Progress and Prospects of Forest Ecological Asset Research
Abstract
:1. Introduction
2. Materials and Methods
3. Literature Distribution
3.1. Annual Distribution of the Literature
3.2. Country Distribution of the Literature
3.3. Literature Keywords Mapping
4. Main Progress and Landmark Achievements at Present
4.1. Theoretical Research on Related Concepts
4.1.1. Value, Asset, and Capital
4.1.2. Ecosystem Functions and ES
4.1.3. Forest Ecological Assets (FEA) and Forest Carrying Capacity (FCC)
4.2. Content of FEA Accounting Indicators
4.3. Technical Methods for Monitoring FEA
4.4. FEA Accounting Methods and Models
4.5. FEA Accounting
4.5.1. Single-Service Function Value Assessment
4.5.2. Assessing the Value of FEA Based on Region
5. Key Scientific Issues to Be Solved Next
5.1. Aiming to Solve the Inconsistency of the Concept of Ecological Assets and Accounting Content, and Clarifying the Relationships between Natural Capital, Ecological Assets, and Ecosystem Services
5.2. Aiming to Resolve Which Aspects of the FEA Research Should Focus on, and Analyzing the Characteristics and Attributes of Ecological Assets from an Interdisciplinary Perspective
5.3. Aiming to Solve the Issue of the Construction of the Ecological Asset Evaluation Index System and the Selection of Evaluation Methods
5.4. Aiming to Solve the Problem of Integrating Ecosystem Observation Techniques and Data Assimilation, Data Assimilation Methods That Integrate Ground-Positioning Observations, and Space Remote-Sensing Observations That Complement Each Other
5.5. In View of the Problem of Spatial Heterogeneity in Ecological Asset Accounting, Conduct Dynamic Research
5.6. In View of the Current Forest Ecological Asset Accounting without Considering the Cost, Research the Net Value of Forest Ecological Assets
5.7. Aiming to Solve the Problem of FEA Appreciation and Preservation and Carrying Capacity Improvement Strategies, Sustainable Development Strategies Are Proposed According to Different Regions and Forest Types
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Ruckelshaus, M.H.; Jackson, S.T.; Mooney, H.A.; Jacobs, K.L.; Kassam, K.A.S.; Arroyo, M.T.K.; Baldi, A.; Bartuska, A.M.; Boyd, J.; Joppa, L.N.; et al. The IPBES global assessment: Pathways to action. Trends Ecol. Evol. 2020, 35, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; Gonzalez-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Study on the Comprehensive Value Evaluation of Forest Ecology Assets of Longjiang Forest Industry Group. Master’s Thesis, Northeast Forestry University, Harbin, China, 2011. [Google Scholar]
- Keles, S.; Durusoy, I.; Cakir, G. Analysis of the changes in forest ecosystem functions, structure and composition in the Black Sea region of Turkey. J. Forest. Res. 2017, 28, 329–342. [Google Scholar] [CrossRef]
- Tiemann, A.; Ring, I. Challenges and opportunities of aligning forest function mapping and the ecosystem service concept in Germany. Forests 2018, 9, 691. [Google Scholar] [CrossRef] [Green Version]
- Unterberger, C.; Olschewski, R. Determining the insurance value of ecosystems: A discrete choice study on natural hazard protection by forests. Ecol. Econ. 2021, 180, 106866. [Google Scholar] [CrossRef]
- Obeng, E.A.; Aguilar, F.X.; McCann, L.M. Payments for forest ecosystem services: A look at neglected existence values, the free-rider problem and beneficiaries’ willingness to pay. Int. Forest. Rev. 2018, 20, 206–219. [Google Scholar] [CrossRef]
- Costanza, R.; Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem service and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Chang, Y.X.; Zou, T.H.; Yoshino, K. A new public appraisal method for valuating ecosystem services: A case study in the Wuyishan area, China. J. Clean. Prod. 2021, 286, 124973. [Google Scholar] [CrossRef]
- Lehtoranta, V.; Sarvilinna, A.; Vaisanen, S.; Aroviita, J.; Muotka, T. Public values and preference certainty for stream restoration in forested watersheds in Finland. Water Resour. Econ. 2017, 17, 56–66. [Google Scholar] [CrossRef]
- Ninan, K.N.; Kontoleon, A. Valuing forest ecosystem services and disservices—Case study of a protected area in India. Ecosyst. Serv. 2016, 20, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Zhang, P.D. Forest ecosystem services and their value evaluation of Ziwuling in Gansu province. Forest. Econ. 2007, 10, 68–71. [Google Scholar]
- Su, X.Y. A Study on Forest Carrying Capacity. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2002. [Google Scholar]
- Fino, S.R.; Williams, C.K.; Livolsi, M.C.; Ringelman, K.M.; Coluccy, J.M.; Devers, P.K.; Castelli, P.M. Carrying capacity of wintering American Black Ducks in forested wetlands. J. Wildl. Manag. 2017, 81, 943–950. [Google Scholar] [CrossRef]
- Ismail, D.; Jiwan, D. Browsing preference and ecological carrying capacity of sambar deer (Cervus unicolor brookei) on secondary vegetation in forest plantation. Anim. Sci. J. 2015, 86, 225–237. [Google Scholar] [CrossRef]
- Ouyang, X.Z.; Peng, S.K.; Liao, W.M. Approach to evaluating method for forest carrying capacity. Acta Agric. Univ. Jiangxiensis 2003, 25, 834–838. [Google Scholar]
- De Prado, D.R.; San Martin, R.; Bravo, F.; De Aza, C.H. Potential climatic influence on maximum stand carrying capacity for 15 Mediterranean coniferous and broadleaf species. Forest. Ecol. Manag. 2020, 460, 117824. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Y.S. On the management of ecological capital and the construction of eco-service compensation mechanism. J. Fujian Agric. For. Univ. 2010, 163, 11–16. [Google Scholar]
- Gao, J.X.; Fan, X.S. Connotation, traits and research trends of eco-assets. Res. Environ. Sci. 2007, 20, 137–143. [Google Scholar]
- Muller, A.; Knoke, T.; Olschewski, R. Can existing estimates for ecosystem service values inform forest management? Forests 2019, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Z.Y.; Zheng, H.; Xie, G.D.; Yang, W.; Liu, G.H.; Shi, Y.H.; Yang, D.G. Accounting theories and technologies for ecological assets, ecological compensation and scientific and technological contribution to ecological civilization. Acta Ecol. Sin. 2016, 36, 7136–7139. [Google Scholar]
- Costanza, R. Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability. Ecosyst. Serv. 2020, 43, 101096. [Google Scholar] [CrossRef]
- Hu, D. From produced (physical) asset to ecosystems asset—Complexity of asset and capital. Adv. Earth Sci. 2004, 2, 289–295. [Google Scholar]
- Huang, X.W.; Chen, B.M. The theory and application of China eco-assets zoning. Acta Ecol. Sin. 1999, 19, 602–606. [Google Scholar]
- Song, C.; Lee, W.K.; Choi, H.A.; Kim, J.; Jeon, S.W.; Kim, J.S. Spatial assessment of ecosystem functions and services for air purification of forests in South Korea. Environ. Sci. Policy 2016, 63, 27–34. [Google Scholar] [CrossRef]
- Lu, M.Q.; Cheng, J.Q.; Jin, C. Assessment of ecological assets for sustainable regional development: A case study of Deqing county, China. Sustainability 2017, 9, 939. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, H. Theoretical research on dynamic evaluation model of forest ecology assets. Intelligent information technology application association. In Proceedings of the 2011 International Conference on Future Computer Science and Application (FCSA 2011 V2), Kota Kinabalu, Malaysia, 16 July 2011; pp. 491–494. [Google Scholar]
- Reineke, L.H. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
- Li, R.; Zhou, P.; Xin, X.S. Analysis of the environmental population carrying capacity of forest resources in Henan Province. Nandu Acad. Forum 1999, 3, 3–5. [Google Scholar]
- Bo, W.J.; Wang, L.Y.; Cao, J.H.; Wang, X.K.; Xiao, Y.; Ouyang, Z.Y. Valuation of China’s ecological assets in forests. Acta Ecol. Sin. 2017, 37, 4182–4190. [Google Scholar]
- Dorji, T.; Brookes, J.D.; Facelli, J.M.; Sears, R.R.; Norbu, T.; Dorji, K.; Chhetri, Y.R.; Baral, H. Socio-cultural values of ecosystem services from oak forests in the eastern Himalaya. Sustainability 2019, 11, 2250. [Google Scholar] [CrossRef] [Green Version]
- Strand, J.; Soares, B.; Costa, M.H.; Oliveira, U.; Ribeiro, S.C.; Pires, G.F.; Oliveira, A.; Rajao, R.; May, P.; Van der Hoff, R.; et al. Spatially explicit valuation of the Brazilian Amazon forest’s ecosystem services. Nat. Sustain. 2018, 1, 657–664. [Google Scholar] [CrossRef]
- Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plann. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Wang, B.; Niu, X.; Wei, W.J. National forest ecosystem inventory system of China: Methodology and applications. Forests 2020, 11, 732. [Google Scholar] [CrossRef]
- Vargas, L.; Hein, L.; Remme, R.P. Accounting for ecosystem assets using remote sensing in the Colombian Orinoco River Basin lowlands. J. Appl. Remote Sens. 2017, 11, 026008. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Kumar, L.; Drielsma, M.J. Review of native vegetation condition assessment concepts, methods and future trends. J. Nat. Conserv. 2017, 40, 12–23. [Google Scholar] [CrossRef]
- Huang, B.B.; Li, R.N.; Ding, Z.W.; O’Connor, P.; Kong, L.Q.; Xiao, Y.; Xu, W.H.; Guo, Y.N.; Yang, Y.Y.; Li, R.D.; et al. A new remote-sensing-based indicator for integrating quantity and quality attributes to assess the dynamics of ecosystem assets. Glob. Ecol. Conserv. 2020, 22, e00999. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F. Ecological assets valuation of the Tibetan Plateau. J. Nat. Res. 2003, 18, 189–196. [Google Scholar]
- Li, L.; Wang, X.Y.; Luo, L.; Ji, X.Y.; Zhao, Y.; Zhao, Y.C.; Nabil, B. A systematic review on the methods of ecosystem services value assessment. Chin. J. Ecol. 2018, 37, 1233–1245. [Google Scholar]
- Mancini, M.S.; Galli, A.; Coscieme, L.; Niccolucci, V.; Lin, D.; Pulselli, F.M.; Bastianoni, S.; Marchettini, N. Exploring ecosystem services assessment through Ecological Footprint accounting. Ecosyst. Serv. 2018, 30, 228–235. [Google Scholar] [CrossRef]
- Roesch-McNally, G.E.; Rabotyagov, S.S. Paying for forest ecosystem services: Voluntary versus mandatory payments. Environ. Manag. 2016, 57, 585–600. [Google Scholar] [CrossRef]
- Pan, H.S.; Li, Y.; Chen, Z.H. A review and perspectives on the methods for evaluation of forest ecosystem service values. J. Arid. Land Resour. Environ. 2018, 32, 72–78. [Google Scholar]
- Watanabe, M.D.; Ortega, E. Dynamic emergy accounting of water and carbon ecosystem services: A model to simulate the impacts of land-use change. Ecol. Model. 2014, 271, 113–131. [Google Scholar] [CrossRef]
- Tan, X.Y.; Hirabayashi, S.; Shibata, S. Estimation of ecosystem services provided by street trees in Kyoto, Japan. Forests 2021, 12, 311. [Google Scholar] [CrossRef]
- Yuan, Z.; Wan, R. A review on the methods of ecosystem service assessment. Ecol. Sci. 2019, 38, 210–219. [Google Scholar]
- Yang, D.; Liu, W.; Tang, L.Y.; Chen, L.; Li, X.Z.; Xu, X.L. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 2, 133–143. [Google Scholar] [CrossRef]
- Boumans, R.; Roman, J.; Altman, I.; Kaufman, L. The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the interactions of coupled human and natural systems. Ecosyst. Serv. 2015, 3, 30–41. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B. A methodology for adaptable and robust ecosystem services assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef] [PubMed]
- Bagstad, K.J.; Johnson, G.W.; Voigt, B. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services. Ecosyst. Serv. 2013, 4, 117–125. [Google Scholar] [CrossRef]
- Ge, Y.Y.; Xin, B.Y.; Li, X. Urban forest construction based on ecosystem service function improvement in warm temperate semihumid areas. J. Beijing For. Univ. 2020, 42, 127–141. [Google Scholar]
- Han, M.C.; Li, Z.Y. Ecological benefits evaluation of urban forest and its models. World For. Res. 2011, 24, 42–46. [Google Scholar]
- Qian, H.; Field, R.; Zhang, J.L.; Zhang, J.; Chen, S.B. Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees inforest communities in China. J. Biogeogr. 2016, 43, 603–605. [Google Scholar] [CrossRef] [Green Version]
- Braat, L.C.; Groot, R.D. The ecosystem services agenda: Bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Tilahun, M.; Damnyag, L.; Anglaaere, L.C.N. The Ankasa Forest Conservation Area of Ghana: Ecosystem service values and on-site REDD + opportunity cost. For. Policy Econ. 2016, 73, 168–176. [Google Scholar] [CrossRef]
- Lai, M.; Shaohong, W.U.; Yin, Y. Accounting for eco-compensation in the three -river headwaters region based on ecosystem service value. Acta Ecol. Sin. 2015, 35, 227–236. [Google Scholar]
- Beier, C.M.; Caputo, J.; Lawrence, G.B. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA). J. Environ. Manag. 2017, 191, 19–27. [Google Scholar] [CrossRef]
- Zhao, J.L.; Wang, L.X.; Han, H.R.; Kang, F.F.; Zhang, Y.L. Research advances and trend in forest ecosystem services value evaluation. Chin. J. Ecol. 2013, 32, 2229–2237. [Google Scholar]
- Pache, R.G.; Abrudan, I.V.; Nita, M.D. Economic valuation of carbon storage and sequestration in Retezat National Park, Romania. Forests 2021, 12, 43. [Google Scholar] [CrossRef]
- Figueroa, E.; Pasten, R. The economic value of forests in supplying local climate regulation. Aust. J. Agric. Resour. Econ. 2015, 59, 446–457. [Google Scholar] [CrossRef]
- Dudek, T. Forest recreation in annual balance sheet of a forest districts versus estimated recreational value of forests. Sylwan 2017, 16, 748–755. [Google Scholar]
- Lupp, G.; Forster, B.; Kantelberg, V.; Markmann, T.; Naumann, J.; Honert, C.; Koch, M.; Pauleit, S. Assessing the recreation value of urban woodland using the ecosystem service approach in two forests in the Munich Metropolitan region. Sustainability 2016, 8, 1156. [Google Scholar] [CrossRef] [Green Version]
- Barth, N.C.; Doll, P. Assessing the ecosystem service flood protection of a riparian forest by applying a cascade approach. Ecosyst. Serv. 2016, 21, 39–52. [Google Scholar] [CrossRef]
- Getzner, M.; Gutheil-Knopp-Kirchwald, G.; Kreimer, E.; Kirchmeir, H.; Huber, M. Gravitational natural hazards: Valuing the protective function of Alpine forests. For. Policy Econ. 2017, 80, 150–159. [Google Scholar] [CrossRef]
- Brander, L.M.; Tankha, S.; Sovann, C.; Sanadiradze, G.; Zazanashvili, N.; Kharazishvili, D.; Memiadze, N.; Osepashvili, I.; Beruchashvili, G.; Arobelidze, N. Mapping the economic value of landslide regulation by forests. Ecosyst. Serv. 2018, 32, 101–109. [Google Scholar] [CrossRef]
- Zhao, T.Q.; Ouyang, Z.Y.; Zheng, H.; Wang, X.K.; Miao, H. Forest ecosystem services and their valuation in China. J. Nat. Resour. 2004, 4, 480–491. [Google Scholar]
- Yu, X.X.; Lu, S.W.; Jin, F. The assessment of the forest ecosystem services evaluation in China. Acta Ecol. Sin. 2005, 8, 2096–2102. [Google Scholar]
- Wu, S.; Yan, X.D.; Zhang, L.J. The relationship between forest ecosystem emergy and forest ecosystem service value in China. Acta Geogr. Sin. 2014, 69, 334–342. [Google Scholar]
- Barua, S.K.; Boscolo, M.; Animon, I. Valuing forest-based ecosystem services in Bangladesh: Implications for research and policies. Ecosystem Services. Ecosyst. Serv. 2020, 42, 101069. [Google Scholar] [CrossRef]
- Mutoko, M.C.; Hein, L.; Shisanya, C.A. Tropical forest conservation versus conversion trade-offs: Insights from analysis of ecosystem services provided by Kakamega rainforest in Kenya. Ecosyst. Serv. 2015, 14, 1–11. [Google Scholar] [CrossRef]
- Al-Assaf, A.A.; Al-Asmar, Y.Y.; Johnsen-Harris, B.D.; Al-Raggad, M.M. Spatial mapping of the social value of forest services: A case study of northern Jordan. J. Sustain. For. 2016, 35, 469–485. [Google Scholar] [CrossRef]
- Solomon, N.; Segnon, A.C.; Birhane, E. Ecosystem service values changes in response to land-use/land-cover dynamics in dry afromontane forest in northern Ethiopia. Int. J. Environ. Res. Public Health 2019, 16, 4653. [Google Scholar] [CrossRef] [Green Version]
- Nitanan, K.M.; Shuib, A.; Sridar, R.; Kunjuraman, V.; Zaiton, S.; Herman, M.A. The total economic value of forest ecosystem services in the tropical forests of Malaysia. Int. For. Rev. 2020, 22, 485–503. [Google Scholar] [CrossRef]
- Tello, D.S.; de Prada, J.D.; Cristeche, E.R. Economic valuation of the Calden (Prosopis Caldenia Burkart) forest in the south of Cordoba, Argentina. Rev. Chapingo Ser. Cienc. For. Ambiente 2018, 24, 297–312. [Google Scholar] [CrossRef]
- Yu, H.J.; Wang, Y.T.; Li, X.; Wang, C.D.; Sun, M.X.; Du, A.S. Measuring ecological capital: State of the art, trends, and challenges. J. Clean. Prod. 2019, 219, 833–845. [Google Scholar] [CrossRef]
- Barbier, E.B. Wealth accounting, ecological capital and ecosystem services. Environ. Dev. Econ. 2013, 18, 133–161. [Google Scholar] [CrossRef] [Green Version]
- Galli, A.; Halle, M.; Grunewald, N. Physical limits to resource access and utilisation and their economic implications in Mediterranean economies. Environ. Sci. Policy 2015, 51, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.M.; Yang, Y.Z.; Yan, H.M.; Pan, T.; Jiang, D.; Xiao, C.W. Issues regarding the compilation of the natural resource balance sheet. Resour. Sci. 2017, 39, 1615–1627. [Google Scholar]
- Koch, E.W.; Barbier, E.B.; Silliman, B.R.; Reed, D.J.; Perillo, G.M.; Hacker, S.D.; Granek, E.F.; Primavera, J.H.; Muthiga, N.; Polasky, S.; et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 2009, 7, 29–37. [Google Scholar] [CrossRef]
- Liu, Y.X.; Fu, B.J.; Zhao, W.W.; Wang, S. Ecological asset accounting and ecosystem services evaluation: Concept intersection and key research priorities. Acta Ecol. Sin. 2018, 38, 8267–8276. [Google Scholar]
- Lara-Pulido, J.A.; Guevara-Sangines, A.; Martelo, C.A. A meta-analysis of economic valuation of ecosystem services in Mexico. Ecosyst. Serv. 2018, 31, 126–141. [Google Scholar] [CrossRef]
- Cao, J.J.; Wu, G.L.; Cao, S.Z.; Du, G.Z. Review on ecological system assets evaluation in China. Sci. Technol. Rev. 2007, 28, 65–74. [Google Scholar]
- Bockstael, N.; Costanza, R.; Strand, I.; Boynton, W.; Bell, K.; Wainger, L. Ecological economic modeling and valuation of ecosystems. Ecol. Econ. 1995, 14, 143–159. [Google Scholar] [CrossRef]
- Fu, B.J.; Yu, D.D.; Lü, N. An indicator system for biodiversity and ecosystem services evaluation in China. Acta Ecol. Sin. 2017, 37, 341–348. [Google Scholar]
- Liu, J.Y.; Yue, T.X.; Zhang, R.H.; Shao, Q.Q. Information technology support for ecosystem assessment. Resour. Sci. 2006, 30, 6–7. [Google Scholar]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A. Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Mo, L.C.; Liu, J.K.; Chen, J.C.; Xie, Y. Quantifying ecosystem services of dominate forests in the Beijing mountain area. Environ. Sci. Pollut. Res. 2020, 27, 27773–27785. [Google Scholar] [CrossRef]
- Wood, R.; Stadler, K.; Bulavskaya, T.; Lutter, S.; Giljum, S.; de Koning, A.; Kuenen, J.; Schutz, H.; Acosta-Fernandez, J.; Usubiaga, A.; et al. Global sustainability accounting-developing EXIOBASE for multi-regional footprint analysis. Sustainability 2015, 7, 138–163. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.; Dendoncker, N.; Martín-López, B.; Barton, D.N.; Gomez-Baggethun, E. A new valuation school: Integrating diverse values of nature in resource and land use decisions. Ecosyst. Serv. 2016, 22, 213–220. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X. Several key problems of biodiversity and forest ecosystem health. Chin. J. Ecol. 2008, 27, 816–820. [Google Scholar]
- Kinzig, A.P.; Perrings, C.; Chapin, F.S.; Polasky, S.; Smith, V.K.; Tilman, D.; Turner, B.L. Paying for ecosystem services—Promise and peril. Science 2011, 334, 603–604. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.X.; Suo, X.H.; Xia, C.Q.; Yu, Z.Q.; Feng, F. Net value of forest ecosystem services in China. Ecol. Eng. 2020, 142, 105645. [Google Scholar] [CrossRef]
- Wang, S.R. Study on forest carrying capacity in Beijing-Tianjin-Hebei integration. For. Econ. 2018, 40, 52–57. [Google Scholar]
- Zhang, J. A study on forest carrying capacity in the region of low mountain and hills in Sichuan basin. J. Sichuan Agric. Univ. 1996, 14, 417–424. [Google Scholar]
- Zheng, W.S. Evaluation of forest carrying capacity and sustainable management measures in Zhangping City. Mod. Agric. Sci. Technol. 2012, 13, 166–169. [Google Scholar]
Research Stage | Research Content | Development Background | Main Characteristics |
---|---|---|---|
Embryonic Stage (1997–2001) | Concept of ecological assets and selection of asset accounting indicators. | The relevant theoretical research is still in the embryonic stage, and the research depth is insufficient. | Less literature was found and was mostly for large-scale ecological asset accounting. |
Growth Stage (2002–2011) | The concept of ecological assets was first used more frequently, and the research has gradually deepened. | Ecosystem quality is being emphasized globally across disciplines, and research on ecosystem services and ecological assets continues to diversify. | Relevant articles are published every year, and the depth of research has deepened, with research on both the total value of regional ecological assets and the value of single ecosystem service functions. |
Rapid-Growth Stage (2012–Today) | Ecological asset accounting method and case study and ecological compensation. | Ecological assets, ecosystem services, and ecological compensation are developing rapidly, and multidisciplinary integrated research is gradually increasing. | There are many articles published every year and the research on ecological assets and carrying capacity is relatively mature, but there is no empirical research on small- and medium-scale study areas. |
Function Category | Accounting Content | Accounting Indicators |
---|---|---|
Provisioning | Forest products | Total forestry products |
Regulating | Water conservation | Water conservation capacity |
Soil conservation | Soil conservation volume | |
Wind and sand prevention | Amount of sand consolidation | |
Water purification | Water conservation capacity | |
Air purification | Sulfur dioxide absorption | |
Climate regulation | Energy consumed by vegetation | |
Carbon storage and oxygen release | Amount of carbon storage and oxygen release | |
Cultural Supporting | Recreational travel | Tourism revenue |
Maintaining biodiversity | -- |
Type | Method Classification | Method Introduction | Reference |
---|---|---|---|
Energy Value Method | Determining the value of forest ecosystem services through the monetary conversion rate of energy values, or a functional relationship between energy values and the functional value of forest ecosystem services. | Watanabe et al., 2014 [44] | |
Modeling methods | InVEST | Valuation of forest, freshwater, and marine ecosystem services, enabling dynamic and sustainable assessment. | Yang et al., 2019 [48] |
MIMES | Assessment of ecosystem services in the biosphere, anthroposphere, hydrosphere, lithosphere, and atmosphere. | Boumans et al., 2015 [49] | |
ARIES | Valuation and quantification of ecosystem services through artificial intelligence and semantic modeling, combined with relevant algorithms and spatial data. | Villa et al., 2014 [50] | |
ESValue | Assign relative values of ecosystem services determined by society, managers, and stakeholders, based on existing scientific knowledge and stakeholder preferences. | Bagstad et al., 2013 [51] | |
CITYgreen | Quantitative assessment of urban forest ecological benefits relying on 3S technology. | Ge et al., 2020 [52] | |
iTree | Parameter information can be set according to the tree species, and the ecological benefits of different tree species can be quantified with easy and concise data processing. | Ge et al., 2020 [52] | |
UFORE | Quantifying forest structure and function. | Han et al., 2011 [53] | |
InFOREST | Assessing ecosystem services such as carbon, forest nutrients, and biodiversity. | Qian et al., 2016 [54] |
Type | Method Classification | Method Introduction | Reference | |
---|---|---|---|---|
Equivalent Factor Method | The equivalent factor method can distinguish different types of forest ecosystem service functions and assess each ecosystem service function based on its equivalent value combined with the distribution area of the forest ecosystem. | Xie et al., 2006 [40] | ||
Functional Value methods | Direct market value methods | Market Value Method | Use market prices as an approximation of monetary values to estimate the value of ecosystem goods and services. | Costanza et al. [9] |
Production Effect Method | Valuing changes in ecosystem service functions using changes in productivity due to changes in ecosystem services or products. | Braat et al., 2012 [55] | ||
Expense Method | Express the economic value of the ecosystem service function in terms of people’s expenditure on a certain environmental benefit. | Braat et al., 2012 [55] | ||
Indirect Market Value methods | Opportunity Cost Method | Estimate the value of an ecosystem service function in terms of the maximum opportunity cost (maximum benefit from foregoing alternative uses) of protecting that ecosystem service function. | Tilahun et al., 2016 [56] | |
Replacement Cost method | Estimate the economic value of ecological assets in terms of the cost of protecting or restoring an ecosystem from destruction as the loss of such ecological resources if they are destroyed. | Lai et al., 2015 [57] | ||
Alternative Engineering Method | The investment cost of manually constructing an alternative ecological project is taken as the value of the ecological asset. | Lai et al., 2015 [57] | ||
Enjoyment Value Method | Using the potential value of item characteristics, the impact of environmental factors on price is assessed by constructing a hedonic price function with an equilibrium relationship between product price and product characteristics. | Beier et al., 2017 [58] | ||
Travel Expense Method | The cost of travel as an expression of the intrinsic value of an ecosystem service as a measure of preference for a non-market product. | Zhao et al., 2013 [59] | ||
Simulated Market Value Method | Estimating the economic value of an ecosystem service function by directly asking people about their willingness to pay for an ecosystem service or their willingness to accept compensation for its loss. | Roesch et al., 2016 [43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Xiong, K.; Yang, S.; Liu, H.; Qin, Y.; Wang, Z. Progress and Prospects of Forest Ecological Asset Research. Sustainability 2022, 14, 395. https://doi.org/10.3390/su14010395
Li T, Xiong K, Yang S, Liu H, Qin Y, Wang Z. Progress and Prospects of Forest Ecological Asset Research. Sustainability. 2022; 14(1):395. https://doi.org/10.3390/su14010395
Chicago/Turabian StyleLi, Tingling, Kangning Xiong, Shan Yang, Haiyan Liu, Yao Qin, and Zhifu Wang. 2022. "Progress and Prospects of Forest Ecological Asset Research" Sustainability 14, no. 1: 395. https://doi.org/10.3390/su14010395
APA StyleLi, T., Xiong, K., Yang, S., Liu, H., Qin, Y., & Wang, Z. (2022). Progress and Prospects of Forest Ecological Asset Research. Sustainability, 14(1), 395. https://doi.org/10.3390/su14010395