# Specifying Spatial Dependence for Teak Stands Specific to Solomon Island-Derived Clones in Tawau, Sabah, Malaysia: A Preliminary Study

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Data

^{2}and had 625 stems per hectare, resulting in over 4000 trees. Only the 11th to 20th plants of each row were assessed, corresponding to a total of 80 plants per clone. The current block 96G is on sloped land at an altitude ranging from 180 to 370 m above sea level. The region’s climate has been classified as tropical rainforest (Köppen), while its soil is classified as Tg Lipat soil with a low content of nitrogen, potassium, and magnesium.

#### 2.2. Analysis Structure

#### 2.3. Defining Spatial Dependence Methods

#### 2.3.1. Moran’s I

#### 2.3.2. Semivariogram

#### 2.3.3. Thematic Map

## 3. Results

#### 3.1. Moran’s I Analysis

#### 3.2. Semivariogram Analysis for Spatial Dependence

^{3}for the 6th year to above 0.010 m

^{3}for the 7th year. This indicates that there are changes in the spatial dependence when it is analyzed as a continuous plot.

#### 3.3. The Graphical Analysis of Thematic Maps

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Crawford, T.W. Scale Analytical. In International Encyclopedia of Human Geography; Elsevier: Amsterdam, The Netherlands, 2009; pp. 29–36. ISBN 978-0-08-044910-4. [Google Scholar]
- Legendre, P. Spatial autocorrelation: Trouble or new paradigm? Ecology
**1993**, 74, 1659–1673. [Google Scholar] [CrossRef] - Legendre, P.; Legendre, L. Numerical Ecology; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 0-444-53869-0. [Google Scholar]
- Anselin, L.; Bera, A.K. Introduction to spatial econometrics. In Handbook of Applied Economic Statistics; Marcel Dekker: New York, NY, USA, 1998; p. 237. [Google Scholar]
- Fox, J.C.; Bi, H.; Ades, P.K. Spatial dependence and individual-tree growth models: I. Characterising spatial dependence. For. Ecol. Manag.
**2007**, 245, 10–19. [Google Scholar] [CrossRef] - Tewari, V.P.; Singh, B. Total wood volume equations for Tectona grandis Linn F. stands in Gujarat, India. J. For. Environ. Sci.
**2018**, 34, 313–320. [Google Scholar] - Koirala, A.; Montes, C.R.; Bullock, B.P.; Wagle, B.H. Developing taper equations for planted teak (Tectona grandis L.f.) trees of central lowland Nepal. Trees For. People
**2021**, 5, 100103. [Google Scholar] [CrossRef] - Kenzo, T.; Himmapan, W.; Yoneda, R.; Tedsorn, N.; Vacharangkura, T.; Hitsuma, G.; Noda, I. General estimation models for above-and below-ground biomass of teak (Tectona grandis) plantations in Thailand. For. Ecol. Manag.
**2020**, 457, 117701. [Google Scholar] [CrossRef] - Pelissari, A.L.; Roveda, M.; Caldeira, S.F.; Sanquetta, C.R.; Corte, A.P.D.; Rodrigues, C.K. Geostatistical modeling of timber volume spatial variability for Tectona grandis LF precision forestry. Cerne
**2017**, 23, 115–122. [Google Scholar] [CrossRef] - Ghosh, S.; Nandy, S.; Mohanty, S.; Subba, R.; Kushwaha, S.P.S. Are phenological variations in natural teak (Tectona grandis) forests of India governed by rainfall? A remote sensing based investigation. Environ. Monit. Assess.
**2019**, 191, 786. [Google Scholar] [CrossRef] - Gil, R.L.; Lanssanova, L.R.; Chig, L.A.; de Almeida Garrett, A.T.; de Oliveira, R.V.; de Oliveira, F.P.; Ferreira, K.R. Modelling spatial variability of soil chemical attributes in Tectona grandis stands in central-west Brazil. J. Trop. For. Sci.
**2018**, 30, 376–383. [Google Scholar] - Popoola, F.S.; Adesoye, P.O. Crown ratio models for Tectona grandis (Linn. f) stands in Osho Forest reserve, Oyo State, Nigeria. J. For. Environ. Sci.
**2012**, 28, 63–67. [Google Scholar] [CrossRef] - Zahabu, E.; Mugasha, W.M.; Katani, J.Z.; Malimbwi, R.E.; Mwangi, J.R.; Chamshama, S.A.O. Allometric biomass and volume models for Tectona grandis plantations. In Allometric Tree Biomass and Volume Models in Tanzania; E&D Vision Publishing Ltd: Dar es Salaam, Tansania, 2018. [Google Scholar]
- Dantani, A.; Shamaki, S.; Gupa, M.; Sa’idu, M.; Mukhtar, R.; Umar, M.; Abubakar, A.; Abubakar, A. Allometric Models for Estimating Site Index of Teak (Tectona grandis Linn F.) in Kanya Forest Plantation, Kebbi State, Nigeria. Asian J. Environ. Y Ecol.
**2019**, 10, 1–7. [Google Scholar] [CrossRef] - de Almeida Garrett, A.T.; Bonete, I.P.; do Amaral Machado, S.; Pelissari, A.L.; da Silva, F.A.; Filho, A.F.; Lanssanova, L.R.; Ciarnoschi, D. Mixed-effect non-linear modelling for diameter estimation along the stem of Tectona grandis in mid-western Brazil. South. For. J. For. Sci.
**2019**, 81, 167–173. [Google Scholar] - de Souza Maria, L.; Litter, F.A.; de Almeida Carneiro, M.; da Silva, F.R.; Garcia, M.L.; de Carvalho, M.A.C. Dendrometric evaluation of a clonal population of Tectona grandis in forest-livestock system. Ciência Rural
**2019**, 49. [Google Scholar] - Neto, A.A.L.M.; Farias, P.R.S.; de Matos, G.S.B.; Rodrigues, G.R.; da Silva, J.O.; da Costa, L.S.L.; Anhê, B.B. Nutritional diagnosis and spatial variability of leaf nutrients in teak field in the Eastern Amazon. J. Plant Nutr.
**2021**, 1–10. [Google Scholar] [CrossRef] - Adams, E.A. World forest area still on the decline. Europe
**2012**, 989, 1–5. [Google Scholar] - Bennett, L. Deforestation and Climate Change; Climate Institute: Washington, DC, USA, 2017. [Google Scholar]
- Clark, D.A.; Clark, D.B. Assessing the growth of tropical rain forest trees: Issues for forest modeling and management. Ecol. Appl.
**1999**, 9, 981–997. [Google Scholar] [CrossRef] - Goh, D.K.; Galiana, A. Vegetative Propagation of Teak; JIRCAS: Ibaraki, Japan, 2000. [Google Scholar]
- Goh, D.K.; Monteuuis, O. Rationale for developing intensive teak clonal plantations, with special reference to Sabah. Bois For. Trop.
**2005**, 285, 5–15. [Google Scholar] - Goh, D.K.S.; Japarudin, Y.; Alwi, A.; Lapammu, M.; Flori, A.; Monteuuis, O. Growth differences and genetic parameter estimates of 15 teak (Tectona grandis L.f.) genotypes of various ages clonally propagated by microcuttings and planted under humid tropical conditions. Silvae Genet.
**2013**, 62, 196–206. [Google Scholar] [CrossRef] [Green Version] - Monteuuis, O.; Goh, D.K.S. Field growth performances of teak genotypes of different ages clonally produced by rooted cuttings, in vitro microcuttings, and meristem culture. Can. J. For. Res.
**2015**, 45, 9–14. [Google Scholar] [CrossRef] - Monteuuis, O.; Goh, D.K.S.; Garcia, C.; Alloysius, D.; Gidiman, J.; Bacilieri, R.; Chaix, G. Genetic variation of growth and tree quality traits among 42 diverse genetic origins of Tectona grandis planted under humid tropical conditions in Sabah, East Malaysia. Tree Genet. Genomes
**2011**, 7, 1263–1275. [Google Scholar] [CrossRef] - Karahan, G.; Erşahin, S. Geostatistical analysis of spatial variation in forest ecosystems. Eurasian J. For. Sci.
**2018**, 6, 9–22. [Google Scholar] - Gatrell, A.C. Autocorrelation in Spaces. Environ. Plan. A Econ. Space
**1979**, 11, 507–516. [Google Scholar] [CrossRef] - Olea, R.A. A six-step practical approach to semivariogram modeling. Stoch. Environ. Res. Risk Assess.
**2006**, 20, 307–318. [Google Scholar] [CrossRef] - Arlinghaus, S.L.; Griffith, D.A.; Arlinghaus, W.C.; Drake, W.D.; Nystuen, J.D. (Eds.) Practical Handbook of Spatial Statistics, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-1-00-306768-9. [Google Scholar]
- Reed, D.D.; Burkhart, H.E. Spatial Autocorrelation of Individual Tree Characteristics in Loblolly Pine Stands. For. Sci.
**1985**, 31, 575–587. [Google Scholar] - Musin, O.R. Properties of the Delaunay triangulation. In Proceedings of the Thirteenth Annual Symposium on Computational Geometry—SCG ’97, Nice, France, 4–6 June 1997; ACM Press: Nice, France, 1997; pp. 424–426. [Google Scholar]
- Anselin, L. Global Spatial Autocorrelation (1), Moran Scatter Plot and Spatial Correlogram. In GeoDa: An Introduction to Spatial Data Analysis; The University of Chicago: Chicago, IL, USA, 2018. [Google Scholar]
- Olea, R.A. The Semivariogram. In Geostatistics for Engineers and Earth Scientists; Springer US: Boston, MA, USA, 1999; pp. 67–90. ISBN 978-1-4613-7271-4. [Google Scholar]
- Bachmaier, M.; Backes, M. Variogram or semivariogram? Understanding the variances in a variogram. Precis. Agric.
**2008**, 9, 173–175. [Google Scholar] [CrossRef] - Camana, F.; Deutsch, C.V. The Nugget Effect. Geostatistics Lessons. Available online: http://www.geostatisticslessons.com/lessons/nuggeteffect (accessed on 16 March 2019).
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. In Handbook of Applied Spatial Analysis; Fischer, M.M., Getis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 73–89. ISBN 978-3-642-03646-0. [Google Scholar]
- Sakai, A.K.; Oden, N.L. Spatial pattern of sex expression in silver maple (Acer saccharinum L.): Morisita’s index and spatial autocorrelation. Am. Nat.
**1983**, 122, 489–508. [Google Scholar] [CrossRef] - Duncan, R.P.; Stewart, G.H. The temporal and spatial analysis of tree age distributions. Can. J. For. Res.
**1991**, 21, 1703–1710. [Google Scholar] [CrossRef] - Kuuluvainen, T.; Penttinen, A.; Leinonen, K.; Nygren, M. Statistical opportunities for comparing stand structural heterogeneity in managed and primeval forests: An example from boreal spruce forest in southern Finland. Silva Fenn.
**1996**, 30, 315–328. [Google Scholar] [CrossRef] [Green Version] - Magnussen, S. A method to adjust simultaneously for spatial microsite and competition effects. Can. J. For. Res.
**1994**, 24, 985–995. [Google Scholar] [CrossRef] - Kenkel, N.C.; Hendrie, M.L.; Bella, I.E. A long-term study of Pinus banksiana population dynamics. J. Veg. Sci.
**1997**, 8, 241–254. [Google Scholar] [CrossRef] - García, O. The state-space approach in growth modelling. Can. J. For. Res.
**1994**, 24, 1894–1903. [Google Scholar] [CrossRef] - Cressie, N. Geostatistical analysis of spatial data. In Spatial Statistics and Digital Image Analysis; The National Academies Press: Washington, DC, USA, 1991; pp. 87–108. [Google Scholar]

**Figure 7.**Sample stand spread of (

**a**) DBH, (

**b**) height, and (

**c**) volume in the teak plots of 6-year-old Solomon Island-derived clones in block 96G at Brumas Camp, Tawau, Sabah.

**Figure 8.**Sample stand spread of (

**a**) DBH, (

**b**) height, and (

**c**) volume in the teak plots of 7-year-old Solomon Island-derived clones in block 96G at Brumas Camp, Tawau, Sabah.

**Table 1.**Moran’s I values and the p-values and Monte Carlo simulation of the Moran’s I values for the physical parameters of the 6- and 7-year-old trees.

6th Year | 7th Year | |||||
---|---|---|---|---|---|---|

Moran’s I | p-Value | Monte Carlo | Moran’s I | p-Value | Monte Carlo | |

DBH | 0.2568735864 | <0.0001 | 0.001 | 0.2321702692 | <0.0001 | 0.001 |

Height | 0.5525857451 | <0.0001 | 0.001 | 0.6033771319 | <0.0001 | 0.001 |

Volume | 0.3853519365 | <0.0001 | 0.001 | 0.3452859439 | <0.0001 | 0.001 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kiram, J.J.; Mohamad Yunus, R.; Japarudin, Y.; Lapammu, M.
Specifying Spatial Dependence for Teak Stands Specific to Solomon Island-Derived Clones in Tawau, Sabah, Malaysia: A Preliminary Study. *Sustainability* **2022**, *14*, 6005.
https://doi.org/10.3390/su14106005

**AMA Style**

Kiram JJ, Mohamad Yunus R, Japarudin Y, Lapammu M.
Specifying Spatial Dependence for Teak Stands Specific to Solomon Island-Derived Clones in Tawau, Sabah, Malaysia: A Preliminary Study. *Sustainability*. 2022; 14(10):6005.
https://doi.org/10.3390/su14106005

**Chicago/Turabian Style**

Kiram, Johannah Jamalul, Rossita Mohamad Yunus, Yani Japarudin, and Mahadir Lapammu.
2022. "Specifying Spatial Dependence for Teak Stands Specific to Solomon Island-Derived Clones in Tawau, Sabah, Malaysia: A Preliminary Study" *Sustainability* 14, no. 10: 6005.
https://doi.org/10.3390/su14106005