Analyzing the Role of Renewable Energy and Energy Intensity in the Ecological Footprint of the United Arab Emirates
Abstract
:1. Introduction
2. Literature Review
3. Model and Data
4. Methodology
5. Empirical Results and Discussions
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, Z.; Zafar, M.W.; Ali, S. Linking urbanization, human capital, and the ecological footprint in G7 countries: An empirical analysis. Sustain. Cities Soc. 2020, 55, 102064. [Google Scholar] [CrossRef]
- Nathaniel, S.; Aguegboh, E.; Iheonu, C.; Sharma, G.; Shah, M. Energy consumption, FDI, and urbanization linkage in coastal Mediterranean countries: Re-assessing the pollution haven hypothesis. Environ. Sci. Pollut. Res. 2020, 27, 35474–35487. [Google Scholar] [CrossRef] [PubMed]
- Nathaniel, S.; Anyanwu, O.; Shah, M.I. Renewable energy, urbanization, and ecological footprint in the Middle East and North Africa region. Environ. Sci. Pollut. Res. 2020, 27, 14601–14613. [Google Scholar] [CrossRef] [PubMed]
- Baloch, M.A.; Mahmood, N.; Zhang, J.W. Effect of natural resources, renewable energy and economic development on CO2 emissions in BRICS countries. Sci. Total Environ. 2019, 678, 632–638. [Google Scholar]
- Sharif, A.; Baris-Tuzemen, O.; Uzuner, G.; Ozturk, I.; Sinha, A. Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach. Sustain. Cities Soc. 2020, 57, 102138. [Google Scholar] [CrossRef]
- Mezher, T.; Dawelbait, G.; Abbas, Z. Renewable energy policy options for Abu Dhabi: Drivers and barriers. Energy Policy 2012, 42, 315–328. [Google Scholar] [CrossRef]
- Aydin, M.; Turan, Y.E. The influence of financial openness, trade openness, and energy intensity on ecological footprint: Revisiting the environmental Kuznets curve hypothesis for BRICS countries. Environ. Sci. Pollut. Res. 2020, 27, 43233–43245. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Owusu, P.A. How to apply the novel dynamic ARDL simulations (dynardl) and Kernel-based regularized least squares (krls). MethodsX 2020, 7, 101160. [Google Scholar] [CrossRef]
- El-Katiri, L.; Husain, M. Prospects for Renewable Energy in GCC States—Opportunities and the Need for Reform; Oxford Institute for Energy Studies: Oxford, UK, 2014. [Google Scholar]
- Alnaser, W.E.; Alnaser, N.W. The status of renewable energy in the GCC countries. Renew. Sustain. Energy Rev. 2011, 15, 3074–3098. [Google Scholar] [CrossRef]
- Flamos, A.; Roupas, C.V.; Psarras, J. GCC economies diversification: Still a myth? Energy Sources Part B Econ. Plan. Policy 2013, 8, 360–368. [Google Scholar] [CrossRef]
- Hendrix, C.S. Kicking a crude habit: Diversifying away from oil and gas in the twenty-first century. Int. Rev. Appl. Econ. 2019, 33, 188–208. [Google Scholar] [CrossRef]
- Ferroukhi, R.; Ghazal-Aswad, N.; Androulaki, S.; Hawila, D.; Mezher, T. Renewable energy in the GCC: Status and challenges. Int. J. Energy Sect. Manag. 2013, 7, 84–112. [Google Scholar] [CrossRef]
- Alusi, A.; Eccles, R.G.; Edmondson, A.C.; Zuzul, T. Sustainable cities: Oxymoron or the shape of the future? Harv. Bus. Sch. Organ. Behav. Unit Work. Pap. 2011, 11-062, 11–62. [Google Scholar] [CrossRef] [Green Version]
- Kahia, M.; Omri, A.; Jarraya, B. Green Energy, Economic Growth and Environmental Quality Nexus in Saudi Arabia. Sustainability 2021, 13, 1264. [Google Scholar] [CrossRef]
- Alfawzan, F.; Alleman, J.E.; Rehmann, C.R. Wind energy assessment for NEOM city, Saudi Arabia. Energy Sci. Eng. 2020, 8, 755–767. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, B.; Latif, Z. Towards cross-regional sustainable development: The nexus between information and communication technology, energy consumption, and CO2 emissions. Sustain. Dev. 2019, 27, 990–1000. [Google Scholar]
- Qureshi, Y.; Ali, U.; Sher, F. Part load operation of natural gas fired power plant with CO2 capture system for selective exhaust gas recirculation. Appl. Therm. Eng. 2021, 190, 116808. [Google Scholar] [CrossRef]
- Usman, O.; Akadiri, S.S.; Adeshola, I. Role of renewable energy and globalization on ecological footprint in the USA: Implications for environmental sustainability. Environ. Sci. Pollut. Res. 2020, 27, 30681–30693. [Google Scholar] [CrossRef]
- Papadimitriou, V. Prospective primary teachers’ understanding of climate change, greenhouse effect, and ozone layer depletion. J. Sci. Educ. Technol. 2004, 13, 299–307. [Google Scholar] [CrossRef]
- Wu, Y.; Yao, R.; Zhang, X.; Zhang, B.; Wang, T. Preparation and characterization of ACF/carbon composite membranes for efficient oil/water separation. J. Environ. Chem. Eng. 2021, 9, 105164. [Google Scholar] [CrossRef]
- Yaqoob, H.; Teoh, Y.H.; Jamil, M.A.; Rasheed, T.; Sher, F. An Experimental Investigation on Tribological Behaviour of Tire-Derived Pyrolysis Oil Blended with Biodiesel Fuel. Sustainability 2020, 12, 9975. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, S.; Wei, Y.; Sher, F.; Wen, L.; Xu, J.; Dang, J.; Hu, L. A novel method for removing organic sulfur from high-sulfur coal: Migration of organic sulfur during microwave treatment with NaOH-H2O2. Fuel 2021, 289, 119800. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, Y.; Jin, B.; Zhang, Y.; Zhou, C.; Sher, F. Effect of Slot Wall Jet on Combustion Process in a 660 MW Opposed Wall Fired Pulverized Coal Boiler. Int. J. Chem. React. Eng. 2019, 17. [Google Scholar] [CrossRef]
- Shafiei, S.; Salim, R.A. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Jebli, M.B.; Youssef, S.B. The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia. Renew. Sustain. Energy Rev. 2015, 47, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Sinha, A.; Kautish, P. Does renewable energy consumption reduce ecological footprint? Evidence from eight developing countries of Asia. J. Clean. Prod. 2021, 285, 124867. [Google Scholar] [CrossRef]
- Wackernagel, M.; Schulz, N.B.; Deumling, D.; Linares, A.C.; Jenkins, M.; Kapos, V.; Monfreda, C.; Loh, J.; Myers, N.; Norgaard, R. Tracking the ecological overshoot of the human economy. Proc. Natl. Acad. Sci. USA 2002, 99, 9266–9271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, Z.; Wang, Z.; Mahmood, F.; Hafeez, M.; Ali, N. Does globalization increase the ecological footprint? Empirical evidence from Malaysia. Environ. Sci. Pollut. Res. 2019, 26, 18565–18582. [Google Scholar] [CrossRef]
- Jordan, S.; Philips, A.Q. Cointegration testing and dynamic simulations of autoregressive distributed lag models. Stata J. 2018, 18, 902–923. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Ishaq, H.; Ali, U.; Sher, F.; Anus, M.; Imran, M. Process analysis of improved process modifications for ammonia-based post-combustion CO2 capture. J. Environ. Chem. Eng. 2021, 9, 104928. [Google Scholar] [CrossRef]
- Destek, M.A.; Ulucak, R.; Dogan, E. Analyzing the environmental Kuznets curve for the EU countries: The role of ecological footprint. Environ. Sci. Pollut. Res. 2018, 25, 29387–29396. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Ozturk, I.; Bekun, F.V.; Agboola, P.O.; Agboola, M.O. Renewable and non-renewable energy policy simulations for abating emissions in a complex economy: Evidence from the novel dynamic ARDL. Renew. Energy 2021, 177, 1408–1420. [Google Scholar] [CrossRef]
- Sher, F.; Chen, S.; Raza, A.; Rasheed, T.; Razmkhah, O.; Rashid, T.; Rafi-Ul-Shan, P.M.; Erten, B. Novel strategies to reduce engine emissions and improve energy efficiency in hybrid vehicles. Clean. Eng. Technol. 2021, 2, 100074. [Google Scholar] [CrossRef]
- Leeson, G.W. The Growth, Ageing and Urbanisation of our World. J. Popul. Ageing 2018, 11, 107–115. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Urbanization Prospects: The 2014 Revision, Highlights; Department of Economic and Social Affairs, Population Division, United Nations: New York, NY, USA, 2014; Volume 32. [Google Scholar]
- Ulucak, R.; Bilgili, F. A reinvestigation of EKC model by ecological footprint measurement for high, middle and low income countries. J. Clean. Prod. 2018, 188, 144–157. [Google Scholar] [CrossRef]
- Costanza, R. The dynamics of the ecological footprint concept. Ecol. Econ. 2000, 32, 341–345. [Google Scholar]
- Al-Mulali, U.; Weng-Wai, C.; Sheau-Ting, L.; Mohammed, A.H. Investigating the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. Ecol. Indic. 2015, 48, 315–323. [Google Scholar] [CrossRef]
- Hassan, S.T.; Xia, E.; Khan, N.H.; Shah, S.M.A. Economic growth, natural resources, and ecological footprints: Evidence from Pakistan. Environ. Sci. Pollut. Res. 2018, 26, 2929–2938. [Google Scholar] [CrossRef] [PubMed]
- Mrabet, Z.; Alsamara, M. Testing the Kuznets Curve hypothesis for Qatar: A comparison between carbon dioxide and ecological footprint. Renew. Sustain. Energy Rev. 2017, 70, 1366–1375. [Google Scholar] [CrossRef]
- Destek, M.A.; Sinha, A. Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries. J. Clean. Prod. 2019, 242, 118537. [Google Scholar] [CrossRef]
- Alola, A.A.; Bekun, F.V.; Sarkodie, S.A. Dynamic impact of trade policy, economic growth, fertility rate, renewable and non-renewable energy consumption on ecological footprint in Europe. Sci. Total Environ. 2019, 685, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Khalid, K.; Mehdi, M.A. What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization. Renew. Energy 2021, 168, 1165–1176. [Google Scholar] [CrossRef]
- Xue, L.; Haseeb, M.; Mahmood, H.; Alkhateeb, T.T.Y.; Murshed, M. Renewable Energy Use and Ecological Footprints Mitigation: Evidence from Selected South Asian Economies. Sustainability 2021, 13, 1613. [Google Scholar] [CrossRef]
- Sahoo, M.; Sethi, N. The intermittent effects of renewable energy on ecological footprint: Evidence from developing countries. Environ. Sci. Pollut. Res. 2021, 28, 56401–56417. [Google Scholar] [CrossRef]
- Ulucak, R.; Khan, S.U.-D. Determinants of the ecological footprint: Role of renewable energy, natural resources, and urbanization. Sustain. Cities Soc. 2020, 54, 101996. [Google Scholar]
- Caglar, A.E.; Mert, M.; Boluk, G. Testing the role of information and communication technologies and renewable energy consumption in ecological footprint quality: Evidence from world top 10 pollutant footprint countries. J. Clean. Prod. 2021, 298, 126784. [Google Scholar] [CrossRef]
- Christoforidis, T.; Katrakilidis, C. The dynamic role of institutional quality, renewable and non-renewable energy on the ecological footprint of OECD countries: Do institutions and renewables function as leverage points for environmental sustainability? Environ. Sci. Pollut. Res. 2021, 28, 53888–53907. [Google Scholar] [CrossRef]
- Ali, Q.; Yaseen, M.R.; Anwar, S.; Makhdum, M.S.A.; Khan, M.T.I. The impact of tourism, renewable energy, and economic growth on ecological footprint and natural resources: A panel data analysis. Resour. Policy 2021, 74, 102365. [Google Scholar] [CrossRef]
- Anwar, A.; Siddique, M.; Dogan, E.; Sharif, A. The moderating role of renewable and non-renewable energy in environment-income nexus for ASEAN countries: Evidence from Method of Moments Quantile Regression. Renew. Energy 2021, 164, 956–967. [Google Scholar] [CrossRef]
- Ito, K. CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence from panel data for developing countries. Int. Econ. 2017, 151, 1–6. [Google Scholar] [CrossRef]
- Bölük, G.; Mert, M. The renewable energy, growth and environmental Kuznets curve in Turkey: An ARDL approach. Renew. Sustain. Energy Rev. 2015, 52, 587–595. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B.; Ozturk, I. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecol. Indic. 2016, 60, 824–831. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Bae, J. The nexus of renewable energy-agriculture-environment in BRICS. Appl. Energy 2017, 204, 489–496. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy. Renew. Energy 2016, 94, 429–439. [Google Scholar] [CrossRef]
- Seker, F.; Ertugrul, H.M.; Cetin, M. The impact of foreign direct investment on environmental quality: A bounds testing and causality analysis for Turkey. Renew. Sustain. Energy Rev. 2015, 52, 347–356. [Google Scholar] [CrossRef]
- Baek, J. Environmental Kuznets curve for CO2 emissions: The case of Arctic countries. Energy Econ. 2015, 50, 13–17. [Google Scholar] [CrossRef]
- Abbas, S.; Kousar, S.; Pervaiz, A. Effects of energy consumption and ecological footprint on CO2 emissions: An empirical evidence from Pakistan. Environ. Dev. Sustain. 2021, 23, 13364–13381. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Rjoub, H.; Akinsola, G.D.; Oladipupo, S.D. The asymmetric effects of renewable energy consumption and trade openness on carbon emissions in Sweden: New evidence from quantile-on-quantile regression approach. Environ. Sci. Pollut. Res. 2021, 1–12. [Google Scholar] [CrossRef]
- Altıntaş, H.; Kassouri, Y. Is the environmental Kuznets Curve in Europe related to the per-capita ecological footprint or CO2 emissions? Ecol. Indic. 2020, 113, 106187. [Google Scholar] [CrossRef]
- Erdogan, S.; Okumus, I.; Guzel, A.E. Revisiting the Environmental Kuznets Curve hypothesis in OECD countries: The role of renewable, non-renewable energy, and oil prices. Environ. Sci. Pollut. Res. 2020, 27, 23655–23663. [Google Scholar] [CrossRef] [PubMed]
- Baz, K.; Xu, D.; Ali, H.; Ali, I.; Khan, I.; Khan, M.M.; Cheng, J. Asymmetric impact of energy consumption and economic growth on ecological footprint: Using asymmetric and nonlinear approach. Sci. Total Environ. 2020, 718, 137364. [Google Scholar] [CrossRef]
- Elshimy, M.; El-Aasar, K.M. Carbon footprint, renewable energy, non-renewable energy, and livestock: Testing the environmental Kuznets curve hypothesis for the Arab world. Environ. Dev. Sustain. 2020, 22, 6985–7012. [Google Scholar] [CrossRef]
- Udemba, E.N. A sustainable study of economic growth and development amidst ecological footprint: New insight from Nigerian Perspective. Sci. Total Environ. 2020, 732, 139270. [Google Scholar] [CrossRef]
- Kongbuamai, N.; Bui, Q.; Yousaf, H.M.A.U.; Liu, Y. The impact of tourism and natural resources on the ecological footprint: A case study of ASEAN countries. Environ. Sci. Pollut. Res. 2020, 27, 19251–19264. [Google Scholar] [CrossRef]
- Selim, J.E.; Rivas, M.F. Testing the environmental Kuznets curve hypothesis in Uruguay using ecological footprint as a measure of environmental degradation. Int. J. Energy Econ. Policy 2020, 10, 473. [Google Scholar]
- Akram, R.; Chen, F.; Khalid, F.; Ye, Z.; Majeed, M.T. Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: Evidence from developing countries. J. Clean. Prod. 2019, 247, 119122. [Google Scholar] [CrossRef]
- Salman, M.; Long, X.; Dauda, L.; Mensah, C.N.; Muhammad, S. Different impacts of export and import on carbon emissions across 7 ASEAN countries: A panel quantile regression approach. Sci. Total Environ. 2019, 686, 1019–1029. [Google Scholar] [CrossRef]
- Yaqoob, H.; Teoh, Y.H.; Goraya, T.S.; Sher, F.; Jamil, M.A.; Rashid, T.; Yar, K.A. Energy evaluation and environmental impact assessment of transportation fuels in Pakistan. Case Stud. Chem. Environ. Eng. 2021, 3, 100081. [Google Scholar] [CrossRef]
- Zulqarnain; Ayoub, M.; Yusoff, M.H.M.; Nazir, M.H.; Zahid, I.; Ameen, M.; Sher, F.; Floresyona, D.; Budi Nursanto, E. A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies. Sustainability 2021, 13, 788. [Google Scholar] [CrossRef]
- Chertow, M.R. The IPAT Equatin and its Variants. J. Ind. Ecol. 2008, 4, 13–29. [Google Scholar] [CrossRef]
- Wang, Y.N.; Zhao, T. Impacts of energy-related CO2 emissions: Evidence from under developed, developing and highly developed regions in China. Ecol. Indic. 2015, 50, 186–195. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Pata, U.K.; Isik, C. Determinants of the load capacity factor in China: A novel dynamic ARDL approach for ecological footprint accounting. Resour. Policy 2021, 74, 102313. [Google Scholar] [CrossRef]
- Ahmed, M.Y.; Sarkodie, S.A. Counterfactual shock in energy commodities affects stock market dynamics: Evidence from the United States. Resour. Policy 2021, 72, 102083. [Google Scholar] [CrossRef]
- Kripfganz, S.; Schneider, D.C. ardl: Estimating autoregressive distributed lag and equilibrium correction models. In Proceedings of the 2018 London Stata Conference, London, UK, 6–7 September 2018. [Google Scholar]
- AlKhars, M.; Miah, F.; Qudrat-Ullah, H.; Kayal, A. A systematic review of the relationship between energy consumption and economic growth in GCC countries. Sustainability 2020, 12, 3845. [Google Scholar] [CrossRef]
- Elrahmani, A.; Hannun, J.; Eljack, F.; Kazi, M.-K. Status of renewable energy in the GCC region and future opportunities. Curr. Opin. Chem. Eng. 2021, 31, 100664. [Google Scholar] [CrossRef]
- Usman, M.; Makhdum, M.S.A. What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development. Renew. Energy 2021, 179, 12–28. [Google Scholar] [CrossRef]
- Sharma, H.B.; Sarmah, A.K.; Dubey, B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew. Sustain. Energy Rev. 2020, 123, 109761. [Google Scholar] [CrossRef]
- Zulqarnain; Yusoff, M.H.M.; Ayoub, M.; Jusoh, N.; Abdullah, A.Z. The Challenges of a Biodiesel Implementation Program in Malaysia. Processes 2020, 8, 1244. [Google Scholar] [CrossRef]
- Ameen, M.; Zamri, N.M.; May, S.T.; Azizan, M.T.; Aqsha, A.; Sabzoi, N.; Sher, F. Effect of acid catalysts on hydrothermal carbonization of Malaysian oil palm residues (leaves, fronds, and shells) for hydrochar production. Biomass Convers. Biorefinery 2021, 1–12. [Google Scholar] [CrossRef]
- Griffiths, S. Renewable energy policy trends and recommendations for GCC countries. Energy Transit. 2017, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Al-Badi, A.; AlMubarak, I. Growing energy demand in the GCC countries. Arab. J. Basic Appl. Sci. 2019, 26, 488–496. [Google Scholar] [CrossRef] [Green Version]
No | Studies | Country | Year | Independent Variable | Dependent Variable | Methods | Long-Run and Causality |
---|---|---|---|---|---|---|---|
1 | [43] | OECD countries | 1980–2014 | RE, NRE, RI and (TO) | EF | ADF, MG, FMOLS-MG and DOLS-MG tests Second generation panel data methods | RE (−) EF, while NRE + EF, TO (−) EF; RI (−) EF association has been found to be U-shaped |
2 | [44] | European Union | 1997–2014 | RGDP, NRE, RE, TO, FR | EF | Panel Pool Mean Group Autoregressive distributive lag (PMG ARDL) model and Im, Pesaran Shin. | RGDP + NRE, NRE (−) EQ; GDP − EQ; FR + insignificant EF; RE and TO with EQ granger causality. |
3 | [5] | Turkey | 1965–2017 | GDP, RE, NRE | EF | Quantile Autoregressive Lagged (QARDL) approach | GDP + EF; U-Shaped relationship GDP and GDP2 on EF (EKC); RE (−) EF; NRE + EF. |
4 | [45] | BRICS-T (Brazil, Russia, India, China, South Africa, and Turkey) | 1990–2018 | AVA, FA, NRE and RE, and FD | EF | Augmented Dickey-Fuller (CADF) and Cross-sectionally Augmented Im Pesaran and Shin (CIPS), MG, AMG, CCEMG, and FMOLS | FA (−) EF; AVA + EF; NRE + EF; RE (−) EF; FD + EF |
5 | [46] | (South Asian) India, Pakistan, and Sri Lanka | 1990–2014 | FD, GDP, TO, PO, NRE and RE | EF | Pesaran Cross-sectional dependency (CSD) test, d Im–Pesaran–Shin (CIPS), GMM (Generalized method of moments) | RE (−) EF; NRE + EF; GDP mixed impact EF; FDI + EF; PO (−) EF, |
6 | [47] | 36 developing countries | 1990–2016 | Re, NRE, NR, HC, and GL, TO, URB, POP | EF | Augmented mean group (AMG), mean group (MG) technique, and common correlated effects mean group (CCEMG), FMOLS and DOLS approach, Dumitrescu and Hurlin causality test | GDP, NRE, NR, and URB + EF; HC, and GL (−) EF. |
7 | [3] | BRICS countries | 1990–2016 | GDP, NRE, RE, HC, URB | EF | Common correlated effects mean group (CCEMG), AMG, and PMG estimators | GDP and NR + EF, RE- EF; causality between HC, URB, and EF. |
8 | [27] | Eight developing countries of South and Southeast Asia | 1990–2015 | RI, RE, LE, and POP | EF | Cross-sectional augmented autoregressive distributed lag (CS-ARDL) | RE - EF; POP + EF; LE + insig EF; RI and EF are found N-shaped. |
9 | [48] | BRICS countries | 1992–2016 | RI, RE, URB, NRR | EF | Fully modified ordinary least squares (FMOLS) and dynamic ordinary least squares (DOLS) long-run estimators | NRR, RE, and URB (−) EF |
10 | [45] | 20 Asian economies | 1990–2014 | FD, GDP, NRE and RE, TO | EF | Cross-sectional dependency (CSD) tests, augmented mean group (AMG) approach, Dumitrescu and Hurlin (D-H) | EG and NRE + EF; RE (−) EF; TO + EF, |
11 | [49] | 10 countries | (Different date since 1985–2014) | ICT, RE, NRE, FD and EG | EF | ARDL and ADF | NRE - EF; RE, ICT and FD + EF |
12 | [50] | 29 OECD countries | 1984–2016 | DES and IQ | EF | Cross-sectional augmented distributed lag (CS-DL) estimator | RE, IQ - EF; EG and NRE + EF |
13 | [51] | 128 countires | 1995–2019 | GTI, RE, GDP, TO, URB, and CG | EF and RD | Driscoll–Kraay (D/K) | RE, URB, and CG (−) EF; GDP, TO + EF; GTI, RE, URB, CG + RD |
14 | [52] | ASEAN Countries | 1990–2018 | GDP, RE, and NRE | Method of moments quantile regression, (FMOLS, DOLS, FE-OLS | GDP + CO2; NRE + CO2; RE (−)CO2 | |
15 | [53] | 42 developed countries | 2002–2012 | RE, NRE, and GDP | OLS, GMM, PMG estimator (ARDL) model | NRE (−)CO2; RE + CO2 | |
16 | [54] | Turkey | 1961–2010 | RE, NRE and GDP | Augmented Dickey–Fuller test ADF, Kwiatkowski-Phillips-Schmidt-Shin KPSS, ARDL | NRE (−)CO2; RE + CO2 | |
17 | [55] | OECD countries | 1980–2010 | GDP, RE, NRE and ITR | Granger causality tests, FMOLS, DOLS | RE (−)CO2; ITR and REC (−)CO2 | |
18 | [56] | BRICS countries | 1992–2013 | REC, NEC, GDP, AVA | Generalized method of moments | RE and GDP (−)CO2; NRE + CO2. | |
19 | [57] | European Union | 1980–2012 | RE and NRE, RI and TO | Dynamic ordinary least squares estimator | RE and TO (−)CO2; NRE + CO2 | |
20 | [34] | Japan | 1970–2018 | RE, GDP, AT, ECI, CR | Novel dynamic autoregressive distribution lag (ARDL) model, (dynARDL) and Kernel-based regularized least squares (KRLS) | CR + CO2; ER (−)CO2; ECI (−)CO2, | |
21 | [58] | Turkey | 1974–2010 | EC, GDP, GDP2 and FDI | ADF, Phillipse Perron unit root test PP, Ng-Perron, ARDL, Hatemi-J co-integration, VECM causality | FDI + CO2; EC + CO2; GDP, the square of GDP and EC to FDI in the long run | |
22 | [25] | OECD countries | 1980–2011 | GDP, GDP2, RE, NRE, POP | ADF, PP, Breitung, Johansen co-integration, Westerlund co-integration, GMM, VECM causality | RE (−)CO2; NREC + CO2 | |
23 | [59] | Arctic countries. | 1960–2010 | RI (Economic growth) | Autoregressive distributed lag (ARDL) | ||
24 | [60] | Pakistan | 1970–2018 | NRE, RE, EF, URB, TR | Ordinary least-squares and dynamic ordinary least-square model, FMOLS and DOLS | NRE, the EF + CO2; RE (−)CO2; URB and TR + CO2 | |
25 | [61] | Sweden | 1965– 2019 | RE, TO, and EG | Quantile-on-quantile regression (QQ) | TO (−)CO2; ER (−)CO2; EG (−)CO2 | |
26 | [62] | 14 European countries | 1990–2014 | GDP, RE and FF | ADF, cross-sectionally augmented Dickey Fuller (CADF) unit root test. | RE (−) CO2 and EF; FF CO2 and EF. | |
27 | [63] | OECD countries | 1990–2014 | GDP, RE, NRE, OP and TO | Fully modified ordinary least squares (FMOLS) and dynamic ordinary least squares (DOLS) | OP and RE (−) CO2; NRE + CO2 | |
28 | [64] | Pakistan | 1971–2014 | GDP, EC and GFP | EF | Multivariate NARDL model | EG (−) EF; CAP (+) EF, |
29 | [65] | Arab world | 1980–2014 | RI, EC, EBS, RE, NRE, LS | EF | Ordinary least squares (OLS), FMOLS, DOLS | RE (−) EF, NRE + EF, |
30 | [66] | Nigeria | 1990–2014 | GDP, EG, NRE, FDI, AVA, EC, POP | EF | ARDL, NARDL | EG + EF; RI and PO (−) EF, NRE + EF |
31 | [67] | ASEAN countries | 1995–2016 | GTI, GDP, EC, NR | EF | Driscoll–Kraay panel regression model and Dumitrescu–Hurlin panel | NS and GTI (−) EF; GDP and EC bidirectional effects EF |
32 | [68] | Uruguay | 1971–2014 | GDP, FDI, EC, ED | EF | Dickey–Fuller, Dickey–Fuller generalized least squares, and KPSS tests, ARDL | EC + EF; GDP u shaped EF; FDI (−) EF |
33 | [69] | 66 developing countries | 1990–2014 | EE, RE, NEC, GDP | OLS, panel quantile regression (PQR) | EE (−) CO2; RE (−) CO2; NEC mixed effects CO2; GDP mixed effects CO2 | |
34 | [70] | ASEAN countries | 1990–2017 | GDP, POP, TI, EI, ECI, EX. | OLS, panel quantile regression (PQR) | POP and EI + CO2; TI and ECI (−) CO2; EX + CO2 | |
35 | [71] | Pakistan | 2017–2019 | NRE (FF, NEC, Co, OI, NG and PE), RE (SO, WI, GE, HY, TI, WA and BI) | and other gas emissions | SWOT analysis | |
36 | [72] | Malaysia | 2020 | NRE (BD) and OET | Biodiesel production and parametric analysis |
Variable | Obs | Mean | Median | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
lnEF | 26 | 17.803 | 17.775 | 0.419 | 17.096 | 18.300 |
lnGDP | 26 | 5.942 | 6.004 | 0.348 | 5.344 | 6.434 |
lnENI | 26 | −2.546 | −2.641 | 0.438 | −3.158 | −1.473 |
lnREN | 26 | 6.337 | 6.382 | 0.169 | 6.054 | 6.662 |
lnPOP | 26 | 4.407 | 4.408 | 0.033 | 4.361 | 4.457 |
ADF (Augmented Dickey Fuller ) | Phillips-Perron | |||
---|---|---|---|---|
Level | First Difference | Level | First Difference | |
lnEF | −1.62 | −3.85 *** | −1.54 | −3.87 *** |
lnGDP | −1.31 | −4.20 *** | −1.35 | −4.17 *** |
lnENI | −1.87 | −5.08 *** | −1.87 | −5.15 *** |
lnREN | −0.09 | −3.29 ** | −0.45 | −3.16 ** |
lnPOP | 1.28 | −2.80 * | 0.707 | −2.73 * |
Calculated Statistics | p-Value | 10% | 5% | 1% | |||||
---|---|---|---|---|---|---|---|---|---|
I(0) | I(1) | I(1) | I(0) | I(1) | I(0) | I(1) | I(0) | ||
t-test | −3.71 * | 0.013 | 0.092 | −2.522 | −3.652 | −2.939 | −4.158 | −3.826 | −5.252 |
Dynamic ARDL Simulations | ARDL | |||
---|---|---|---|---|
Regressor | Coeff. | Prob. | Coeff. | Prob. |
lnGDP | 1.047 *** | 0.009 | 1.702 *** | 0.001 |
lnENI | −0.179 ** | 0.016 | −0.160 *** | 0.004 |
lnREN | −0.800 ** | 0.018 | −0.791 *** | 0.000 |
lnPOP | −8.234 ** | 0.041 | −7.527 * | 0.078 |
Constant | 48.584 *** | 0.005 | 47.238 *** | 0.004 |
Simulation# | 5000 | |||
R2 | 0.704 | 0.696 | ||
F-stat | 3.09 ** | 0.032 | ||
Diagnostic tests | Statistics (Chi2) | Prob. | ||
Durbin’s test (autocorrelation) | 2.36 | 0.124 | ||
Breusch-Pagan (Heteroscedasticity) | 0.50 | 0.48 | ||
White’s test (Heteroscedasticity) | 24.01 | 0.40 | ||
Skewness and Kurtosis (Normality) | 0.72 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogan, E.; Shah, S.F. Analyzing the Role of Renewable Energy and Energy Intensity in the Ecological Footprint of the United Arab Emirates. Sustainability 2022, 14, 227. https://doi.org/10.3390/su14010227
Dogan E, Shah SF. Analyzing the Role of Renewable Energy and Energy Intensity in the Ecological Footprint of the United Arab Emirates. Sustainability. 2022; 14(1):227. https://doi.org/10.3390/su14010227
Chicago/Turabian StyleDogan, Eyup, and Syed Faisal Shah. 2022. "Analyzing the Role of Renewable Energy and Energy Intensity in the Ecological Footprint of the United Arab Emirates" Sustainability 14, no. 1: 227. https://doi.org/10.3390/su14010227
APA StyleDogan, E., & Shah, S. F. (2022). Analyzing the Role of Renewable Energy and Energy Intensity in the Ecological Footprint of the United Arab Emirates. Sustainability, 14(1), 227. https://doi.org/10.3390/su14010227