Impact of Model Resolution on the Simulation of Precipitation Extremes over China
Abstract
1. Introduction
2. Materials and Methods
2.1. Observational and Model Data
2.2. Methods
3. Results
3.1. Comparison between Models in High-Resolution and Low-Resolution
3.2. Possible Reasons for the Improved Precipitation Extremes Simulation in High-Resolution Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duliè, V.R.; Zhang, Y.; Salathé, E.P. Extreme precipitation and temperature over the U.S. Pacific Northwest: A comparison between observations, reanalysis data, and regional models. J. Clim. 2011, 24, 1950–1964. [Google Scholar] [CrossRef]
- Gao, Z.; Zhu, J.; Guo, Y.; Luo, N.; Fu, Y.; Wang, T. Impact of Land Surface Processes on a Record-Breaking Rainfall Event on May 06–07, 2017, in Guangzhou, China. J. Geophys. Res. Atmos. 2021, 126, e2020JD032997. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Xie, S.P.; Zhang, R. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA 2021, 118, e2022255118. [Google Scholar] [CrossRef] [PubMed]
- Su, A.; Lü, X.; Cui, L.; Li, Z.; Xi, L.; Li, H. The Basic Observational Analysis of “7.20” Extreme Rainstorm in Zhengzhou. Torrential Rain Disasters 2021, 40, 445–454. [Google Scholar]
- Duffy, P.B.; Govindasamy, B.; Lorio, J.P.; Milovich, J.; Sperber, K.R.; Taylor, K.E.; Wehner, M.F.; Thompson, S.L. High-resolution simulations of global climate, Part 1: Present climate. Clim. Dyn. 2003, 21, 371–390. [Google Scholar] [CrossRef]
- Greenberg, D.A.; Dupont, F.; Lyard, F.H.; Lynch, D.R.; Werner, F.E. Resolution issues in numerical models of oceanic and coastal circulation. Cont. Shelf Res. 2007, 27, 1317–1343. [Google Scholar] [CrossRef]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, J.P.; Srivastava, A.K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef]
- Vidale, P.L.; Hodges, K.; Vannière, B.; Davini, P.; Roberts, M.J.; Strommen, K.; Weisheimer, A.; Plesca, E.; Corti, S. Impact of stochastic physics and model resolution on the simulation of tropical cyclones in climate GCMs. J. Clim. 2021, 34, 4315–4341. [Google Scholar] [CrossRef]
- Guilyardi, E.; Gualdi, S.; Slingo, J.; Navarra, A.; Delecluse, P.; Cole, J.; Madec, G.; Roberts, M.; Latif, M.; Terray, L. Representing El Niño in coupled ocean-atmosphere GCMs: The dominant role of the atmospheric component. J. Clim. 2004, 17, 4623–4629. [Google Scholar] [CrossRef][Green Version]
- Rauscher, S.A.; Coppola, E.; Piani, C.; Giorgi, F. Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim. Dyn. 2010, 35, 685–711. [Google Scholar] [CrossRef]
- Huang, D.Q.; Zhu, J.; Zhang, Y.C.; Huang, A.N. Uncertainties on the simulated summer precipitation over Eastern China from the CMIP5 models. J. Geophys. Res. Atmos. 2013, 118, 9035–9047. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, P.; Zhou, T.; Roberts, M.J.; Schiemann, R. Added value of high resolution models in simulating global precipitation characteristics. Atmos. Sci. Lett. 2016, 17, 646–657. [Google Scholar] [CrossRef]
- He, S.; Yang, J.; Bao, Q.; Wang, L.; Wang, B. Fidelity of the observational/reanalysis datasets and global climate models in representation of extreme precipitation in East China. J. Clim. 2019, 32, 195–212. [Google Scholar] [CrossRef]
- Demory, M.E.; Vidale, P.L.; Roberts, M.J.; Berrisford, P.; Strachan, J.; Schiemann, R.; Mizielinski, M.S. The role of horizontal resolution in simulating drivers of the global hydrological cycle. Clim. Dyn. 2014, 42, 2201–2225. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Gettelman, A.; Xu, Y.; Wu, C.; Wang, Z.; Rosenbloom, N.; Bates, S.C.; Dong, W. CAM6 simulation of mean and extreme precipitation over Asia: Sensitivity to upgraded physical parameterizations and higher horizontal resolution. Geosci. Model Dev. 2019, 12, 3773–3793. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Ronald, S.; Oceanic, N. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation. Geosci. Model Dev. Discuss. 2015, 8, 10539–10583. [Google Scholar] [CrossRef]
- Xin, X.; Wu, T.; Zhang, J.; Yao, J.; Fang, Y. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol. 2020, 40, 6423–6440. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J.; Lin, W.; Xu, H. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull. 2020, 65, 1415–1418. [Google Scholar] [CrossRef]
- Zhu, X.; Ji, Z.; Wen, X.; Lee, S.Y.; Wei, Z.; Zheng, Z.; Dong, W. Historical and projected climate change over three major river basins in China from Fifth and Sixth Coupled Model Intercomparison Project models. Int. J. Climatol. 2021, 1–19. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Yang, S. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Chang. Res. 2020, 11, 239–251. [Google Scholar] [CrossRef]
- Dong, T.; Dong, W. Evaluation of extreme precipitation over Asia in CMIP6 models. Clim. Dyn. 2021, 57, 1751–1769. [Google Scholar] [CrossRef]
- Luo, N.; Guo, Y.; Chou, J.; Gao, Z. Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in. Int. J. Climatol. 2021, 1–17. [Google Scholar] [CrossRef]
- Jiang, D.; Hu, D.; Tian, Z.; Lang, X. Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Xu, Y.; Li, J.-J.; Han, Z.-Y. Evaluation on the performance of CMIP6 global climate models with different horizontal resolution in simulating the precipitation over China. Clim. Chang. Res. 2021, 17, 730–743. [Google Scholar]
- Wu, J.; Gao, X.J. A gridded daily observation dataset over China region and comparison with the other datasets. Acta Geophys. Sin. 2013, 56, 1102–1111. [Google Scholar] [CrossRef]
- Yin, H.; Donat, M.G.; Alexander, L.V.; Sun, Y. Multi-dataset comparison of gridded observed temperature and precipitation extremes over China. Int. J. Climatol. 2015, 35, 2809–2827. [Google Scholar] [CrossRef]
- Zhou, B.; Xu, Y.; Wu, J.; Dong, S.; Shi, Y. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol. 2016, 36, 1051–1066. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Xu, C.; Luo, Y.; Xu, Y. Projected changes of precipitation extremes in river basins over China. Quat. Int. 2011, 244, 149–158. [Google Scholar] [CrossRef]
- Zhou, B.; Wen, Q.H.; Xu, Y.; Song, L.; Zhang, X. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Clim. 2014, 27, 6591–6611. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Gao, X.; Shi, Y.; Song, R.; Giorgi, F.; Wang, Y.; Zhang, D. Reduction of future monsoon precipitation over China: Comparison between a high resolution RCM simulation and the driving GCM. Meteorol. Atmos. Phys. 2008, 100, 73–86. [Google Scholar] [CrossRef]
- Zou, L.; Zhou, T. Near future (2016-40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM. Adv. Atmos. Sci. 2013, 30, 806–818. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, T.; Wu, B.; Li, T.; Luo, J.J. Projection of future precipitation change over China with a high-resolution global atmospheric model. Adv. Atmos. Sci. 2011, 28, 464–476. [Google Scholar] [CrossRef]
- Bao, J.; Feng, J.; Wang, Y. Dynamical downscaling simulation and future projection of precipitation over China. J. Geophys. Res. Atmos. 2015, 120, 8227–8243. [Google Scholar] [CrossRef]
- Wang, H.J.; Sun, J.Q.; Chen, H.P.; Zhu, Y.L.; Zhang, Y.; Jiang, D.B.; Lang, X.M.; Fan, K.; Yu, E.T.; Yang, S. Extreme climate in China: Facts, simulation and projection. Meteorol. Z. 2012, 21, 279–304. [Google Scholar] [CrossRef]
- Ganai, M.; Krishna, R.P.M.; Mukhopadhyay, P.; Mahakur, M. The impact of revised simplified Arakawa-Schubert scheme on the simulation of mean and diurnal variability associated with active and break phases of Indian summer monsoon using CFSv2. J. Geophys. Res. 2016, 121, 9301–9323. [Google Scholar] [CrossRef]
- Stephens, G.L.; L’Ecuyer, T.; Forbes, R.; Gettlemen, A.; Golaz, J.C.; Bodas-Salcedo, A.; Suzuki, K.; Gabriel, P.; Haynes, J. Dreary state of precipitation in global models. J. Geophys. Res. Atmos. 2010, 115, 1–14. [Google Scholar] [CrossRef]
- Kim, D.; Xavier, P.; Maloney, E.; Wheeler, M.; Waliser, D.; Sperber, K.; Hendon, H.; Zhang, C.; Neale, R.; Hwang, Y.T.; et al. Process-oriented MJO simulation diagnostic: Moisture sensitivity of simulated convection. J. Clim. 2014, 27, 5379–5395. [Google Scholar] [CrossRef]
- Holloway, C.E.; Neelin, D.J. Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci. 2009, 66, 1665–1683. [Google Scholar] [CrossRef]
Institute | High | Resolution | Low | Resolution |
---|---|---|---|---|
National Centre for Meteorological Research, France | CNRM-CM6-1-HR | 0.5° × 0.5° | CNRM-CM6-1 | 1.4° × 1.4° |
EC-Earth consortium | EC-Earth3-Veg | 0.7° × 0.7° | EC-Earth3-Veg-LR | 1.125° × 1.25° |
Met Office Hadley Centre, UK | HadGEM3-GC31-MM | 0.556° × 0.833° | HadGEM3-GC31-LL | 1.25° × 1.875° |
Max Planck Institute for Meteorology, Germany | MPI-ESM1-2-HR | 0.94° × 0.94° | MPI-ESM1-2-LR | 1.9° × 1.9° |
NorESM Climate modelling Consortium consisting of CICERO | NorESM2-MM | 0.94° × 1.25° | NorESM2-LM | 1.9° × 2.5° |
Label | Index Definition | Units |
---|---|---|
PRCPTOT | Annual total precipitation on wet days (RR ≥ 1 mm) | mm |
WD | Annual mean count of wet days (RR ≥ 1 mm) | days |
SDII | Mean precipitation on wet days (RR ≥ 1 mm) | mm/day |
CDD | Annual count of maximum number of consecutive dry days (RR < 1 mm) | days |
R95p | Accumulated precipitation amounts when RR > 95th percentile | mm |
R20mm | Annual count of days when RR ≥ 20 mm | days |
Model | D1 | D2 | D3 | ||||||
---|---|---|---|---|---|---|---|---|---|
PRCPTOT | WD | SDII | PRCPTOT | WD | SDII | PRCPTOT | WD | SDII | |
CNRM-CM6-1-HR | +292.7 | −15.6 | +2.3 | +53.1 | −8.9 | +0.8 | +17.1 | −11.7 | +1.4 |
CNRM-CM6-1 | +814.0 | +31.6 | +3.1 | +159.4 | −11.0 | +1.7 | −38.2 | −19.5 | +1.8 |
High–Low | −521.3 | −47.2 | −0.8 | −106.3 | +2.1 | −0.9 | +55.3 | +7.8 | −0.4 |
EC-Earth3-Veg | +351.7 | +31.9 | +0.75 | −47.1 | +25.4 | −1.7 | −6.0 | +9.8 | −1.0 |
EC-Earth3-Veg-LR | +433.7 | +46.9 | +0.65 | −145.7 | +20.2 | −2.0 | −4.2 | +14.3 | −1.3 |
High–Low | −82.0 | −15 | +0.1 | +98.6 | +5.2 | +0.3 | −1.8 | −4.5 | +0.3 |
HadGEM3-GC31-MM | +406.0 | +14.9 | +1.8 | +383.6 | +5.9 | +2.0 | +77.2 | −0.9 | +0.9 |
HadGEM3-GC31-LL | +667.6 | +40.6 | +2.1 | +532.8 | +8.8 | +2.7 | +191.9 | +2.0 | +1.7 |
High–Low | −261.6 | −25.7 | −0.3 | −149.2 | −2.9 | −0.7 | −114.7 | −2.9 | −0.8 |
MPI-ESM1-2-HR | +520.1 | +14.5 | +2.5 | −220.4 | −6.6 | −1.0 | +113.9 | +9.5 | +0.2 |
MPI-ESM1-2-LR | +798.5 | +55.3 | +2.1 | −186.0 | +17.8 | −2.1 | +151.2 | +24.4 | −0.6 |
High–Low | −278.4 | −40.8 | +0.4 | −34.4 | −24.4 | +1.1 | −37.3 | −14.9 | +0.8 |
NorESM2-MM | +520.7 | +16.5 | +2.4 | −60.6 | −4.4 | −0.1 | +192.1 | +24.2 | −0.4 |
NorESM2-LM | +685.4 | +34.0 | +2.5 | −85.7 | −8.1 | −0.02 | +321.8 | +27.4 | +0.5 |
High–Low | −164.7 | −17.5 | −0.1 | +25.1 | +3.7 | −0.08 | −129.7 | −3.2 | −0.9 |
High | +418.2 | +12.4 | +1.9 | +21.7 | +2.2 | +0.01 | +78.9 | +6.2 | +0.2 |
Low | +679.8 | +41.7 | +2.1 | +55.0 | +5.5 | +0.07 | +124.5 | +9.7 | +0.4 |
High–Low | −261.6 | −29.3 | −0.2 | −33.3 | −3.3 | −0.06 | −45.6 | −3.5 | −0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, N.; Guo, Y. Impact of Model Resolution on the Simulation of Precipitation Extremes over China. Sustainability 2022, 14, 25. https://doi.org/10.3390/su14010025
Luo N, Guo Y. Impact of Model Resolution on the Simulation of Precipitation Extremes over China. Sustainability. 2022; 14(1):25. https://doi.org/10.3390/su14010025
Chicago/Turabian StyleLuo, Neng, and Yan Guo. 2022. "Impact of Model Resolution on the Simulation of Precipitation Extremes over China" Sustainability 14, no. 1: 25. https://doi.org/10.3390/su14010025
APA StyleLuo, N., & Guo, Y. (2022). Impact of Model Resolution on the Simulation of Precipitation Extremes over China. Sustainability, 14(1), 25. https://doi.org/10.3390/su14010025