Sustainable Utilization of Waste Oyster Shell Powders with Different Fineness Levels in a Ternary Supplementary Cementitious Material System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Mix Design and Specimen Preparation
2.3. Experimental Procedures
2.3.1. Compression Tests
2.3.2. Thermogravimetric Analysis (TGA)
2.3.3. Permeability Tests
- (1)
- Water absorption
- (2)
- Rapid chloride penetration test (RCPT)
2.3.4. Mercury Intrusion Porosimetry (MIP)
2.3.5. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Compressive Strength Analysis
3.2. Hydration Products Analysis
3.2.1. TGA
3.2.2. SEM Analyses
3.3. Permeability and Pore Structure Analysis
3.3.1. Water Absorption and Rapid Chloride Penetration Test (RCPT)
3.3.2. MIP Analysis and Pore Structure
4. Conclusions
- (1)
- The compressive strength of OSP (3000 mesh sizes) was 46.5 MPa in the ternary SCM composed of LS and GGBFS, which has the potential to develop into a high-performance SCM. There was no linear relationship between the compressive strength of the SCM and the fineness of OSP. Good particle size distribution was the key to the final hydration products.
- (2)
- The introduction of the ternary SCM system enhanced the impermeability of mortar. The higher the OSP fineness was, the better the micro-aggregate effect. These fine particles can directly fill the mortar pores, thus enhancing impermeability.
- (3)
- OSP with a mesh number of 3000 had the lowest total porosity. With the increase in OSP fineness, the pore structure distribution of mortar presented an optimization trend, and the proportion of harmful pores >0.2 μm gradually decreased. However, the fine OSP was not conducive to the secondary hydration of the ternary SCM system, resulting in an increase in the proportion of 0–0.02 μm gel pores.
- (4)
- For OSP, CH can be provided in the hydration process of the ternary SCM system. When the size of OSP is too large, it is not conducive to the secondary hydration of SCMs, but the filling effect can make the mortar obtain better impermeability. Therefore, OSP with a mesh number of 3000 can be selected for better compressive strength, and OSP with a mesh number of 6000 can be chosen for better impermeability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhan, J.; Lu, J.; Wang, D. Review of shell waste reutilization to promote sustainable shellfish aquaculture. Rev. Aquac. 2021, 14, 477–488. [Google Scholar] [CrossRef]
- Sawai, J. Antimicrobial Characteristics of Heated Scallop OSP and Its Application. Biocontrol. Sci. 2011, 16, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnabosco, G.; Giuri, D.; di Bisceglie, A.P.; Scarpino, F.; Fermani, S.; Tomasini, C.; Falini, G. New Material Perspective for Waste Seashells by Covalent Functionalization. ACS Sustain. Chem. Eng. 2021, 9, 6203–6208. [Google Scholar] [CrossRef]
- Eziefula, U.G.; Ezeh, J.C.; Eziefula, B.I. Properties of seashell aggregate concrete: A review. Constr. Build. Mater. 2018, 192, 287–300. [Google Scholar] [CrossRef]
- Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.M.S.; Choudhary, N.; Gnanamoorthy, G.; Tirth, V.; Prasad, S.; Khan, A.H.; Islam, S.; Khan, N.A. The Processing of Calcium Rich Agricultural and Industrial Waste for Recovery of Calcium Carbonate and Calcium Oxide and Their Application for Environmental Cleanup: A Review. Appl. Sci. 2021, 11, 4212. [Google Scholar] [CrossRef]
- Morris, J.P.; Thierry, B.; Gauthier, C. Shells from aquaculture: A valuable biomaterial, not a nuisance waste product. Rev. Aquac. 2019, 11, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Yan, N.; Chen, X. Sustainability: Don’t waste seafood waste. Nature 2015, 524, 155–157. [Google Scholar] [CrossRef]
- Amin, M.; Tayeh, B.A.; Agwa, I.S. Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete. J. Clean. Prod. 2020, 273, 123073. [Google Scholar] [CrossRef]
- Han, Y.; Lin, R.; Wang, X.Y. Performance of sustainable concrete made from waste oyster shell powder and blast furnace slag. J. Build. Eng. 2022, 47, 103918. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hasaniyah, M.W.; Zeyad, A.M.; Awad, M.M.; Alaskar, A.; Mohamed, A.M.; Alyousef, R. Durability and mechanical properties of seashell partially-replaced cement. J. Build. Eng. 2020, 31, 101328. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Hasaniyah, M.W.; Zeyad, A.M.; Yusuf, M.O. Properties of concrete containing recycled seashells as cement partial replacement, A review. J. Clean. Prod. 2019, 237, 117723. [Google Scholar] [CrossRef]
- Soltanzadeh, F.; Emam-Jomeh, M.; Edalat-Behbahani, A.; Soltan-Zade, Z. Development and characterization of blended cements containing seashell powder. Constr. Build. Mater. 2018, 161, 292–304. [Google Scholar] [CrossRef]
- Naqi, A.; Siddique, S.; Kim, H.-K.; Jang, J.G. Examining the potential of calcined oyster shell waste as additive in high volume slag cement. Constr. Build. Mater. 2020, 230, 116973. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Bourguiba, A.; el Mendili, Y.; Sebaibi, N.; Boutouil, M. A preliminary investigation of a novel mortar based on alkali-activated seashell waste powder. Powder Technol. 2021, 389, 471–481. [Google Scholar] [CrossRef]
- Ez-zaki, H.; Diouri, A. Chloride penetration through cement material based on dredged sediment and OSP. J. Adhes. Sci. Technol. 2018, 32, 787–800. [Google Scholar] [CrossRef]
- Skibsted, J.; Snellings, R. Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cem. Concr. Res. 2019, 124, 105799. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Makul, N.; Siripattarapravat, C. Utilization of ground waste seashells in cement mortars for masonry and plastering. J. Environ. Manag. 2012, 111, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Ali Shah, S.F.; Chen, B.; Ahmad, M.R.; Haque, M.A. Development of Cleaner One-part geopolymer from lithium slag. J. Clean. Prod. 2020, 125241, pre publish. [Google Scholar] [CrossRef]
- He, Z.; Du, S.; Chen, D. Microstructure of ultra high performance concrete containing lithium slag. J. Hazard. Mater. 2018, 353, 35–43. [Google Scholar] [CrossRef]
- He, Z.; Li, L.; Du, S. Mechanical properties, drying shrinkage, and creep of concrete containing lithium slag. Constr. Build. Mater. 2017, 147, 296–304. [Google Scholar] [CrossRef]
- Özbay, E.; Erdemir, M.; Durmuş, H.İ. Utilization and efficiency of ground granulated blast furnace slag on concrete properties—A review. Constr. Build. Mater. 2016, 105, 423–434. [Google Scholar] [CrossRef]
- Zhang, W.; He, F.; Xiao, Y.; Xie, M.; Li, F.; Xie, J.; Yang, H.; Li, Z. Structure, viscosity, and crystallization of glass melt from molten blast furnace slag. Int. J. Appl. Glass Sci. 2020, 11, 576–684. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Emam, M.A. Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Constr. Build. Mater. 2019, 197, 339–355. [Google Scholar] [CrossRef]
- Cao, R.; Li, B.; You, N.; Zhang, Y.; Zhang, Z. Properties of alkali-activated ground granulated blast furnace slag blended with ferronickel slag. Constr. Build. Mater. 2018, 192, 123–132. [Google Scholar] [CrossRef]
- Yoon, H. Oyster Shell as Substitute for Aggregate in Mortar. Waste Manag. Res. 2004, 22, 158–170. [Google Scholar] [CrossRef]
- Li, G.; Xu, X.; Chen, E.; Fana, J.; Xiong, G. Properties of cement-based bricks with oyster-shells ash. J. Clean. Prod. 2015, 91, 279–287. [Google Scholar] [CrossRef]
- Chilakala, R.; Thannaree, C.; Shin, E.J.; Thenepalli, T.; Ahn, J.W. Sustainable Solutions for Oyster Shell Waste Recycling in Thailand and the Philippines. Recycling 2019, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- GB/T 17671-1999; Method of testing cements—Determination of Strength. State Bureau of Quality and Technical Supervision: Beijing, China, 1999.
- Tayeh, B.A.; Bakar, B.H.A.; Johari, M.A.M.; Voo, Y.L. Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay. Constr. Build. Mater. 2012, 36, 538–548. [Google Scholar] [CrossRef]
- ASTM Standard C1202; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International: West Conshohocken, PA, USA, 2009; p. 6.
- American Association of States Highway and Transportation Officials. Rapid Determination of the Chloride Permeability of Concrete, Standard Specifications—Part II Tests; American Association of States Highway and Transportation Officials: Washington, DC, USA, 1990. [Google Scholar]
- Pan, G.; Sun, W.; Ding, D.; Zhang, Y. Experimental Study on the Micro-Aggregate Effect in High-Strength and Super-High-Strength Cementitious Composites 1 1 Communicated by D. M. Roy. Cem. Concr. Res. 1998, 28, 171–176. [Google Scholar] [CrossRef]
- Lawrence, P.; Cyr, M.; Ringot, E. Mineral admixtures in mortars effect of type, amount and fineness of fine constituents on compressive strength. Cem. Concr. Res. 2004, 35, 1092–1105. [Google Scholar] [CrossRef]
- Paul, S.C.; van Rooyen, A.S.; van Zijl, G.P.A.G.; Petrik, L.F. Properties of cement-based composites using nanoparticles, A comprehensive review. Constr. Build. Mater. 2018, 189, 1019–1034. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, T.; Guo, Y.; Wei, J.; Yu, Q. Effects of SCMs particles on the compressive strength of micro-structurally designed cement paste, Inherent characteristic effect, particle size refinement effect, and hydration effect. Powder Technol. 2018, 330, 1–11. [Google Scholar] [CrossRef]
- Ai, P.C. The Activation Process and Mechanism of Iron Tailings Powder and Its Influence on Concrete Performance; China University of Mining and Technology: Beijing, China, 2017. [Google Scholar]
- Cheng, Y.; Huang, F.; Li, W.; Liu, R.; Li, G.; Wei, J. Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete. Constr. Build. Mater. 2016, 118, 164–170. [Google Scholar] [CrossRef]
- Moon, G.D.; Oh, S.; Jung, S.H.; Choi, Y.C. Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete. Constr. Build. Mater. 2017, 135, 129–136. [Google Scholar] [CrossRef]
- De Weerdt, K.; Sellevold, E.; Kjellsen, K.O.; Justnes, H. Fly ash–limestone ternary cements: Effect of component fineness. Adv. Cem. Res. 2011, 23, 203–214. [Google Scholar] [CrossRef]
- Kan, L.; Shi, R.; Zhu, J. Effect of fineness and calcium content of fly ash on the mechanical properties of Engineered Cementitious Composites (ECC). Constr. Build. Mater. 2019, 209, 476–484. [Google Scholar] [CrossRef]
- Yan, F.; Qinli, Z.; Qiusong, C.; Daolin, W.; Hongquan, G.; Lang, L.; Qixing, Y. Hydration and strength development in blended cement with ultrafine granulated copper slag. PLoS ONE 2019, 14, e0216166. [Google Scholar]
- Hsu, S.; Chi, M.; Huang, R. Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar. Constr. Build. Mater. 2018, 176, 250–258. [Google Scholar] [CrossRef]
- Grigory, Y.; Rostislav, D.; Gintautas, S.; Larisa, U.; Irina, P.; Igor, P.; Ekaterina, K.; Zarina, S.; Elrefai, A.E.M.M. Effect of Ultrafine Additives on the Morphology of Cement Hydration Products. Crystals 2021, 11, 1002. [Google Scholar]
- Mohammed, M.; Dawson, A.; Thom, N.H. Macro/micro-pore structure characteristics and the chloride penetration of self-compacting concrete incorporating different types of filler and mineral admixture. Constr. Build. Mater. 2014, 72, 83–93. [Google Scholar] [CrossRef]
- Hallet, V.; de Belie, N.; Pontikes, Y. The impact of slag fineness on the reactivity of blended cements with high-volume non-ferrous metallurgy slag. Constr. Build. Mater. 2020, 257, 119400. [Google Scholar] [CrossRef]
- Yiqun, G.; Tongsheng, Z.; Junpeng, D.; Wenli, T.; Aiguo, W.; Jiangxiong, W.; Qijun, Y. The chloride binding capacity and stability of gap-graded blended cement with calcined hydrotalcite and metakaolin. J. Build. Eng. 2022, 49, 104093. [Google Scholar]
- Wang, L.; Luo, R.; Zhang, W.; Jin, M.; Tang, S. Effects of fineness and content of phosphorus slag on cement hydration, permeability, pore structure and fractal dimension of concrete. Fractals 2021, 29, 2140004. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | CaO | SO3 | MgO | |
---|---|---|---|---|---|
OSP | 16.5% | 0.3% | 46.6% | 0.05% | 36.3% |
LS | 54.5% | 25.4% | 6.4% | 10.2% | 0.6% |
GGBFS | 30.7% | 15.9% | 42.3% | 1.8% | 6.7% |
Materials | OSP | LS | GGBFS |
---|---|---|---|
Specific surface /m2·kg−1 | 2057 | 13,627 | 1206 |
Mesh size of OSP | 1250 | 3000 | 6000 |
Specific surface /m2·kg−1 | 1624 | 2057 | 8479 |
Serial Number | 0 | P-1 | P-2 | P-3 |
---|---|---|---|---|
Cement/g | 450 | 360 | 360 | 360 |
OSP/g (1250 mesh sizes) | 0 | 45 | - | - |
OSP/g (3000 mesh sizes) | 0 | - | 45 | - |
OSP/g (6000 mesh sizes) | 0 | - | - | 45 |
LS/g | 0 | 22.5 | 22.5 | 22.5 |
GGBFS/g | 0 | 22.5 | 22.5 | 22.5 |
Standard sand/g | 1350 | 1350 | 1350 | 1350 |
Water/mL | 225 | 225 | 225 | 225 |
Chloride Permeability | Charge (Coulombs) |
---|---|
High | >4000 |
Moderate | 2000–4000 |
Low | 1000–2000 |
Very low | 100–1000 |
Serial Number | CH to Take Off the Water | Amount of CaCO3 Decomposition | C-S-H Decomposition Quantity | H2O Content | CH Content |
---|---|---|---|---|---|
0 | 3.6% | 1.4% | 13.3% | 17.3% | 18% |
P-1 | 2.2% | 6.9% | 13.5% | 17.6% | 24.7% |
P-2 | 3.7% | 3.8% | 13.5% | 18.5% | 23.9% |
P-3 | 3.7% | 4.9% | 13.6% | 18.6% | 26.4% |
Serial Number | Total Pore Volume (mL/g) | Maximum Aperture/μm | Pore Size Distribution | |||
---|---|---|---|---|---|---|
0–0.02 μm | 0.02–0.1 μm | 0.1–0.2 μm | >0.2 μm | |||
0 | 0.151 | 0.095 | 1.001 | 0.542 | 0.073 | 0.342 |
P-1 | 0.151 | 0.055 | 1.002 | 0.56 | 0.099 | 0.488 |
P-2 | 0.122 | 0.056 | 0.747 | 0.341 | 0.049 | 0.301 |
P-3 | 0.143 | 0.069 | 0.908 | 0.428 | 0.055 | 0.329 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Wang, Y.; Liu, B.; Zou, Z.; Teng, Y.; Ji, Y.; Zhou, Y.; Zhang, L.V.; Zhang, Y. Sustainable Utilization of Waste Oyster Shell Powders with Different Fineness Levels in a Ternary Supplementary Cementitious Material System. Sustainability 2022, 14, 5981. https://doi.org/10.3390/su14105981
Liu S, Wang Y, Liu B, Zou Z, Teng Y, Ji Y, Zhou Y, Zhang LV, Zhang Y. Sustainable Utilization of Waste Oyster Shell Powders with Different Fineness Levels in a Ternary Supplementary Cementitious Material System. Sustainability. 2022; 14(10):5981. https://doi.org/10.3390/su14105981
Chicago/Turabian StyleLiu, Shanglai, Yuan Wang, Bonan Liu, Zhen Zou, Yina Teng, Yidi Ji, Yubo Zhou, Lei V. Zhang, and Yannian Zhang. 2022. "Sustainable Utilization of Waste Oyster Shell Powders with Different Fineness Levels in a Ternary Supplementary Cementitious Material System" Sustainability 14, no. 10: 5981. https://doi.org/10.3390/su14105981