# Underwater Camera Calibration Method Based on Improved Slime Mold Algorithm

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Basic Principle of Slime Mold Optimization Algorithm

## 3. Optimal Neighborhood Disturbance

## 4. Opposition-Based Learning

## 5. Camera Internal Parameter Solution Based on Improved Slime Mold Algorithm

#### 5.1. Design of Fusion Algorithm

#### 5.2. Establishment of Objective Function

#### 5.3. Solution of Initial Value of Parameters

#### 5.4. Algorithm Application

## 6. Experimental Verification

#### 6.1. Experimental Scheme Design

#### 6.2. Analysis of Experimental Results

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Lavest, J.M.; Rives, G.; Lapresté, J.T. Underwater Camera Calibration. Lect. Notes Comput. Sci.
**2000**, 1843, 654–668. [Google Scholar] - Agrawal, A.; Ramalingam, S.; Taguchi, Y.; Chari, V. A theory of multi-layer fat refractive geometry. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012. [Google Scholar]
- Jordtsedlazeck, A.; Koch, R. Refractive Calibration of Underwater Cameras. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 846–859. [Google Scholar]
- Zhou, J. Research on Design and Visual Positioning Technology of Underwater Weightlessness Simulation Manipulator. Master’s Thesis, Harbin Engineering University, Harbin, China, 2019. [Google Scholar]
- Zhang, Y.; Ouyang, Q.; Li, J.; Feng, J.; Wei, Z.; Zhou, L. Research on image distortion correction of underwater visual slam camera. J. Mar. Technol.
**2019**, 38, 24–29. [Google Scholar] - Lan, R. Research on Underwater Target Detection and Underwater Camera Calibration Method based on Vision. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2021. [Google Scholar]
- Hu, Z.X.; Wang, T. Binocular camera calibration based on BP neural network optimized by improved genetic algorithm. Electron. Opt. Control
**2022**, 29, 75–79. [Google Scholar] - Tian, S.; Fan, J.; Wang, Z.; Duan, J. Monocular Camera Calibration Algorithm Based on Improved Particle Swarm Optimization Algorithm. Ship Electron. Eng.
**2021**, 41, 44–47+154. [Google Scholar] - Huang, L.; Xu, Z.; Huang, X.; Liu, Y. Underwater camera model and its use in calibration. In Proceedings of the IEEE International Conference on Information & Automation, Lijiang, China, 8–10 August 2015; pp. 1519–1523. [Google Scholar]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A newmethod for stochastic optimization. Future Gener. Comput. Syst.
**2020**, 111, 300–323. [Google Scholar] [CrossRef] - Liu, L.; Bai, K.; Dan, Z.; Zhang, S.; Liu, Z. Whale Optimization Algorithm with Global Search Strategy. J. Chin. Comput. Syst.
**2020**, 41, 1820–1825. [Google Scholar] - Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]
- Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Opposition versus randomness in soft computing techniques. Appl. Soft Comput. J.
**2008**, 8, 906–918. [Google Scholar] [CrossRef] - Wang, D.; Sun, H.; Hu, S. Calibration Method of Monocular Camera Based on Beetle Antennae Search Algorithm. J. Univ. Jinan (Sci. Technol.)
**2020**, 34, 7. [Google Scholar] - Wang, Y.; Liu, H. Digital camera calibration of 2D planar targets. Softw. Guide
**2011**, 10, 3. [Google Scholar] - Feng, C. Research on Identification and Location of Object Based on Monocular Vision. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2013. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN95-international Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 39–43. [Google Scholar]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl. Based Syst.
**2019**, 165, 169–196. [Google Scholar] [CrossRef]

**Figure 3.**Results of 500 iterations of PSO algorithm, SOA algorithm, SMA algorithm and ORSMA algorithm.

**Figure 4.**Results of 1000 iterations of PSO algorithm, SOA algorithm, SMA algorithm and ORSMA algorithm.

Parameter | Zhang’s Calibration Method |
---|---|

f_{x}/pixel | 1101.15390 |

f_{y}/pixel | 1189.31317 |

u_{0}/pixel | 203.673768 |

v_{0}/pixel | 150.846034 |

k_{1} | −0.37039479 |

k_{2} | 0.18635836 |

p_{1} | 0.01825048 |

p_{2} | 0.0195527 |

k_{3} | −0.09057577 |

Error | 0.10989962 |

Parameter | Method | |||
---|---|---|---|---|

SOA | PSO | SMA | ORSMA | |

f_{x}/pixel | 601.15389965 | 1410.49484 | 1011.55162 | 1111.68207 |

f_{y}/pixel | 689.31316673 | 1336.40858 | 1089.72285 | 1192.76600 |

u_{0}/pixel | 216.65106585 | 197.063188 | 199.707583 | 203.615621 |

v_{0}/pixel | 77.64928307 | 171.234092 | 151.729567 | 119.276600 |

k_{1} | 13.62139211 | −5.53713199 | −3.04239425 | −0.441324230 |

k_{2} | 14.87117853 | −16.0303629 | −9.05574467 | 1.14250554 |

p_{1} | 6.95762756 | −0.530131156 | 0.258234732 | 0.00629919616 |

p_{2} | −2.82293147 | 0.495974082 | 0.566243092 | 0.00004899095 |

k_{3} | 19.52709632 | 31.8425636 | 0.000000001 | −0.519185085 |

Parameter | Method | |||
---|---|---|---|---|

SOA | PSO | SMA | ORSMA | |

f_{x}/pixel | 602.91076933 | 1042.34080 | 1114.04622 | 1103.90160 |

f_{y}/pixel | 691.32768149 | 1088.27820 | 1192.48902 | 1200.21466 |

u_{0}/pixel | 150.65135149 | 201.978786 | 202.772505 | 203.264646 |

v_{0}/pixel | 120.56691468 | 150.141963 | 150.265811 | 150.805549 |

k_{1} | −33.57534433 | −0.874402079 | −4.16035531 | −1.05483183 |

k_{2} | −33.2041582 | 1.38275568 | 25.6283403 | 2.27889246 |

p_{1} | 6.92129933 | 0.361960909 | 0.134808315 | 0.0139799889 |

p_{2} | 3.61354862 | 0.141383928 | 0.118562365 | 0.0669686941 |

k_{3} | 7.32151031 | −21.4787482 | −49.7514346 | −1.58430646 |

Number of Iterations | Method | |||
---|---|---|---|---|

SOA | PSO | SMA | ORSMA | |

500 | 0.48638793 | 0.05919811 | 0.01477718 | 0.00891584 |

1000 | 0.6670664 | 0.04475725 | 0.01948457 | 0.00998466 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Du, S.; Zhu, Y.; Wang, J.; Yu, J.; Guo, J.
Underwater Camera Calibration Method Based on Improved Slime Mold Algorithm. *Sustainability* **2022**, *14*, 5752.
https://doi.org/10.3390/su14105752

**AMA Style**

Du S, Zhu Y, Wang J, Yu J, Guo J.
Underwater Camera Calibration Method Based on Improved Slime Mold Algorithm. *Sustainability*. 2022; 14(10):5752.
https://doi.org/10.3390/su14105752

**Chicago/Turabian Style**

Du, Shuai, Yun Zhu, Jianyu Wang, Jieping Yu, and Jia Guo.
2022. "Underwater Camera Calibration Method Based on Improved Slime Mold Algorithm" *Sustainability* 14, no. 10: 5752.
https://doi.org/10.3390/su14105752