|---|---|---|---|
G0.00S25 | 83.44 | 7.13 | 2.65 | 5.54 | 0.53 | 0.48 | 0.23 |
G0.01S25 | 75.22 | 9.27 | 5.51 | 7.81 | 0.91 | 1.01 | 0.27 |
G0.03S25 | 54.43 | 16.02 | 8.96 | 15.46 | 2.1 | 2.11 | 0.91 |
G0.05S25 | 59.9 | 15.32 | 7.79 | 13.82 | 1.33 | 1.28 | 0.57 |
G0.07S25 | 68.33 | 10.96 | 5.25 | 12.8 | 1.63 | 0.82 | 0.2 |
FA (%) | The Pore Number (%) | ||||||
---|---|---|---|---|---|---|---|
G0.00F00S25 | 54.43 | 16.02 | 8.96 | 15.46 | 2.1 | 2.11 | 0.91 |
G0.03F15S25 | 66.29 | 14.29 | 6.14 | 11.11 | 0.89 | 0.93 | 0.36 |
G0.03F30S25 | 59.88 | 16.78 | 7.56 | 13.61 | 0.98 | 0.86 | 0.33 |
G0.03F45S25 | 71.16 | 11.15 | 4.84 | 10.47 | 1.02 | 1.05 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Dai, M.; Li, M.; Zhang, S.; Zhang, M. Effect of Graphene Oxide and Fly Ash on Frost Resistance of the Steel Fiber Reinforced Concrete. Sustainability 2022, 14, 6236. https://doi.org/10.3390/su14106236
Yuan X, Dai M, Li M, Zhang S, Zhang M. Effect of Graphene Oxide and Fly Ash on Frost Resistance of the Steel Fiber Reinforced Concrete. Sustainability. 2022; 14(10):6236. https://doi.org/10.3390/su14106236
Chicago/Turabian StyleYuan, Xiaosa, Mingjiang Dai, Mengfan Li, Shanshan Zhang, and Mingming Zhang. 2022. "Effect of Graphene Oxide and Fly Ash on Frost Resistance of the Steel Fiber Reinforced Concrete" Sustainability 14, no. 10: 6236. https://doi.org/10.3390/su14106236
APA StyleYuan, X., Dai, M., Li, M., Zhang, S., & Zhang, M. (2022). Effect of Graphene Oxide and Fly Ash on Frost Resistance of the Steel Fiber Reinforced Concrete. Sustainability, 14(10), 6236. https://doi.org/10.3390/su14106236