A Fuzzy Analytic Hierarchy Process Model to Evaluate Logistics Service Expectations and Delivery Methods in Last-Mile Delivery in Brazil
Abstract
:1. Introduction
2. Last-Mile Delivery
2.1. Definitions
2.2. Context of Last Mile in Brazil
3. Methodology
4. Results and Discussion
5. Sensitivity Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, J.; Piecyk, M.; Piotrowska, M.; McLeod, F.; Cherrett, T.; Ghali, K.; Nguyen, T.; Bektas, T.; Bates, O.; Friday, A.; et al. Understanding the impact of e-commerce on last-mile light goods vehicle activity in urban areas: The case of London. Transp. Res. Part D Transp. Environ. 2018, 61, 325–338. [Google Scholar] [CrossRef] [Green Version]
- Bjerkan, K.Y.; Bjørgen, A.; Hjelkrem, O.A. E-Commerce and prevalence of last mile practices. Transp. Res. Procedia 2020, 46, 293–300. [Google Scholar] [CrossRef]
- Shao, S.; Xu, G.; Li, M.; Huang, G.Q. Synchronizing e-commerce city logistics with sliding time windows. Transp. Res. Part E Logist. Transp. Rev. 2019, 123, 17–28. [Google Scholar] [CrossRef]
- Trott, M.; Baur, N.-F.; der Landwehr, M.A.; Rieck, J.; von Viebahn, C. Evaluating the role of commercial parking bays for urban stakeholders on last-mile deliveries—A consideration of various sustainability aspects. J. Clean. Prod. 2021, 312, 1–15. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, G.; Cao, J.; Wu, A. Evolving strategies of e-commerce and express delivery enterprises with public supervision. Res. Transp. Econ. 2020, 80, 100810. [Google Scholar] [CrossRef]
- Seghezzi, A.; Mangiaracina, R.; Tumino, A.; Perego, A. ‘Pony Express’ crowdsourcing logistics for last-mile delivery in b2c e-commerce: An economic analysis. J. Logist. Res. Appl. 2020, 24, 456–472. [Google Scholar] [CrossRef]
- Lim, S.F.W.T.; Srai, J.S. Examining the anatomy of last-mile distribution in e-commerce omnichannel retailing: A supply network configuration approach. Int. J. Oper. Prod. Manag. 2018, 38, 1735–1764. [Google Scholar] [CrossRef] [Green Version]
- Mangiaracina, R.; Perego, A.; Seghezzi, A.; Tumino, A. Innovative solutions to increase last-mile delivery efficiency in B2C e-commerce: A literature review. Int. J. Phys. Distrib. Logist. Manag. 2019, 49, 901–920. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Liu, Q.; Shen, F.; Lee, L.H. Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions. Transp. Res. Part E Logist. Transp. Rev. 2016, 93, 279–293. [Google Scholar] [CrossRef]
- Iwan, S.; Kijewska, K.; Lemke, J. Analysis of parcel lockers’ efficiency as the last mile delivery solution: The results of the research in Poland. Transp. Res. Procedia 2016, 12, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.H.; Wang, Y.; He, D.; Lee, L.H. Last-mile delivery: Optimal locker location under multinomial logit choice model. Transp. Res. Part E Logist. Transp. Rev. 2020, 142, 102059. [Google Scholar] [CrossRef]
- Vakulenko, Y.; Hellström, D.; Hjort, K. What’s in the parcel locker? Exploring customer value in e-commerce last mile delivery. J. Bus. Res. 2018, 88, 421–427. [Google Scholar] [CrossRef]
- Aljohani, K.; Thompson, R.G. An examination of last mile delivery practices of freight carriers servicing business receivers in inner-city areas. Sustainability 2020, 12, 2837. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-R, P.L.; Canca, D.; Andrade-Pineda, J.L.; Calle, M.; Leon-Blanco, J.M. Truck-drone team logistics: A heuristic approach to multi-drop route planning. Transp. Res. Part C Emerg. Technol. 2020, 114, 657–680. [Google Scholar] [CrossRef]
- Lu, E.H.-C.; Yang, Y.-W. A hybrid route planning approach for logistics with pickup and delivery. Expert Syst. Appl. 2019, 118, 482–492. [Google Scholar] [CrossRef]
- Altenried, M. On the last mile: Logistical urbanism and the transformation of labour. Work. Organ. Labour Glob. 2019, 13, 114–129. [Google Scholar] [CrossRef]
- Balm, S.; van Amstel, W.P.; Habers, J.; Aditjandra, P.; Zunder, T.H. The purchasing behavior of public organizations and its impact on city logistics. Transp. Res. Procedia 2016, 12, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Caragliu, A.; Del Bo, C.F. Smart Innovative Cities: The impact of smart city policies on urban innovation. Technol. Forecast. Soc. Chang. 2019, 142, 373–383. [Google Scholar] [CrossRef]
- Crainic, T.G.; Montreuil, B. Physical internet enabled hyperconnected city logistics. Transp. Res. Procedia 2016, 12, 383–398. [Google Scholar] [CrossRef] [Green Version]
- Savelsbergh, M.; Van Woensel, T. 50th anniversary invited article—City logistics: Challenges and opportunities. Transp. Sci. 2016, 50, 579–590. [Google Scholar] [CrossRef]
- Boysen, N.; Briskorn, D.; Fedtke, S.; Schwerdfeger, S. Drone delivery from trucks: Drone scheduling for given truck routes. Networks 2018, 72, 506–527. [Google Scholar] [CrossRef]
- El-Adle, A.M.; Ghoniem, A.; Haouari, M. Parcel delivery by vehicle and drone. J. Oper. Res. Soc. 2021, 72, 398–416. [Google Scholar] [CrossRef]
- Giones, F.; Brem, A. From toys to tools: The co-evolution of technological and entrepreneurial developments in the drone industry. Bus. Horiz. 2017, 60, 875–884. [Google Scholar] [CrossRef]
- Kellermann, R.; Biehle, T.; Fischer, L. Drones for parcel and passenger transportation: A literature review. Transp. Res. Interdiscip. Perspect. 2020, 4, 100088. [Google Scholar] [CrossRef]
- Watkins, S.; Burry, J.; Mohamed, A.; Marino, M.; Prudden, S.; Fisher, A.; Kloet, N.; Jakobi, T.; Clothier, R. Ten questions concerning the use of drones in urban environments. Build. Environ. 2020, 167, 106458. [Google Scholar] [CrossRef]
- Vakulenko, Y.; Shams, P.; Hellström, D.; Hjort, K. Service Innovation in E-Commerce Last Mile Delivery: Mapping the e-Customer Journey. J. Bus. Res. 2019, 101, 461–468. [Google Scholar] [CrossRef]
- De Araújo, F.A.; dos Reis, J.G.M.; da Cruz Correia, P.F. The role of last-mile delivery in the future of e-commerce. In Advances in Production Management Systems. The Path to Digital Transformation and Innovation of Production Management Systems; Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D., Eds.; IFIP Advances in Information and Communication Technology; Springer International Publishing: Cham, Switzerland, 2020; Volume 591, pp. 307–314. ISBN 978-3-030-57992-0. [Google Scholar]
- Eliyan, A.; Elomri, A.; Kerbache, L. The Last-Mile Delivery Challenge: Evaluating the Efficiency of Smart Parcel Stations. Supply Chain Forum Int. J. 2021, 22, 360–369. [Google Scholar] [CrossRef]
- Kull, T.J.; Boyer, K.; Calantone, R. Last-mile supply chain efficiency: An analysis of learning curves in online ordering. Int. J. Oper. Prod. Manag. 2007, 27, 409–434. [Google Scholar] [CrossRef] [Green Version]
- Gevaers, R.; Van de Voorde, E.; Vanelslander, T. Characteristics and typology of last-mile logistics from an innovation perspective in an urban context. In City Distribution and Urban Freight Transport; Edward Elgar Publishing: Cheltenham, UK, 2011; p. 14398. ISBN 978-0-85793-275-4. [Google Scholar]
- Gevaers, R. Evaluation of Innovations in B2C Last Mile, B2C Reverse & Waste Logistics Proefschrift, Universiteit Antwerpen; Faculteit Toegepaste Economische Wetenschappen: Antwerpen, Belgium, 2013. [Google Scholar]
- Taniguchi, E.; Thompson, R.G.; Yamada, T.; van Duin, R. City Logistics: Network Modelling and Intelligent Transport Systems; Emerald Group Publishing Limited: Bingley, UK, 2001; ISBN 978-0-08-043903-7. [Google Scholar]
- Schwab, K. The Global Competitiveness Report 2019; World Economic Forum: Geneva, Switzerland, 2019; Available online: http://www3.weforum.org/docs/WEF_TheGlobalCompetitivenessReport2019.pdf (accessed on 3 April 2021).
- Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A review of last mile logistics innovations in externalities cost reduction vision. Sustainability 2018, 10, 782. [Google Scholar] [CrossRef] [Green Version]
- Brazilian National Confederation of Transport. Anuário CNT do Transporte 2021. Available online: https://anuariodotransporte.cnt.org.br/2020/Rodoviario/1-1-/Inicial (accessed on 28 February 2021).
- Marcilio, G.P.; de Assis Rangel, J.J.; de Souza, C.L.M.; Shimoda, E.; da Silva, F.F.; Peixoto, T.A. Analysis of Greenhouse Gas Emissions in the Road Freight Transportation Using Simulation. J. Clean. Prod. 2018, 170, 298–309. [Google Scholar] [CrossRef]
- Ministry of Infrastructure of Brazil. Infraestrutura Brasil; Ministério da Infraestrutura: Brasília, Brazil, 2020. Available online: https://www.gov.br/infraestrutura/pt-br/capa-ministerio-da-infraestrutura (accessed on 28 February 2021).
- PWC. Logtechs—As inovações e startups na Logística; 2019. Available online: https://insights.liga.ventures/estudos-completos/logtechs/ (accessed on 28 February 2021).
- Reuters. Freight Costs Slashed 6.5% in Brazil as New Pricing Table Gets Underway. Supply Chain & Logistics Business Intelligence. 2020. Available online: https://www.reutersevents.com/supplychain/freight/freight-costs-slashed-65-brazil-new-pricing-table-gets-underway (accessed on 22 April 2021).
- Peña, I. Tecnolatinas 2021: The LAC Startup Ecosystem Comes of Age; Inter-American Development Bank: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Revista Mundo Logística. Brasil Tem 283 Startups de Logística; 2020. Available online: https://revistamundologistica.com.br/noticias/brasil-tem-283-startups-de-logistica-conheca-as-10-maiores (accessed on 28 February 2021).
- Souza, C.D.O.; D’Agosto, M.D.A.; Bandeira, R.A.D.M.; Almeida, I.R.P.L.D. Soluções para o transporte urbano de cargas na etapa de última milha. Urbe. Rev. Bras. Gestão Urbana 2020, 12, e20190138. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill International Book Company: New York, NY, USA, 1980. [Google Scholar]
- van Laarhoven, P.J.M.; Pedrycz, W. A Fuzzy Extension of Saaty’s Priority Theory. Fuzzy Sets Syst. 1983, 11, 229–241. [Google Scholar] [CrossRef]
- Chang, D.-Y. Applications of the Extent Analysis Method on Fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [Google Scholar] [CrossRef]
- Maletič, D.; Maletič, M.; Lovrenčić, V.; Al-Najjar, B.; Gomišček, B. An application of analytic hierarchy process (AHP) and sensitivity analysis for maintenance policy selection. Organizacija 2014, 47, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Decision Making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Leung, L.C.; Cao, D. On Consistency and Ranking of Alternatives in Fuzzy AHP. Eur. J. Oper. Res. 2000, 124, 102–113. [Google Scholar] [CrossRef]
- Alaqeel, T.A.; Suryanarayanan, S. A Fuzzy Analytic Hierarchy Process Algorithm to Prioritize Smart Grid Technologies for the Saudi Electricity Infrastructure. Sustain. Energy Grids Netw. 2018, 13, 122–133. [Google Scholar] [CrossRef]
- Liu, Y.; Eckert, C.M.; Earl, C. A Review of Fuzzy AHP Methods for Decision-Making with Subjective Judgements. Expert Syst. Appl. 2020, 161, 113738. [Google Scholar] [CrossRef]
- Hübner, A.H.; Kuhn, H.; Wollenburg, J. Last mile fulfilment and distribution in omni-channel grocery retailing: A strategic planning framework. Int. J. Retail. Distrib. Manag. 2016, 44. [Google Scholar] [CrossRef]
- Irakleous, A. Modeling framework for last-mile logistics services. In Proceedings of the International Conference on Traffic and Transport Engineering, Belgrade, Serbia, 27–28 September 2018. [Google Scholar]
- Devari, A.; Nikolaev, A.G.; He, Q. Crowdsourcing the Last Mile Delivery of Online Orders by Exploiting the Social Networks of Retail Store Customers. Transp. Res. Part E Logist. Transp. Rev. 2017, 105, 105–122. [Google Scholar] [CrossRef]
- Murray, C.C.; Chu, A.G. The Flying Sidekick Traveling Salesman Problem: Optimization of Drone-Assisted Parcel Delivery. Transp. Res. Part C Emerg. Technol. 2015, 54, 86–109. [Google Scholar] [CrossRef]
- Groß, P.-O.; Ehmke, J.F.; Haas, I.; Mattfeld, D.C. Evaluation of Alternative Paths for Reliable Routing in City Logistics. Transp. Res. Procedia 2017, 27, 1195–1202. [Google Scholar] [CrossRef]
- Papoutsis, K.; Nathanail, E. Facilitating the Selection of City Logistics Measures through a Concrete Measures Package: A Generic Approach. Transp. Res. Procedia 2016, 12, 679–691. [Google Scholar] [CrossRef] [Green Version]
- Roque-Cilia, S.; Tamariz-Flores, E.I.; Torrealba-Meléndez, R.; Covarrubias-Rosales, D.H. Transport Tracking through Communication in WDSN for Smart Cities. Measurement 2019, 139, 205–212. [Google Scholar] [CrossRef]
- Xu, M.; Ferrand, B.; Roberts, M. The last mile of e-commerce—unattended delivery from the consumers and eTailers’ perspectives. Int. J. Electron. Mark. Retail. 2008, 2, 20–38. [Google Scholar] [CrossRef]
- Gevaers, R.; Van de Voorde, E.; Vanelslander, T. Cost Modelling and Simulation of Last-Mile Characteristics in an Innovative B2C Supply Chain Environment with Implications on Urban Areas and Cities. Procedia Soc. Behav. Sci. 2014, 125, 398–411. [Google Scholar] [CrossRef] [Green Version]
- Wollmann, D. Analytic hierachy process suportando a avaliação por pares. Rev. Diálogo Educ. 2017, 17, 503–523. [Google Scholar] [CrossRef] [Green Version]
- Mu, E.; Pereyra-Rojas, M. Practical Decision Making Using Super Decisions V3; Springer Briefs in Operations Research; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-68368-3. [Google Scholar]
- Xu, L.; Kumar, D.T.; Shankar, K.M.; Kannan, D.; Chen, G. Analyzing criteria and sub-criteria for the corporate social responsibility-based supplier selection process using AHP. Int. J. Adv. Manuf. Technol. 2013, 68, 907–916. [Google Scholar] [CrossRef]
- Dwi Putra, M.S.; Andryana, S.; Fauziah; Gunaryati, A. Fuzzy Analytical Hierarchy Process Method to Determine the Quality of Gemstones. Adv. Fuzzy Syst. 2018, 1–6. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making for the New Millenium: ANP Software for Dependence and Feedback; Katz Graduate School of Business, University of Pittsburgh: Pittsburgh, PA, USA, 1999; ISBN 978-1-888603-00-2. [Google Scholar]
- Lipsman, A. Frictionless Commerce 2020: How Coronavirus is Accelerating Seamless Omnichannel Retail; Insider Intelligence, 2020. Available online: https://www.emarketer.com/content/frictionless-commerce-2020 (accessed on 20 April 2021).
- Jones, C.; Livingstone, N. The ‘Online High Street’ or the High Street Online? The Implications for the Urban Retail Hierarchy. Int. Rev. Retail. Distrib. Consum. Res. 2018, 28, 47–63. [Google Scholar] [CrossRef]
- CNN Brasil. Petrobras Reajustou Gasolina e Diesel 13 Vezes no último ano; Alta Recente é a Maior. Available online: https://www.cnnbrasil.com.br/business/gasolina-e-diesel-da-petrobras-tem-maior-alta-desde-janeiro-de-2021/ (accessed on 17 March 2022).
- Maxner, T.; Dalla Chiara, G.; Goodchild, A. Identifying the Challenges to Sustainable Urban Last-Mile Deliveries: Perspectives from Public and Private Stakeholders. Sustainability 2022, 14, 4701. [Google Scholar] [CrossRef]
- Suatmadi, A.Y.; Creutzig, F.; Otto, I.M. On-Demand Motorcycle Taxis Improve Mobility, Not Sustainability. Case Stud. Transp. Policy 2019, 7, 218–229. [Google Scholar] [CrossRef]
- Tang, C.S.; Veelenturf, L.P. The strategic role of logistics in the industry 4.0 era. Transp. Res. Part E Logist. Transp. Rev. 2019, 129, 1–11. [Google Scholar] [CrossRef]
- Manners-Bell, J. Future of Logistics; Inter-American Development Bank: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Delfmann, W.; ten Hompel, M.; Kersten, W. Logistics as a Science—Central Research Questions in the Era of the Fourth Industrial Revolution. Logist. Res. 2018, 11, 1–13. [Google Scholar]
- Schwab, K.; Zahidi, S.; McLennan, M. The Global Risks Report 2021, 16th ed.; World Economic Forum: Geneva, Switzerland, 2021; Available online: http://wef.ch/risks2021 (accessed on 3 April 2021).
- Kedia, A.; Kusumastuti, D.; Nicholson, A. Establishing Collection and Delivery Points to Encourage the Use of Active Transport: A Case Study in New Zealand Using a Consumer-Centric Approach. Sustainability 2019, 11, 6255. [Google Scholar] [CrossRef] [Green Version]
Variable | Excellent (%) | Good (%) | Regular (%) | Poor (%) | Very Poor (%) |
---|---|---|---|---|---|
General conditions | 11.90 | 29.13 | 34.56 | 17.49 | 6.92 |
Paving quality | 38.59 | 8.97 | 34.96 | 13.75 | 3.72 |
Signaling quality | 13.96 | 37.89 | 26.14 | 11.64 | 10.36 |
Geometry quality | 5.74 | 17.99 | 26.64 | 20.69 | 28.94 |
Innovative Practice | Yes (%) | No (%) | Maybe (%) | The Product Does Not Allow (%) |
---|---|---|---|---|
Bicycle/Electric scooter | 44 | 22 | 17 | 17 |
Pick-up point/Locker | 50 | 0 | 28 | 22 |
Crowdsourcing | 22 | 22 | 34 | 22 |
Semi-autonomous/ Autonomous vehicles | 33 | 17 | 28 | 22 |
Drones | 34 | 33 | 11 | 22 |
Car drops | 17 | 33 | 39 | 11 |
Scale | Meaning |
---|---|
1 | Equally important |
3 | Moderate importance |
5 | Strong importance |
7 | Very strong importance |
9 | Extremely importance |
2, 4, 6, 8 | Intermediate values |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
RI | 0.0 | 0.0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Matrix | Initial CR | Final CR |
---|---|---|
Model | 0.161 | 0.009 |
Delivery Point | 0.153 | 0.044 |
Security | 0.299 | 0.015 |
Time and Speedy | 0.833 | 0.040 |
Tracking and Trace | 0.237 | 0.012 |
Value-Added | 0.457 | 0.021 |
Cost | 0.420 | 0.020 |
Criteria | Weight | Overall Rank | Alternatives | Weight | Overall Rank |
---|---|---|---|---|---|
Cost | 0.214 | 1 | Drone | 0.187 | 5 |
Delivery Point | 0.137 | 5 | Motorcycle | 0.197 | 3 |
Security | 0.174 | 3 | Multimodal | 0.185 | 4 |
Time and Speed | 0.158 | 4 | Small Truck | 0.213 | 2 |
Tracking and Trace | 0.193 | 2 | Smart Locker | 0.218 | 1 |
Value-Added | 0.125 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves de Araújo, F.; Mendes dos Reis, J.G.; Terra da Silva, M.; Aktas, E. A Fuzzy Analytic Hierarchy Process Model to Evaluate Logistics Service Expectations and Delivery Methods in Last-Mile Delivery in Brazil. Sustainability 2022, 14, 5753. https://doi.org/10.3390/su14105753
Alves de Araújo F, Mendes dos Reis JG, Terra da Silva M, Aktas E. A Fuzzy Analytic Hierarchy Process Model to Evaluate Logistics Service Expectations and Delivery Methods in Last-Mile Delivery in Brazil. Sustainability. 2022; 14(10):5753. https://doi.org/10.3390/su14105753
Chicago/Turabian StyleAlves de Araújo, Fernanda, João Gilberto Mendes dos Reis, Marcia Terra da Silva, and Emel Aktas. 2022. "A Fuzzy Analytic Hierarchy Process Model to Evaluate Logistics Service Expectations and Delivery Methods in Last-Mile Delivery in Brazil" Sustainability 14, no. 10: 5753. https://doi.org/10.3390/su14105753