Electric Cars in Brazil: An Analysis of Core Green Technologies and the Transition Process
Abstract
:1. Introduction
1.1. Decarbonization of Light Vehicles in Brazil
1.2. Technology Evolution and Dominant Design
2. Materials and Methods
3. Results
3.1. The Emergence of a Dominant Design in Electric Cars
3.1.1. Batteries
3.1.2. Electric Motors
3.1.3. Control Systems
3.1.4. Architectures
3.1.5. Charging Infrastructure and Energy Management
3.1.6. Battery Echelon Utilization and Recycling
3.2. Hybrid Transition
3.2.1. Hybrid Electric Vehicles (HEVs)
3.2.2. Fuel Cell Electric Vehicles (FCEVs)
4. Discussion
4.1. Lessons from History
4.2. Stricter Emission Regulations in Brazil
4.3. The Global Automotive Industry
4.4. Developing Countries
5. Conclusions
Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNFCC—United Nations Framework Convention on Climate Change. Paris Agreement. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 10 June 2021).
- IEA—International Energy Agency. Net Zero by 2050—A Roadmap for the Global Energy Sector. 2021. Available online: https://iea.blob.core.windows.net/assets/7ebafc81-74ed-412b-9c60-5cc32c8396e4/NetZeroby2050-ARoadmapfortheGlobalEnergySector-SummaryforPolicyMakers_CORR.pdf (accessed on 18 May 2018).
- U.K. Government. COP26 Declaration on Accelerating the Transition to 100% Zero Emission Cars and Vans. Policy Paper. 10 November 2021. Available online: https://www.gov.uk/government/publications/cop26-declaration-zero-emission-cars-and-vans (accessed on 11 November 2021).
- Leal, A.C.B.; Consoni, F.L. Emissões Poluentes Dos Veículos: Impacto Dos Combustíveis Utilizados E Potencialidades Da Mobilidade Elétrica (Pollutant Emissions from Vehicles: Impact of Fuels and Potentialities of Electric Mobility). Brazilian Federal Senate, Legislative Consulting Studies and Research Center, Discussion Text No. 293. 2021. Available online: https://www12.senado.leg.br/publicacoes/estudos-legislativos/tipos-de-estudos/textos-para-discussao/td293 (accessed on 30 June 2021).
- ANFAVEA—Brazilian Automotive Industry Association. Brazilian Automotive Industry Yearbook. 2022. Available online: https://anfavea.com.br/anuario2022/2022.pdf (accessed on 25 March 2022).
- OECD-FAO. Agricultural Outlook 2020–2029. 2021. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2020-2029_1112c23b-en (accessed on 29 May 2021).
- ABVE—Brazilian Association of the Electric Vehicle. Eletrificados Batem Todas as Previsões Em 2021 (Electric Cars Exceed All Predictions in 2021). January 2022. Available online: http://www.abve.org.br/eletrificados-batem-todas-as-previsoes-em-2021/ (accessed on 24 January 2022).
- EPE—Energy Research Company. Brazilian Energy Balance, 2020; Brazilian Ministry of Mines and Energy: Brasilia, Brazil, 2021. Available online: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-601/topico-596/BEN2021.pdf (accessed on 22 July 2021).
- Ferreira, A.L.; Tsai, D.S.; Boareto, R. The Brazilian Automotive Industry Transition; IEMA (Institute for Energy and the Environment): Sao Paulo, Brazil, 2021; Available online: https://energiaeambiente.org.br/produto/the-brazilian-automotive-industry-transition (accessed on 25 January 2022).
- ICCT—International Council on Clean Transportation. Brazil PROCONVE L-7 and L-8 Emission Standards for Light-Duty Vehicles. 2020. Available online: https://theicct.org/sites/default/files/publications/Brazil_L7L8_policy_update_01302020.pdf (accessed on 30 January 2020).
- Mello, A.M.; Marx, R.; Souza, A. Exploring scenarios for the possibility of developing design and production competencies of electrical vehicles in Brazil. Int. J. Automot. Technol. Manag. 2013, 13, 289–314. [Google Scholar] [CrossRef]
- Marx, R.; De Mello, A.M. New initiatives, trends and dilemmas for the Brazilian automotive industry: The case of Inovar Auto and its impacts on electromobility in Brazil. Int. J. Automot. Technol. Manag. 2014, 14, 138–157. [Google Scholar] [CrossRef]
- Machado, C.A.S.; Takiya, H.; Yamamura, C.L.K.; Quintanilha, J.A.; Berssaneti, F.T. Placement of infrastructure for urban electromobility: A sustainable approach. Sustainability 2020, 12, 6324. [Google Scholar] [CrossRef]
- Consoni, F.L.; Oliveira, A.; Barassa, E.; Martinez, J.; Marques, M.C.; Bermudez, T.; Estudo de Governança E Políticas Públicas Para Veículos Elétricos (Study on Electric Vehicles Governance and Public Policy). Bilateral Technical Cooperation Project between the Brazilian Industrial Development and Competitiveness Secretariat and the German Sustainable Development Cooperation (PROMOB-e). 2018. Available online: http://www.pnme.org.br/biblioteca/estudo-de-governanca-e-politicas-publicas-para-veiculos-eletricos/ (accessed on 27 March 2022).
- Masiero, G.; Ogasavara, M.H.; Jussani, A.C.; Risso, M.L. The global value chain of electric vehicles: A review of the Japanese, South Korean and Brazilian cases. Renew. Sustain. Energy Rev. 2017, 80, 290–296. [Google Scholar] [CrossRef]
- Pompermayer, F.M. Etanol e Veículos Elétricos: Via de Mão Única ou Dupla? (Ethanol and Electric Vehicles: One or Two-Way Street?). 2010. Available online: https://www.ipea.gov.br/radar/temas/industria/308-radar-n-07-etanol-e-veiculos-eletricos-via-de-mao-unica-ou-dupla (accessed on 20 March 2022).
- Costa, E.; Horta, A.; Correia, A.; Seixas, J.; Costa, G.; Sperling, D. Diffusion of electric vehicles in Brazil from the stakeholders’ perspective. Int. J. Sustain. Transp. 2020, 15, 865–878. [Google Scholar] [CrossRef]
- ANFAVEA—Brazilian Automotive Industry Association. O Caminho da Descarbonização do Setor Automotivo No Brasil (The Way to Decarbonization in the Brazilian Automotive Sector). 2021. Available online: https://anfavea.com.br/docs/apresentacoes/APRESENTAÇÃO-ANFAVEA-E-BCG.pdf (accessed on 25 November 2021).
- Nylund, P.A.; Brem, A.; Agarwal, N. Enabling technologies mitigating climate change: The role of dominant designs in environmental innovation ecosystems. Technovation 2021, 102271. [Google Scholar] [CrossRef]
- Brem, A.; Nylund, P.A.; Schuster, G. Innovation and de facto standardization: The influence of dominant design on innovative performance, radical innovation, and process innovation. Technovation 2016, 50, 79–88. [Google Scholar] [CrossRef]
- Argyres, N.; Bigelow, L.; Nickerson, J.A. Dominant designs, innovation shocks, and the follower’s dilemma. Strateg. Manag. J. 2015, 36, 216–234. [Google Scholar] [CrossRef]
- Chen, T.; Qian, L.; Narayanan, V. Battle on the wrong field? Entrant type, dominant designs, and technology exit. Strateg. Manag. J. 2017, 38, 2579–2598. [Google Scholar] [CrossRef]
- Brem, A.; Nylund, P.A. Maneuvering the bumps in the new Silk Road: Open innovation, technological complexity, dominant design, and the international impact of Chinese innovation. R&D Manag. 2021, 51, 293–308. [Google Scholar]
- Anderson, P.; Tushman, M.L. Technological discontinuities and dominant designs: A cyclical model of technological change. Adm. Sci. Q. 1990, 35, 604–633. [Google Scholar] [CrossRef] [Green Version]
- Cecere, G.; Corrocher, N.; Battaglia, R.D. Innovation and competition in the smartphone industry: Is there a dominant design? Telecommun Policy 2015, 39, 162–175. [Google Scholar] [CrossRef]
- Murmann, J.P.; Frenken, K. Toward a systematic framework for research on dominant designs, technological innovations, and industrial change. Res. Policy 2006, 35, 925–952. [Google Scholar] [CrossRef] [Green Version]
- Brem, A.; Nylund, P.A. Home bias in international innovation systems: The contingent role of central technologies in the emergence of dominant designs in the electric vehicle industry. J. Clean. Prod. 2021, 321, 128964. [Google Scholar] [CrossRef]
- Tushman, M.L.; Murmann, J.P. Dominant Designs, Technology Cycles, and Organization Outcomes. Acad. Manag. Proc. 1998, 1, A1–A33. [Google Scholar] [CrossRef]
- Yamamura, C.L.K.; Santana, J.C.C.; Masiero, B.S.; Quintanilha, J.A.; Berssaneti, F.T. Forecasting new product demand using domain knowledge and machine learning. Res. Technol. Manag. 2022, submitted.
- Adner, R. Match your innovation strategy to your innovation ecosystem. Harv. Bus. Rev. 2006, 84, 98. [Google Scholar]
- Adner, R.; Kapoor, R. Value creation in innovation ecosystems: How the structure of technological interdependence affects firm performance in new technology generations. Strat. Manag. J. 2010, 31, 306–333. [Google Scholar] [CrossRef]
- Adner, R.; Euchner, J. Innovation ecosystems. Res. Technol. Manag. 2014, 57, 10–14. [Google Scholar]
- Adner, R.; Kapoor, R. Innovation ecosystems and the pace of substitution: Re-examining technology S-curves. Strateg. Manag. J. 2016, 37, 625–648. [Google Scholar] [CrossRef] [Green Version]
- Adner, R.; Kapoor, R. Right tech, wrong time. Harv. Bus. Rev. 2016, 94, 60–67. [Google Scholar] [CrossRef]
- Adner, R. Ecosystem as structure: An actionable construct for strategy. J. Manag. 2017, 43, 39–58. [Google Scholar] [CrossRef]
- IEA—International Energy Agency. The Role of Critical Minerals in Clean Energy Transitions. 2021. Available online: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed on 10 April 2022).
- Castelvecchi, D. Electric cars and batteries: How will the world produce enough? Nature 2021, 596, 336–339. Available online: https://www.nature.com/articles/d41586-021-02222-1 (accessed on 17 August 2021). [CrossRef] [PubMed]
- Eisenhardt, K.M.; Graebner, M.E.; Sonenshein, S. Grand challenges and inductive methods: Rigor without rigor mortis. Acad. Manage. J. 2016, 59, 1113–1123. [Google Scholar] [CrossRef]
- CONAMA—National Environment Council. Resolution No. 492. 20 December 2018. Available online: https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/56643907/do1-2018-12-24-resolucao-n-492-de-20-de-dezembro-de-2018-56643731 (accessed on 27 March 2020).
- Teixeira, A.C.R.; da Silva, D.L.; Neto, L.D.V.B.M.; Diniz, A.S.A.C.; Sodré, J.R. A review on electric vehicles and their interaction with smart grids: The case of Brazil. Clean Technol. Environ. Policy 2015, 17, 841–857. [Google Scholar] [CrossRef]
- Yu, X.; Sandhu, N.S.; Yang, Z.; Zheng, M. Suitability of energy sources for automotive application—A review. Appl. Energy 2020, 271, 115169. [Google Scholar] [CrossRef]
- MacDuffie, J.P. Response to Perkins and Murmann: Pay attention to what is and isn’t unique about Tesla. Manag. Organ. Rev. 2018, 14, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Enge, P.; Enge, N.; Zoepf, S. Electric Vehicle Engineering; McGraw-Hill: New York, NY, USA, 2021. [Google Scholar]
- Yoshimoto, K.; Hanyu, T. Nissan e-Power: 100% electric drive and its powertrain control. IEEJ J. Ind. Appl. 2021, 10, 411–416. [Google Scholar] [CrossRef]
- Xiong, J.; Zhao, S.; Meng, Y.; Xu, L.; Kim, S. How latecomers catch up to build an energy- saving industry: The case of the Chinese electric vehicle industry 1995–2018. Energy Policy 2022, 161, 112725. [Google Scholar] [CrossRef]
- MIT—Massachusetts Institute of Technology. Insights into Future Mobility; MIT Energy Initiative: Cambridge, MA, USA, 2019; Available online: https://energy.mit.edu/wp-content/uploads/2019/11/Insights-into-Future-Mobility.pdf (accessed on 20 March 2020).
- Bieker, G. A Global Comparison of the Life-Cycle Greenhouse Gas Emissions of Combustion Engine and Electric Passenger Cars; The International Council on Clean Transportation: Berlin, Germany, 2021; Available online: https://theicct.org/sites/default/files/publications/Global-LCA-passenger-cars-jul2021_0.pdf (accessed on 20 July 2021).
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 99. [Google Scholar] [CrossRef]
- Yang, X.G.; Liu, T.; Wang, C.Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 2021, 6, 176–185. [Google Scholar] [CrossRef]
- Agathie, C. The Main Types of Li-Ion Batteries Explained and What Is the Best for Electric Vehicles. Autoevolution, 12 February 2022. Available online: https://www.autoevolution.com/news/the-main-types-of-li-ion-batteries-explained-and-what-is-the-best-for-electric-vehicles-181498.html(accessed on 12 February 2022).
- Arribas-Ibar, M.; Nylund, P.A.; Brem, A. The risk of dissolution of sustainable innovation ecosystems in times of crisis: The electric vehicle during the COVID-19 pandemic. Sustainability 2021, 13, 1319. [Google Scholar] [CrossRef]
- Arora, S.; Shen, W.; Kapoor, A. Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles. Renew. Sustain. Energy Rev. 2016, 60, 1319–1331. [Google Scholar] [CrossRef]
- Tesla. Battery Day Presentation. 20 September 2020. Available online: https://www.tesla.com/2020shareholdermeeting (accessed on 21 September 2020).
- Brereton, P. Should We Standardize Electric Vehicle Batteries? Electric and Hybrid Vehicle Technology International, 7 May 2020. Available online: https://www.electrichybridvehicletechnology.com/opinion/should-we-standardize-electric-vehicle-batteries.html(accessed on 7 May 2020).
- Jetin, B. Who will control the electric vehicle market? Int. J. Automot. Technol. 2020, 20, 156–177. [Google Scholar]
- Mosquet, X.; Arora, A.; Xie, A.; Renner, M. Who Will Drive Electric Cars to the Tipping Point? Boston Consulting Group: Boston, MA, USA, 2020; Available online: https://www.bcg.com/en-br/publications/2020/drive-electric-cars-to-the-tipping-point (accessed on 2 January 2020).
- Motor Trend. The green issue—The future of electric vehicles. Mot. Trend 2021, 6, 10–71. [Google Scholar]
- Jenkins, J. A Closer Look at Axial Flux Motors. Charged—Electric Vehicles Magazine, 19 May 2021. Available online: https://chargedevs.com/features/a-closer-look-at-axial-flux-motors/(accessed on 19 May 2021).
- Anderson, B. New Electric Motor Technology Will Push EVs to the Next Level. Carscoops. 2022. Available online: https://www.carscoops.com/2022/02/new-electric-motor-technology-will-push-evs-to-the-next-level/ (accessed on 3 February 2021).
- Erriquez, M.; Schäffer, P.; Schwedhelm, D.; Wu, T. How to Drive Winning Battery- Electric-Vehicle Design: Lessons from Benchmarking Ten Chinese Models; McKinsey & Company. 2020. Available online: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/how-to-drive-winning-battery-electric-vehicle-design-lessons-from-benchmarking-ten-chinese-models (accessed on 10 July 2020).
- Guan, M.; Gao, P.; Peng, B.; Zhou, T.; Hsu, A. The Race to Win: How Automakers Can Succeed in a Post-Pandemic China. McKinsey China Auto Consumer Insights. 2021. Available online: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-race-to-win-how-automakers-can-succeed-in-a-post-pandemic-china (accessed on 13 August 2021).
- Hussain, S.; Kim, Y.S.; Thakur, S.; Breslin, J.G. Optimization of waiting time for electric vehicles using a fuzzy inference system. IEEE Trans. Intell. Transp. Syst. 2022, 1–12. [Google Scholar] [CrossRef]
- ABVE—Brazilian Association of the Electric Vehicle. Rede de Recarga Aumenta 50% Em Quatro Meses (Recharging Network Grows by 50% in Four Months). 2021. Available online: https://www.abve.org.br/eletropostos-no-brasil-crescem-50-em-quatro-meses/ (accessed on 20 March 2022).
- Schiavo, F.T.; Calili, R.F.; de Magalhães, C.F.; Fróes, I.C. The Meaning of Electric Cars in the Context of Sustainable Transition in Brazil. Sustainability 2021, 13, 11073. [Google Scholar] [CrossRef]
- Singla, A.; Bansal, R. Sustainability of Electric Vehicles: A Short Study of the Indian Electric Vehicle Market; Shiv Nadar University: Greater Noida, India, 2022; Available online: https://www.researchgate.net/publication/357648886_SUSTAINABILITY_OF_ELECTRIC_VEHICLES_A_short_study_of_the_Indian_Electric_Vehicles_Market (accessed on 1 May 2022).
- Hussain, S.; Ahmed, M.A.; Kim, Y.C. Efficient power management algorithm based on fuzzy logic inference for electric vehicles parking lot. IEEE Access 2019, 7, 65467–65485. [Google Scholar] [CrossRef]
- Hussain, S.; Ahmed, M.A.; Lee, K.B.; Kim, Y.C. Fuzzy logic weight based charging scheme for optimal distribution of charging power among electric vehicles in a parking lot. Energies 2020, 13, 3119. [Google Scholar] [CrossRef]
- Li, C.; Wang, N.; Li, W.; Li, Y.; Zhang, J. Regrouping and echelon utilization of retired lithium-ion batteries based on a novel support vector clustering approach. IEEE Trans. Transp. Electrif. 2022, 1. [Google Scholar] [CrossRef]
- Beaudet, A.; Larouche, F.; Amouzegar, K.; Bouchard, P.; Zaghib, K. Key challenges and opportunities for recycling electric vehicle battery materials. Sustainability 2020, 12, 5837. [Google Scholar] [CrossRef]
- Parajuly, K.; Ternald, D.; Kuehr, R. The Future of Electric Vehicles and Material Resources: A Foresight Brief; The United Nations University: Tokyo, Japan, 2020; Available online: http://collections.unu.edu/eserv/UNU:7820/n2020_Future_of_Electric_Vehicles_Foresight_Brief.pdf (accessed on 11 April 2022).
- Passos, E.R. Reciclagem de Automóveis (Automobile Recycling); Instituto Mauá de Tecnologia: Sao Paulo, Brazil, 2013; Available online: https://maua.br/files/monografias/completo-reciclagem-automoveis-161657.pdf (accessed on 9 April 2021).
- Morse, I. A dead battery dilemma. Science 2021, 373, 780–783. [Google Scholar] [CrossRef] [PubMed]
- Backhaus, R. Battery raw materials—Where from and where to? ATZ Worldwide 2021, 123, 8–13. [Google Scholar]
- Christensen, C.M.; McDonald, R.; Altman, E.J.; Palmer, J.E. Disruptive innovation: An intellectual history and directions for future research. J. Manag. Stud. 2018, 55, 1043–1078. [Google Scholar] [CrossRef] [Green Version]
- Furr, N.; Snow, D. The Prius Approach. Harv. Bus. Rev. 2015, 93, 102–107. [Google Scholar]
- Tran, M.K.; Bhatti, A.; Vrolyk, R.; Wong, D.; Panchal, S.; Fowler, M.; Fraser, R. A review of range extenders in battery electric vehicles: Current progress and future perspectives. World Electr. Veh. J. 2021, 12, 54. [Google Scholar] [CrossRef]
- Plötz, P.; Moll, C.; Li, Y.; Bieker, G.; Mock, P. Real-World Usage of Plug-In Hybrid Electric Vehicles: Fuel Consumption, Electric Driving, and CO2 Emissions. International Council on Clean Transportation. 2020. Available online: https://theicct.org/publications/phev-real-world-usage-sept2020 (accessed on 28 August 2021).
- Silva, E.P. Etanol e Hidrogênio: Uma Parceria de Futuro Para o Brasil (Ethanol and Hydrogen: A Promising Partnership for Brazil). 2021. Available online: http://cienciaecultura.bvs.br/pdf/cic/v60n3/a15v60n3.pdf (accessed on 1 June 2021).
- Vargas, J.E.V.; Seabra, J.E.A. Fuel-cell technologies for private vehicles in Brazil: Environmental mirage or prospective romance? A comparative life cycle assessment of PEMFC and SOFC light-duty vehicles. Sci. Total Environ. 2021, 798, 149265. [Google Scholar] [CrossRef]
- Plötz, P. Hydrogen technology is unlikely to play a major role in sustainable road transport. Nat. Electron. 2022, 5, 8–10. [Google Scholar] [CrossRef]
- Srinivasan, R.; Lilien, G.L.; Rangaswamy, A. The emergence of dominant designs. J. Mark. 2006, 70, 1–17. [Google Scholar] [CrossRef]
- Sacchi, R.; Bauer, C.; Cox, B.; Mutel, C. When, where and how can the electrification of passenger cars reduce greenhouse gas emissions? Renew. Sustain. Energy Rev. 2022, 162, 112475. [Google Scholar] [CrossRef]
- Bladh, M. Origin of car enthusiasm and alternative paths in history. Environ. Innov. Soc. Transit. 2019, 32, 153–168. [Google Scholar] [CrossRef]
- Rathi, A.; Murray, P.; Dottle, R. The Hidden Science Making Batteries Better, Cheaper and Everywhere; Bloomberg: New York, NY, USA, 2021; Available online: https://www.bloomberg.com/graphics/2021-inside-lithium-ion-batteries/ (accessed on 7 May 2022).
- Dogdibegovic, E.; Fukuyama, Y.; Tucker, M.C. Ethanol internal reforming in solid oxide fuel cells: A path toward high performance metal-supported cells for vehicular applications. J. Power Sources 2020, 449, 227598. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, T. The long tail of the auto industry life cycle. J. Prod. Innov. Manag. 2014, 31, 8–16. [Google Scholar] [CrossRef]
- Midler, C.; Beaume, R. Project-based learning patterns for dominant design renewal: The case of Electric Vehicle. Int. J. Proj. Manag. 2010, 28, 142–150. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Axsen, J. Functional, symbolic and societal frames for automobility: Implications for sustainability transitions. Transp. Res. A Policy Pract. 2018, 118, 730–746. [Google Scholar] [CrossRef]
- Noel, L.; Sovacool, B.K.; Kester, J.; de Rubens, G.Z. Conspicuous diffusion: Theorizing how status drives innovation in electric mobility. Environ. Innov. Soc. Transit. 2019, 31, 154–169. [Google Scholar] [CrossRef]
- Arora, A.; Niese, N.; Dreyer, E.; Waas, A.; Xie, A. Why Electric Cars Can’t Come Fast Enough; Boston Consulting Group: Boston, MA, USA, 2021; Available online: https://www.bcg.com/pt-br/publications/2021/why-evs-need-to-accelerate-their-market-penetration (accessed on 22 December 2021).
- Peugeot. New Peugeot 208. 2022. Available online: https://carros.peugeot.com.br/compre/tenha-um-peugeot/ofertas/ofertas-peugeot-208.html?gclid=Cj0KCQjw3IqSBhCoARIsAMBkTb1LeoNfPVu90uvViLVJl0puSlc9ndtWzj4wwxKUbESWTxKXW31kHT0aAub8EALw_wcB (accessed on 16 March 2022).
Aluminum | 32% |
Graphite | 18% |
Nickel | 10% |
Electrolyte | 9% |
Copper | 6% |
Plastic | 5% |
Manganese | 3% |
Cobalt | 2% |
Electronics | 2% |
Lithium | 2% |
Steel | 1% |
Residual | 10% |
100% |
Event | References | Time Estimate |
---|---|---|
COP26, zero tailpipe emissions declaration | [3,65,82] | 2035/2040 |
Dominant design emergence, from the study of patents | [19,20,27] | 2030 |
Dominant design emergence, from the automobile history pattern | [15,24,83] | 2032–2050 |
Battery high energy density (~400 Wh/kg) | [2,46,84] | 2030 |
Battery cost competitiveness | [46,84] | 2035–2040 |
Vehicle acquisition cost parity | [17,64] | 2035–2040 |
Adequate charging infrastructure in developing countries | [4,14,17,18] | 2035 |
Emission regulations impact on pure gasoline and diesel | [4,10,18] | 2035 |
Zero emissions traffic in urban perimeters | [4,77] | 2040 |
Global industry ceasing internal combustion engine production | [3,4,61,65,82] | 2045 |
Ethanol fuel cell electric vehicle maturity | [8,85] | 2030–2035 |
Small pure electric car diffusion in developing countries | [17,19,83,86] | 2040–2050 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamura, C.L.K.; Takiya, H.; Machado, C.A.S.; Santana, J.C.C.; Quintanilha, J.A.; Berssaneti, F.T. Electric Cars in Brazil: An Analysis of Core Green Technologies and the Transition Process. Sustainability 2022, 14, 6064. https://doi.org/10.3390/su14106064
Yamamura CLK, Takiya H, Machado CAS, Santana JCC, Quintanilha JA, Berssaneti FT. Electric Cars in Brazil: An Analysis of Core Green Technologies and the Transition Process. Sustainability. 2022; 14(10):6064. https://doi.org/10.3390/su14106064
Chicago/Turabian StyleYamamura, Charles Lincoln Kenji, Harmi Takiya, Cláudia Aparecida Soares Machado, José Carlos Curvelo Santana, José Alberto Quintanilha, and Fernando Tobal Berssaneti. 2022. "Electric Cars in Brazil: An Analysis of Core Green Technologies and the Transition Process" Sustainability 14, no. 10: 6064. https://doi.org/10.3390/su14106064