Simulation-Based Participatory Modelling in Urban and Production Logistics: A Review on Advances and Trends
Abstract
:1. Introduction
- With the use of computers, how is the landscape of the purpose of simulation-based participatory modelling changing?
- With the changing landscape, what are the methods and techniques used in different phases of participatory modelling?
2. Methodology
2.1. Descriptive Analysis
2.2. Thematic Analysis
2.2.1. Purpose of Participatory Modelling
Communication
Decision-Making
Knowledge Integration
Emerging Field–Empirical Modelling
2.2.2. Methods Adopted in Participatory Modelling
Input Collection
Data Processing
Output Presentation
3. Results
3.1. Changing Purpose of Simulation-Based Participatory Modelling
3.2. Methods and Techniques Used in Different Phases of Simulation-Based Participatory Modelling
3.3. Simulation-Based Participatory Modelling Studied from Sustainability Perspective
4. Discussion
Reference | Year | Method | Timeframe | Domain |
---|---|---|---|---|
Zunder et al. [125] | 2014 | Mixed methods approach | Until 2013 | Developing a local research strategy for city logistics on an academic campus |
Lagorio et al. [124] | 2016 | Systematic literature review | 2000–2015 | Research in urban logistics |
Aljohani and Thompson [126] | 2016 | Systematic literature review | 2000–2015 | Impacts of logistics sprawl on the urban environment and logistics |
Rose et al. [19] | 2017 | Systematic literature review | Until 2017 | Review of logistic strategies |
Jamshidi et al. [127] | 2018 | Decision-making methods | 2000–2017 | Priority criteria and decision-making methods applied in selection of sustainable city logistics initiatives and collaboration partners |
Dolati Neghabadi et al. [128] | 2018 | Bibliometric analysis | 2010–2017 | City logistics classification and analysis |
Viu-Roig and Alvarez-Palau [129] | 2018 | Systematic literature review | 2017–2019 | Impact of e-commerce-related last-mile logistics on cities |
Hu et al. [130] | 2019 | Scientometric review | 1993–2018 | Research trends and advances in city logistics |
Reda et al. [31] | 2020 | Systematic literature review | 2000–2020 | Identification of the regional and economic contexts of sustainable urban logistics policies |
Meza-Peralta et al. [131] | 2020 | Systematic literature review | 1990–2019 | Typology of urban logistics spaces as interfaces for freight transport |
Szmelter-Jarosz et al. [132] | 2020 | - | Until 2020 | Assessing resources management for sharing economy in urban logistics |
Zunder [133] | 2021 | Semi-systematic literature review | Until 2018 | Identifying research opportunities for more sustainable, receiver-led inbound urban logistics flows to large higher education institutions |
Arvianto et al. [134] | 2021 | Systematic literature review | 2016–2019 | Challenges and innovative solutions in developed and developing economies |
This article | 2021 | Systematic literature review | 2010–2021 | Simulation-based participatory modelling in production and urban logistics |
5. Conclusions
5.1. Limitations
5.2. Practical and Theoretical Implications
5.3. Research Agenda and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Voinov, A.; Jenni, K.; Gray, S.; Kolagani, N.; Glynn, P.D.; Bommel, P.; Prell, C.; Zellner, M.; Paolisso, M.; Jordan, R.; et al. Tools and methods in participatory modeling: Selecting the right tool for the job. Environ. Model. Softw. 2018, 109, 232–255. [Google Scholar] [CrossRef] [Green Version]
- Basco-Carrera, L.; Warren, A.; van Beek, E.; Jonoski, A.; Giardino, A. Collaborative modelling or participatory modelling? A framework for water resources management. Environ. Model. Softw. 2017, 91, 95–110. [Google Scholar] [CrossRef]
- Voinov, A.; Kolagani, N.; McCall, M.K.; Glynn, P.D.; Kragt, M.E.; Ostermann, F.O.; Pierce, S.A.; Ramu, P. Modelling with stakeholders–next generation. Environ. Model. Softw. 2016, 77, 196–220. [Google Scholar] [CrossRef]
- Arnstein, S.R. A ladder of citizen participation. J. Am. Inst. Plan. 1969, 35, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Hare, M.; Letcher, R.A.; Jakeman, A.J. Participatory modelling in natural resource management: A comparison of four case studies. Integr. Assess. 2003, 4, 62–72. [Google Scholar] [CrossRef]
- Andersson, L.; Olsson, J.A.; Arheimer, B.; Jonsson, A. Use of participatory scenario modelling as platforms in stakeholder dialogues. Water Sa 2008, 34, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Jones, N.A.; Perez, P.; Measham, T.G.; Kelly, G.J.; d’Aquino, P.; Daniell, K.A.; Dray, A.; Ferrand, N. Evaluating participatory modeling: Developing a framework for cross-case analysis. Environ. Manag. 2009, 44, 1180–1195. [Google Scholar] [CrossRef]
- Malekpour, S.; de Haan, F.; Brown, R. Marrying exploratory modelling to strategic planning: Towards participatory model use. In Proceedings of the 20th International Congress on Modelling and Simulation (MODSIM2013), Adelaide, Australia, 1–6 December 2013. [Google Scholar]
- Siebenhüner, B.; Barth, V. The role of computer modelling in participatory integrated assessments. Environ. Impact Assess. Rev. 2005, 25, 367–389. [Google Scholar] [CrossRef] [Green Version]
- De Kraker, J.; Kroeze, C.; Kirschner, P. Computer models as social learning tools in participatory integrated assessment. Int. J. Agric. Sustain. 2011, 9, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Wiktorsson, M.; Baalsrud Hauge, J.; Birkie, S.E. A simulation-based participatory modelling framework for stakeholder involvement in urban logistics. In Proceedings of the 2021 Winter Simulations Conference (WSC), Phoenix, AZ, USA, 12–15 December 2021. in press. [Google Scholar]
- Haase, D. Participatory modelling of vulnerability and adaptive capacity in flood risk management. Nat. Hazards 2013, 67, 77–97. [Google Scholar] [CrossRef]
- Berry, B.J. Urbanization. In Urban Ecology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 25–48. [Google Scholar]
- Lerner, W.; Audenhove, V.F. The future of urban mobility: Towards networked, multimodal cities in 2050. Public Transp. Int. 2012, 61, 14–18. [Google Scholar]
- Eurostat, S. Your Key to European Statistics. 2019. Available online: https://ec.europa.eu/eurostat/web/products-catalogues/-/ks-02-17-839 (accessed on 27 October 2021).
- van Wee, B.; Ettema, D. Travel behaviour and health: A conceptual model and research agenda. J. Transp. Health 2016, 3, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Okraszewska, R.; Romanowska, A.; Wołek, M.; Oskarbski, J.; Birr, K.; Jamroz, K. Integration of a multilevel transport system model into sustainable urban mobility planning. Sustainability 2018, 10, 479. [Google Scholar] [CrossRef] [Green Version]
- Katsela, K.; Pålsson, H. A multi-criteria decision model for stakeholder management in city logistics. Res. Transp. Bus. Manag. 2019, 33, 100439. [Google Scholar] [CrossRef]
- Rose, W.J.; Bell, J.E.; Autry, C.W.; Cherry, C.R. Urban logistics: Establishing key concepts and building a conceptual framework for future research. Transp. J. 2017, 56, 357–394. [Google Scholar] [CrossRef]
- Anand, N.; Van Duin, R.; Quak, H.; Tavasszy, L. Relevance of city logistics modelling efforts: A review. Transp. Rev. 2015, 35, 701–719. [Google Scholar] [CrossRef]
- Nyhuis, P.; Wiendahl, H.P. Fundamentals of Production Logistics: Theory, Tools and Applications; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Steen, M. Co-design as a process of joint inquiry and imagination. Des. Issues 2013, 29, 16–28. [Google Scholar] [CrossRef]
- Mangano, G.; Zenezini, G.; Cagliano, A.C.; De Marco, A. The dynamics of diffusion of an electronic platform supporting City Logistics services. Oper. Manag. Res. 2019, 12, 182–198. [Google Scholar] [CrossRef]
- Zenezini, G.; van Duin, J.; Tavasszy, L.; De Marco, A. Stakeholders’ Roles for Business Modeling in a City Logistics Ecosystem: Towards a Conceptual Model. In City Logistics 2: Modeling and Planning Initiatives; Wiley: Hoboken, NJ, USA, 2018; pp. 39–58. [Google Scholar] [CrossRef]
- Le Pira, M.; Marcucci, E.; Gatta, V.; Ignaccolo, M.; Inturri, G.; Pluchino, A. Towards a decision-support procedure to foster stakeholder involvement and acceptability of urban freight transport policies. Eur. Transp. Res. Rev. 2017, 9, 1–14. [Google Scholar] [CrossRef]
- Marcucci, E.; Le Pira, M.; Gatta, V.; Inturri, G.; Ignaccolo, M.; Pluchino, A. Simulating participatory urban freight transport policy-making: Accounting for heterogeneous stakeholders’ preferences and interaction effects. Transp. Res. Part E Logist. Transp. Rev. 2017, 103, 69–86. [Google Scholar] [CrossRef]
- Säfsten, K.; Gustavsson, M. Research Methodology: For Engineers and Other Problem-Solvers; Studentlitteratur AB: Lund, Sweden, 2020. [Google Scholar]
- Saenz, M.J.; Koufteros, X. Special issue on literature reviews in supply chain management and logistics. Int. J. Phys. Distrib. Logist. Manag. 2015, 45. [Google Scholar] [CrossRef]
- Stefansson, G. Collaborative logistics management and the role of third-party service providers. Int. J. Phys. Distrib. Logist. Manag. 2006, 36, 76–92. [Google Scholar] [CrossRef]
- Reda, A.K.; Gebresenbet, G.; Tavasszy, L.; Ljungberg, D. Identification of the regional and economic contexts of sustainable urban logistics policies. Sustainability 2020, 12, 8322. [Google Scholar] [CrossRef]
- Tornese, F.; Gnoni, M.G.; Thorn, B.K.; Carrano, A.L.; Pazour, J.A. Management and Logistics of Returnable Transport Items: A Review Analysis on the Pallet Supply Chain. Sustainability 2021, 13, 12747. [Google Scholar] [CrossRef]
- Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; pp. 1–10. [Google Scholar]
- Wohlin, C. Second-generation systematic literature studies using snowballing. In Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering, Limerick, Ireland, 1–3 June 2016; pp. 1–6. [Google Scholar]
- Grogan, P.T. Co-design and co-simulation for engineering systems: Insights from the Sustainable Infrastructure Planning Game. Des. Sci. 2021, 7, e11. [Google Scholar] [CrossRef]
- Nae, M.; Dumitrache, L.; Suditu, B.; Matei, E. Housing Activism Initiatives and Land-Use Conflicts: Pathways for Participatory Planning and Urban Sustainable Development in Bucharest City, Romania. Sustainability 2019, 11, 6211. [Google Scholar] [CrossRef] [Green Version]
- Karimi, A.; Brown, G. Assessing multiple approaches for modelling land-use conflict potential from participatory mapping data. Land Use Policy 2017, 67, 253–267. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, L.; Philippopoulos-Mihalopoulos, A.; Chappin, E.J.; van Dam, K.H. Integrating agent-based modeling, serious gaming, and co-design for planning transport infrastructure and public spaces. Urban Des. Int. 2021, 26, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Dasgupta, R.; Dhyani, S.; Kadaverugu, R.; Johnson, B.A.; Hashimoto, S.; Sahu, N.; Avtar, R.; Saito, O.; Chakraborty, S.; et al. Scenario-Based Hydrological Modeling for Designing Climate-Resilient Coastal Water Resource Management Measures: Lessons from Brahmani River, Odisha, Eastern India. Sustainability 2021, 13, 6339. [Google Scholar] [CrossRef]
- Kuru, K.; Ansell, D. TCitySmartF: A comprehensive systematic framework for transforming cities into smart cities. IEEE Access 2020, 8, 18615–18644. [Google Scholar] [CrossRef]
- Leonard, L.; Miles, B.; Heidari, B.; Lin, L.; Castronova, A.M.; Minsker, B.; Lee, J.; Scaife, C.; Band, L.E. Development of a participatory Green Infrastructure design, visualization and evaluation system in a cloud supported jupyter notebook computing environment. Environ. Model. Softw. 2019, 111, 121–133. [Google Scholar] [CrossRef]
- Stave, K.; Dwyer, M.; Turner, M. Exploring the value of participatory system dynamics in two paired field studies of stakeholder engagement in sustainability discussions. Syst. Res. Behav. Sci. 2019, 36, 156–179. [Google Scholar] [CrossRef]
- Artopoulos, G.; Costa, C.S. Data-Driven Processes in Participatory Urbanism: The “Smartness” of Historical Cities. Archit. Cult. 2019, 7, 473–491. [Google Scholar] [CrossRef]
- Pardo-García, N.; Simoes, S.G.; Dias, L.; Sandgren, A.; Suna, D.; Krook-Riekkola, A. Sustainable and Resource Efficient Cities platform–SureCity holistic simulation and optimization for smart cities. J. Clean. Prod. 2019, 215, 701–711. [Google Scholar] [CrossRef]
- Andreani, S.; Kalchschmidt, M.; Pinto, R.; Sayegh, A. Reframing technologically enhanced urban scenarios: A design research model towards human centered smart cities. Technol. Forecast. Soc. Chang. 2019, 142, 15–25. [Google Scholar] [CrossRef]
- Rall, E.; Hansen, R.; Pauleit, S. The added value of public participation GIS (PPGIS) for urban green infrastructure planning. Urban For. Urban Green. 2019, 40, 264–274. [Google Scholar] [CrossRef]
- Olazabal, M.; Neumann, M.B.; Foudi, S.; Chiabai, A. Transparency and reproducibility in participatory systems modelling: The case of fuzzy cognitive mapping. Syst. Res. Behav. Sci. 2018, 35, 791–810. [Google Scholar] [CrossRef]
- Rexhepi, A.; Filiposka, S.; Trajkovik, V. Youth e-participation as a pillar of sustainable societies. J. Clean. Prod. 2018, 174, 114–122. [Google Scholar] [CrossRef]
- Fiandrino, C.; Capponi, A.; Cacciatore, G.; Kliazovich, D.; Sorger, U.; Bouvry, P.; Kantarci, B.; Granelli, F.; Giordano, S. Crowdsensim: A simulation platform for mobile crowdsensing in realistic urban environments. IEEE Access 2017, 5, 3490–3503. [Google Scholar] [CrossRef]
- Sharifi, A.; Chelleri, L.; Fox-Lent, C.; Grafakos, S.; Pathak, M.; Olazabal, M.; Moloney, S.; Yumagulova, L.; Yamagata, Y. Conceptualizing dimensions and characteristics of urban resilience: Insights from a co-design process. Sustainability 2017, 9, 1032. [Google Scholar] [CrossRef] [Green Version]
- Le Pira, M.; Marcucci, E.; Gatta, V. Role-playing games as a mean to validate agent-based models: An application to stakeholder-driven urban freight transport policy-making. Transp. Res. Procedia 2017, 27, 404–411. [Google Scholar] [CrossRef]
- Olszewski, R.; Turek, A.; Laczynski, M. Urban Gamification as a Source of Information for Spatial Data Analysis and Predictive Participatory Modelling of a City’s Development. In Proceedings of the 5th International Conference on Data Management Technologies and Applications (DATA 2016), Lisbon, Portugal, 24–26 July 2016; pp. 176–181. [Google Scholar]
- Neuenschwander, N.; Hayek, U.W.; Grêt-Regamey, A. GIS-Based 3d Urban Modeling Framework Integrating Constraints and Benefits of Ecosystems for Participatory Optimization of Urban Green Space Patterns. In Proceedings of the REAL CORP 2011, Essen, Germany, 18–20 May 2011. [Google Scholar]
- Shafqat, O.; Stoltz, D.; Lundqvist, P.; Arias, J. Participatory Simulation for Energy Target Identification in EcoCities. Energy Procedia 2014, 61, 2079–2082. [Google Scholar] [CrossRef] [Green Version]
- Stauskis, G. Development of methods and practices of virtual reality as a tool for participatory urban planning: A case study of Vilnius City as an example for improving environmental, social and energy sustainability. Energy Sustain. Soc. 2014, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Forlano, L.; Mathew, A. From design fiction to design friction: Speculative and participatory design of values-embedded urban technology. J. Urban Technol. 2014, 21, 7–24. [Google Scholar] [CrossRef]
- Lewis, J.L.; Casello, J.M.; Groulx, M. Effective environmental visualization for urban planning and design: Interdisciplinary reflections on a rapidly evolving technology. J. Urban Technol. 2012, 19, 85–106. [Google Scholar] [CrossRef]
- Rosol, M. Public participation in post-Fordist urban green space governance: The case of community gardens in Berlin. Int. J. Urban Reg. Res. 2010, 34, 548–563. [Google Scholar] [CrossRef]
- Halligey, A. ‘Dark’cities: The role of interdisciplinary work in learning and supporting marginal city spaces. Urban Stud. 2020, 0042098020930995. [Google Scholar] [CrossRef]
- Pereverza, K.; Pasichnyi, O.; Kordas, O. Modular participatory backcasting: A unifying framework for strategic planning in the heating sector. Energy Policy 2019, 124, 123–134. [Google Scholar] [CrossRef]
- González-Méndez, M.; Olaya, C.; Fasolino, I.; Grimaldi, M.; Obregón, N. Agent-Based Modeling for Urban Development Planning based on Human Needs. Conceptual Basis and Model Formulation. Land Use Policy 2021, 101, 105110. [Google Scholar] [CrossRef]
- Melkonyan, A.; Koch, J.; Lohmar, F.; Kamath, V.; Munteanu, V.; Schmidt, J.A.; Bleischwitz, R. Integrated urban mobility policies in metropolitan areas: A system dynamics approach for the Rhine-Ruhr metropolitan region in Germany. Sustain. Cities Soc. 2020, 61, 102358. [Google Scholar] [CrossRef]
- He, J.; Li, C.; Huang, J.; Liu, D.; Yu, Y. Modeling urban spatial expansion considering population migration interaction in Ezhou, central China. J. Urban Plan. Dev. 2019, 145, 05019003. [Google Scholar] [CrossRef]
- Firmansyah, H.S.; Supangkat, S.H.; Arman, A.A.; Giabbanelli, P.J. Identifying the components and interrelationships of smart cities in Indonesia: Supporting policymaking via fuzzy cognitive systems. IEEE Access 2019, 7, 46136–46151. [Google Scholar] [CrossRef]
- Indrajit, A.; Van Loenen, B.; Van Oosterom, P. Assessing spatial information themes in the spatial information infrastructure for participatory urban planning monitoring: Indonesian cities. ISPRS Int. J. Geo-Inf. 2019, 8, 305. [Google Scholar] [CrossRef] [Green Version]
- Gashu, K.; Gebre-Egziabher, T. Public assessment of green infrastructure benefits and associated influencing factors in two Ethiopian cities: Bahir Dar and Hawassa. BMC Ecol. 2019, 19, 16. [Google Scholar] [CrossRef] [Green Version]
- Omidipoor, M.; Jelokhani-Niaraki, M.; Moeinmehr, A.; Sadeghi-Niaraki, A.; Choi, S.M. A GIS-based decision support system for facilitating participatory urban renewal process. Land Use Policy 2019, 88, 104150. [Google Scholar] [CrossRef]
- Stańczuk-Gałwiaczek, M.; Sobolewska-Mikulska, K.; Ritzema, H.; van Loon-Steensma, J.M. Integration of water management and land consolidation in rural areas to adapt to climate change: Experiences from Poland and the Netherlands. Land Use Policy 2018, 77, 498–511. [Google Scholar] [CrossRef]
- Fuldauer, L.I.; Ives, M.C.; Adshead, D.; Thacker, S.; Hall, J.W. Participatory planning of the future of waste management in small island developing states to deliver on the Sustainable Development Goals. J. Clean. Prod. 2019, 223, 147–162. [Google Scholar] [CrossRef]
- Sahin, O.; Bertone, E.; Beal, C. A systems approach for assessing water conservation potential through demand-based water tariffs. J. Clean. Prod. 2017, 148, 773–784. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, S.; van de Ven, F.H.; Blind, M.W.; Slinger, J.H. Planning support tools and their effects in participatory urban adaptation workshops. J. Environ. Manag. 2018, 207, 319–333. [Google Scholar] [CrossRef]
- Macmillan, A.; Woodcock, J. Understanding bicycling in cities using system dynamics modelling. J. Transp. Health 2017, 7, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.R.; Elliott, T.J. From participatory design to a listening infrastructure: A case of urban planning and participation. J. Bus. Tech. Commun. 2016, 30, 59–84. [Google Scholar] [CrossRef]
- Krzywoszynska, A.; Buckley, A.; Birch, H.; Watson, M.; Chiles, P.; Mawyin, J.; Holmes, H.; Gregson, N. Co-producing energy futures: Impacts of participatory modelling. Build. Res. Inf. 2016, 44, 804–815. [Google Scholar] [CrossRef] [Green Version]
- Ducrot, R.; Van Paassen, A.; Barban, V.; Daré, W.; Gramaglia, C. Learning integrative negotiation to manage complex environmental issues: Example of a gaming approach in the peri-urban catchment of São Paulo, Brazil. Reg. Environ. Chang. 2015, 15, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.; Denman, S.; Deng, D.B.; Rong, X.; Jiao, X.; Jin, Y. The Use of Participatory Urban Sensing Data in Urban Infrastructure Investment Assessments: Insights from Two Delphi Surveys in Beijing. In Proceedings of the 15th Computers in Urban Planning and Urban Management, Cambridge, MA, USA, 7–10 July 2015. [Google Scholar]
- Randhir, T.O.; Raposa, S. Urbanization and watershed sustainability: Collaborative simulation modeling of future development states. J. Hydrol. 2014, 519, 1526–1536. [Google Scholar] [CrossRef]
- Graveline, N.; Aunay, B.; Fusillier, J.L.; Rinaudo, J.D. Coping with urban & agriculture water demand uncertainty in water management plan design: The interest of participatory scenario analysis. Water Resour. Manag. 2014, 28, 3075–3093. [Google Scholar]
- Brits, A.; Burke, M.; Li, T. Improved modelling for urban sustainability assessment and strategic planning: Local government planner and modeller perspectives on the key challenges. Aust. Plan. 2014, 51, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Vermote, L.; Macharis, C.; Boeykens, F.; Schoolmeester, C.; Putman, K. Traffic-restriction in Ramallah (Palestine): Participatory sustainability assessment of pedestrian scenarios using a simplified transport model. Land Use Policy 2014, 41, 453–464. [Google Scholar] [CrossRef]
- Brand, R. Facilitating sustainable behavior through urban infrastructures: Learning from Singapore? Int. J. Urban Sustain. Dev. 2013, 5, 225–240. [Google Scholar] [CrossRef]
- Khan, Z.; Ludlow, D.; Loibl, W.; Soomro, K. ICT enabled participatory urban planning and policy development. Transform. Gov. People Process Policy 2014, 8, 205–229. [Google Scholar] [CrossRef]
- Muste, M.V.; Bennett, D.A.; Secchi, S.; Schnoor, J.L.; Kusiak, A.; Arnold, N.J.; Mishra, S.K.; Ding, D.; Rapolu, U. End-to-end cyberinfrastructure for decision-making support in watershed management. J. Water Resour. Plan. Manag. 2013, 139, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Dearden, J.; Wilson, A. Using participatory computer simulation to explore the process of urban evolution. Trans. GIS 2011, 15, 273–289. [Google Scholar] [CrossRef]
- Gaddis, E.J.; Voinov, A. Spatially explicit modeling of land use specific phosphorus transport pathways to improve TMDL load estimates and implementation planning. Water Resour. Manag. 2010, 24, 1621–1644. [Google Scholar] [CrossRef]
- Warner, J.F. More sustainable participation? Multi-stakeholder platforms for integrated catchment management. Water Resour. Dev. 2006, 22, 15–35. [Google Scholar] [CrossRef]
- Pascariu, G.; Pascariu, S. Integrated urban development through participatory approach. A Romanian story. Rom. J. Reg. Sci. 2013, 7, 69–85. [Google Scholar]
- Smajgl, A. Challenging beliefs through multi-level participatory modelling in Indonesia. Environ. Model. Softw. 2010, 25, 1470–1476. [Google Scholar] [CrossRef]
- Hedelin, B.; Evers, M.; Alkan-Olsson, J.; Jonsson, A. Participatory modelling for sustainable development: Key issues derived from five cases of natural resource and disaster risk management. Environ. Sci. Policy 2017, 76, 185–196. [Google Scholar] [CrossRef]
- Pfeffer, K.; Baud, I.; Denis, E.; Scott, D.; Sydenstricker-Neto, J. Participatory spatial knowledge management tools: Empowerment and upscaling or exclusion? Inf. Commun. Soc. 2013, 16, 258–285. [Google Scholar] [CrossRef]
- Kariuki, R.W.; Munishi, L.K.; Courtney-Mustaphi, C.J.; Capitani, C.; Shoemaker, A.; Lane, P.J.; Marchant, R. Integrating stakeholders’ perspectives and spatial modelling to develop scenarios of future land use and land cover change in northern Tanzania. PLoS ONE 2021, 16, e0245516. [Google Scholar] [CrossRef]
- Stritih, A.; Rabe, S.E.; Robaina, O.; Grêt-Regamey, A.; Celio, E. An online platform for spatial and iterative modelling with Bayesian Networks. Environ. Model. Softw. 2020, 127, 104658. [Google Scholar] [CrossRef]
- Fu, Z.; Chao, C.; Wang, H.; Wang, Y. Toward the participatory human-centred community an exploration of cyber-physical public design for urban experience. IET Cyber-Phys. Syst. Theory Appl. 2019, 4, 209–213. [Google Scholar] [CrossRef]
- Dierich, A.; Tzavella, K.; Setiadi, N.J.; Fekete, A.; Neisser, F.M. Enhanced Crisis-Preparation of Critical Infrastructures through a Participatory Qualitative-Quantitative Interdependency Analysis Approach. In Proceedings of the 16th ISCRAM Conference, València, Spain, 19–22 May 2019. [Google Scholar]
- Weimann, A.; Nguendo-Yongsi, B.; Foka, C.; Waffo, U.; Carbajal, P.; Sietchiping, R.; Oni, T. Developing a participatory approach to building a coalition of transdisciplinary actors for healthy urban planning in African cities—A case study of Douala, Cameroon. Cities Health 2020, 1–11. [Google Scholar] [CrossRef]
- Elliot, T.; Bertrand, A.; Almenar, J.B.; Petucco, C.; Proença, V.; Rugani, B. Spatial optimisation of urban ecosystem services through integrated participatory and multi-objective integer linear programming. Ecol. Model. 2019, 409, 108774. [Google Scholar] [CrossRef]
- Smetschka, B.; Gaube, V. Co-creating formalized models: Participatory modelling as method and process in transdisciplinary research and its impact potentials. Environ. Sci. Policy 2020, 103, 41–49. [Google Scholar] [CrossRef]
- Venturini, G.; Hansen, M.; Andersen, P.D. Linking narratives and energy system modelling in transport scenarios: A participatory perspective from Denmark. Energy Res. Soc. Sci. 2019, 52, 204–220. [Google Scholar] [CrossRef]
- Drogoul, A. Agent-based modeling for multidisciplinary and participatory approaches to climate change adaptation planning. In Proceedings of the RFCC-2015 Workshop, AIT, Bangkok, Thailand, 1–3 July 2015. [Google Scholar]
- Endo, I.; Magcale-Macandog, D.B.; Kojima, S.; Johnson, B.A.; Bragais, M.A.; Macandog, P.B.M.; Scheyvens, H. Participatory land-use approach for integrating climate change adaptation and mitigation into basin-scale local planning. Sustain. Cities Soc. 2017, 35, 47–56. [Google Scholar] [CrossRef]
- McDermott, T.; Folds, D.; Ender, T.; Bollweg, N. OpenSEAT: A computer framework to jointly model qualitative evaluation and quantitative design aspects of complex sociotechnical systems. In Proceedings of the 2015 IEEE International Symposium on Systems Engineering (ISSE), Rome, Italy, 28–30 September 2015; pp. 430–437. [Google Scholar]
- Archetti, F.; Giordani, I.; Candelieri, A. Data Science and Environmental Management in Smart Cities. Environ. Eng. Manag. J. 2015, 14, 2095–2102. [Google Scholar]
- Leskens, J.; Brugnach, M.; Hoekstra, A.Y. Application of an Interactive Water Simulation Model in urban water management: A case study in Amsterdam. Water Sci. Technol. 2014, 70, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, R.; Van Delden, H.; Escobar, F. Participatory land use modelling, pathways to an integrated approach. Environ. Model. Softw. 2014, 52, 149–165. [Google Scholar] [CrossRef]
- Beirão, J.; Montenegro, N.; Arrobas, P. City Information Modelling: Parametric urban models including design support data. In Proceedings of the 2012 Portuguese Network of Urban Morphology, Lisbon, Portugal, 5–6 July 2012; pp. 1122–1134. [Google Scholar]
- Winkler, T.J.; Ziekow, H.; Weinberg, M. Municipal benefits of participatory urban sensing: A simulation approach and case validation. J. Theor. Appl. Electron. Commer. Res. 2012, 7, 101–120. [Google Scholar] [CrossRef] [Green Version]
- Middya, A.I.; Roy, S.; Dutta, J.; Das, R. JUSense: A Unified Framework for Participatory-based Urban Sensing System. Mobile Netw. Appl. 2020, 25, 1249–1274. [Google Scholar] [CrossRef]
- Li, C.; He, J.; Duan, X. Modeling the collaborative evolution of urban land considering urban interactions under intermediate intervention, in the urban agglomeration in the middle reaches of the Yangtze River in China. Land 2020, 9, 184. [Google Scholar] [CrossRef]
- Thondoo, M.; Mueller, N.; Rojas-Rueda, D.; de Vries, D.; Gupta, J.; Nieuwenhuijsen, M. Participatory quantitative health impact assessment of urban transport planning: A case study from Eastern Africa. Environ. Int. 2020, 144, 106027. [Google Scholar] [CrossRef]
- Quan, S.J.; Park, J.; Economou, A.; Lee, S. Artificial intelligence-aided design: Smart design for sustainable city development. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1581–1599. [Google Scholar] [CrossRef]
- Vieira, A.C.; Oliveira, M.D.; e Costa, C.A.B. Enhancing knowledge construction processes within multicriteria decision analysis: The Collaborative Value Modelling framework. Omega 2020, 94, 102047. [Google Scholar] [CrossRef]
- Adamek, K.; Vasan, N.; Elshaer, A.; English, E.; Bitsuamlak, G. Pedestrian level wind assessment through city development: A study of the financial district in Toronto. Sustain. Cities Soc. 2017, 35, 178–190. [Google Scholar] [CrossRef]
- Silva, V.M.D.; Novaes, A.G. Analysis and simulation of collaboration policies among manufacturing industries and its effects on the maritime transportation cost. Mar. Syst. Ocean Technol. 2017, 12, 65–79. [Google Scholar] [CrossRef]
- Montalto, F.; Bartrand, T.A.; McAfee, C.A.; Geldi, J.M.; Loomis, C.H.; Rigall, G.J.; Zidar, K. Maximizing green infrastructure in a philadelphia neighborhood. Urban Plan. 2017, 2, 115–132. [Google Scholar]
- Anand, N.; Meijer, D.; Van Duin, J.; Tavasszy, L.; Meijer, S. Validation of an agent based model using a participatory simulation gaming approach: The case of city logistics. Transp. Res. Part C Emerg. Technol. 2016, 71, 489–499. [Google Scholar] [CrossRef]
- Campbell, J.W.; Im, T. Perceived public participation efficacy: The differential influence of public service motivation across organizational strata. Public Pers. Manag. 2016, 45, 308–330. [Google Scholar] [CrossRef]
- McGarity, A.; Hung, F.; Rosan, C.; Hobbs, B.; Heckert, M.; Szalay, S. Quantifying benefits of green stormwater infrastructure in Philadelphia. In Proceedings of the World Environmental and Water Resources Congress 2015, Austin, TX, USA, 17–21 May 2015; pp. 409–420. [Google Scholar]
- Ranjan, R. Factors affecting participation in spot and options markets for water. J. Water Resour. Plan. Manag. 2010, 136, 454–462. [Google Scholar] [CrossRef]
- Hori, K.; Kim, J.; Kawase, R.; Kimura, M.; Matsui, T.; Machimura, T. Local energy system design support using a renewable energy mix multi-objective optimization model and a co-creative optimization process. Renew. Energy 2020, 156, 1278–1291. [Google Scholar] [CrossRef]
- Dembski, F.; Wössner, U.; Letzgus, M.; Ruddat, M.; Yamu, C. Urban digital twins for smart cities and citizens: The case study of Herrenberg, Germany. Sustainability 2020, 12, 2307. [Google Scholar] [CrossRef] [Green Version]
- Gaudron, A.; Tamayo, S.; de La Fortelle, A. Interactive simulation for collective decision making in city logistics. Transp. Res. Procedia 2020, 46, 157–164. [Google Scholar] [CrossRef]
- Pardo-García, S.M. Open Source in Urban Planning and Architecture: Experiences and Guidelines from Traditional Cultures, Participatory Processes and Computer Science. ArchNet-IJAR Int. J. Archit. Res. 2018, 12, 24. [Google Scholar] [CrossRef]
- Neuenschwander, N.; Hayek, U.W.; Grêt-Regamey, A. Integrating an urban green space typology into procedural 3D visualization for collaborative planning. Comput. Environ. Urban Syst. 2014, 48, 99–110. [Google Scholar] [CrossRef]
- Lagorio, A.; Pinto, R.; Golini, R. Research in urban logistics: A systematic literature review. Int. J. Phys. Distrib. Logist. Manag. 2016, 46, 908–931. [Google Scholar] [CrossRef]
- Zunder, T.H.; Aditjandra, P.T.; Carnaby, B. Developing a local research strategy for city logistics on an academic campus. Procedia-Soc. Behav. Sci. 2014, 125, 226–238. [Google Scholar] [CrossRef] [Green Version]
- Aljohani, K.; Thompson, R.G. Impacts of logistics sprawl on the urban environment and logistics: Taxonomy and review of literature. J. Transp. Geogr. 2016, 57, 255–263. [Google Scholar] [CrossRef]
- Jamshidi, A.; Jamshidi, F.; Ait-Kadi, D.; Ramudhin, A. A review of priority criteria and decision-making methods applied in selection of sustainable city logistics initiatives and collaboration partners. Int. J. Prod. Res. 2019, 57, 5175–5193. [Google Scholar] [CrossRef] [Green Version]
- Dolati Neghabadi, P.; Evrard Samuel, K.; Espinouse, M.L. Systematic literature review on city logistics: Overview, classification and analysis. Int. J. Prod. Res. 2019, 57, 865–887. [Google Scholar] [CrossRef]
- Viu-Roig, M.; Alvarez-Palau, E.J. The impact of E-Commerce-related last-mile logistics on cities: A systematic literature review. Sustainability 2020, 12, 6492. [Google Scholar] [CrossRef]
- Hu, W.; Dong, J.; Hwang, B.g.; Ren, R.; Chen, Z. A scientometrics review on city logistics literature: Research trends, advanced theory and practice. Sustainability 2019, 11, 2724. [Google Scholar] [CrossRef] [Green Version]
- Meza-Peralta, K.; Gonzalez-Feliu, J.; Montoya-Torres, J.R.; Khodadad-Saryazdi, A. A unified typology of urban logistics spaces as interfaces for freight transport: A Systematic Literature Review. In Supply Chain Forum: An International Journal; Taylor & Francis: New York, NY, USA, 2020; Volume 21, pp. 274–289. [Google Scholar]
- Szmelter-Jarosz, A.; Rześny-Cieplińska, J.; Jezierski, A. Assessing resources management for sharing economy in urban logistics. Resources 2020, 9, 113. [Google Scholar] [CrossRef]
- Zunder, T.H. A semi-systematic literature review, identifying research opportunities for more sustainable, receiver-led inbound urban logistics flows to large higher education institutions. Eur. Transp. Res. Rev. 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Arvianto, A.; Sopha, B.M.; Asih, A.M.S.; Imron, M.A. City logistics challenges and innovative solutions in developed and developing economies: A systematic literature review. Int. J. Eng. Bus. Manag. 2021, 13, 18479790211039723. [Google Scholar] [CrossRef]
- Singh, A.; Baalsrud Hauge, J.; Wiktorsson, M.; Upadhyay, U. Optimizing Local and Global Objectives for Sustainable Mobility in Urban Areas. J. Urban Mobil. 2021, in press.
Type | Criteria | Rationale |
---|---|---|
Inclusion | Title, abstract and keywords must demonstrate any possible implementation of participatory modelling in production and /or urban logistics. | To include all potentially relevant studies, the search was not limited to specific journals. Research from other subjects may also appear in the search. In the subsequent steps, it was ensured that articles with a clear focus on participatory modelling in the domain of production and urban logistics are included in this review. |
Articles must be published in peer-reviewed journals or conference proceedings. | To ensure quality control, only peer reviewed journal articles and conference proceedings were included in the review [29]. | |
Articles published between Jan 2010–Jun 2021 were considered for the review. | This criteria was deduced from the objective of the article which is understanding the recent trends and advances in the domain. | |
Articles must be written in English. | From the different article databases, we found out that English is the dominant language in production and urban logistics domain. | |
Exclusion | Articles focussing on collaborative logistics were excluded. | Since the definition of collaborative logistics [30] indicates another area of study than participatory modelling, it was excluded in the review. |
Articles not focussing on participatory modelling. | The review focusses on participatory modelling in production and urban logistics; therefore, studies from other contexts were excluded as per the definition in the work by Singh et al. [11]. |
Phase | Method | Tool | Reference |
---|---|---|---|
Input collection | Crowdsourcing | PPGIS | Voinov et al. [1], Nae et al. [36], Karimi and Brown [37], Rall et al. [46], Indrajit et al. [65], Pfeffer et al. [90], Endo et al. [100] |
Kuru and Ansell [40] | |||
Field notes & surveys | Karimi and Brown [37], Stave et al. [42], Rall et al. [46], Stauskis [55], Stańczuk-Gałwiaczek et al. [68], Smajgl [88], Pfeffer et al. [90], Thondoo et al. [109] | ||
Interviews | In-depth interviews, semi-structured interviews, etc. | Voinov et al. [1], Marcucci et al. [27], Nae et al. [36], Yang et al. [38], Kumar et al. [39], Stave et al. [42], Olazabal et al. [47], Sharifi et al. [50], Shafqat et al. [54], Stauskis [55], Rosol [58], Halligey [59], He et al. [63], Firmansyah et al. [64], Omidipoor et al. [67], Stańczuk-Gałwiaczek et al. [68], Fuldauer et al. [69], Macmillan and Woodcock [72], Krzywoszynska et al. [74], Ducrot et al. [75], Long et al. [76], Vermote et al. [80], Brand [81], Smajgl [88], Hedelin et al. [89], Pfeffer et al. [90], Dierich et al. [94], Smetschka and Gaube [97], Drogoul [99], Endo et al. [100], Leskens et al. [103], Thondoo et al. [109], Vieira et al. [111], Campbell and Im [116] | |
Workshops | Single level workshops, multi-level workshops, etc | Olazabal et al. [47], Rexhepi et al. [48], Olszewski et al. [52], González-Méndez et al. [61], Melkonyan et al. [62], Macmillan and Woodcock [72], Krzywoszynska et al. [74], Graveline et al. [78], Brits et al. [79], Smajgl [88], Hedelin et al. [89], Kariuki et al. [91], Dierich et al. [94], Weimann et al. [95], Hewitt et al. [104] | |
Roleplaying | Le Pira et al. [51], Fu et al. [93] | ||
Questionnaires | Rexhepi et al. [48], Gashu and Gebre-Egziabher [66], McEvoy et al. [71], Long et al. [76], Brits et al. [79], Pascariu and Pascariu [87], Smetschka and Gaube [97], Vieira et al. [111], Hori et al. [119] | ||
Focus groups | Focus interviews, etc | Voinov et al. [1], Mangano et al. [24], Rosol [58], Ducrot et al. [75], Smajgl [88], Endo et al. [100] | |
Input data | Spatial data/GIS | Nae et al. [36], Fiandrino et al. [49], Neuenschwander et al. [53], Lewis et al. [57], Omidipoor et al. [67], Vermote et al. [80], Khan et al. [82], Hedelin et al. [89], Stritih et al. [92], Dierich et al. [94], Beirão et al. [105], Dembski et al. [120], Gaudron et al. [121] | |
From databases | Grogan [35], Nae et al. [36], Yang et al. [38], Leonard et al. [41], Fiandrino et al. [49], He et al. [63], Fuldauer et al. [69], Sahin et al. [70], McEvoy et al. [71], Macmillan and Woodcock [72], Randhir and Raposa [77], Dearden and Wilson [84], Elliot et al. [96], Smetschka and Gaube [97], Middya et al. [107], Li et al. [108], Thondoo et al. [109], Quan et al. [110], Adamek et al. [112], Campbell and Im [116], Dembski et al. [120], Pardo-García [122] | ||
Sensor data | Artopoulos and Costa [43], Andreani et al. [45], Moore and Elliott [73], Archetti et al. [102] | ||
Data Processing | Model development | Agent Based Modelling and serious games | Voinov et al. [1], Marcucci et al. [27], Yang et al. [38], Le Pira et al. [51], Lewis et al. [57], González-Méndez et al. [61], Smajgl [88], Smetschka and Gaube [97], Drogoul [99], Silva and Novaes [113], Montalto et al. [114], Anand et al. [115] |
System Dynamics | Voinov et al. [1], Mangano et al. [24], Stave et al. [42], Stave et al. [42], Melkonyan et al. [62], Sahin et al. [70], Sahin et al. [70], Macmillan and Woodcock [72], Hedelin et al. [89], Venturini et al. [98], Drogoul [99], Silva and Novaes [113] | ||
Fuzzy Cognitive Mapping | Voinov et al. [1], Olazabal et al. [47], Firmansyah et al. [64], Smetschka and Gaube [97] | ||
AHP | Vermote et al. [80] | ||
Machine learning model | Middya et al. [107] | ||
Bayesian Networks | Stritih et al. [92] | ||
Discrete Choice | Marcucci et al. [27], Anand et al. [115] | ||
Cellular automata | He et al. [63], Hewitt et al. [104], Li et al. [108] | ||
Ontology | Anand et al. [115] | ||
GIS | Nae et al. [36], Kumar et al. [39], Olszewski et al. [52], Neuenschwander et al. [53], Omidipoor et al. [67], Kariuki et al. [91] | ||
Delphi | Vieira et al. [111], Quan et al. [110], Long et al. [76] | ||
Structured Interview Matrix | Sharifi et al. [50] | ||
Simulation | Leonard et al. [41], Fiandrino et al. [49], Shafqat et al. [54], Sahin et al. [70], Ducrot et al. [75], Randhir and Raposa [77], Graveline et al. [78], Muste et al. [83], Gaddis and Voinov [85], Endo et al. [100], Campbell and Im [116], Dembski et al. [120], Gaudron et al. [121] | ||
Optimization | NSGA II, PSO, other algorithms, etc. | Grogan [35], Elliot et al. [96], Quan et al. [110], Adamek et al. [112], McGarity et al. [117], Ranjan [118], Hori et al. [119] | |
Backcasting | Pereverza et al. [60], Fuldauer et al. [69], Smetschka and Gaube [97], Hori et al. [119] | ||
Validation | Rexhepi et al. [48], Shafqat et al. [54], He et al. [63], Gashu and Gebre-Egziabher [66], Sahin et al. [70], Endo et al. [100], Anand et al. [115] | ||
Questionnaires | Dembski et al. [120] | ||
Interviews | Hori et al. [119] | ||
Cross impact analysis | Dierich et al. [94], Middya et al. [107] | ||
Multi criteria decision analysis | Neuenschwander et al. [53] | ||
MACBETH | Vieira et al. [111] | ||
ETL | Dierich et al. [94] | ||
SDSS | Omidipoor et al. [67] | ||
Public participation | Community design | Rosol [58] | |
Workshops | Forlano and Mathew [56], Moore and Elliott [73], Brits et al. [79], Weimann et al. [95], Leskens et al. [103], Gaudron et al. [121] | ||
Visualization techniques | Static, AR, VR, etc | Artopoulos and Costa [43], Stauskis [55], Halligey [59], Khan et al. [82], Endo et al. [100], Quan et al. [110], Dembski et al. [120] | |
Results presentation | Visualization | Graphs | Almost all |
Videos (Agent-based visualization) | Lewis et al. [57] | ||
3D modelling | Neuenschwander et al. [53], Khan et al. [82], Neuenschwander et al. [123] | ||
Maps | Yang et al. [38], Dearden and Wilson [84], Pfeffer et al. [90], Kariuki et al. [91], Stritih et al. [92], Endo et al. [100], Li et al. [108] | ||
Numerical results | Marcucci et al. [27], Stauskis [55], Lewis et al. [57], Melkonyan et al. [62], Quan et al. [110], Adamek et al. [112], Silva and Novaes [113], Montalto et al. [114], Campbell and Im [116] | ||
Roleplaying | Le Pira et al. [51] | ||
New tool as a result | Grogan [35], Leonard et al. [41], Artopoulos and Costa [43], Pardo-García et al. [44], Fiandrino et al. [49], Olszewski et al. [52], Lewis et al. [57], Omidipoor et al. [67], Khan et al. [82], Pascariu and Pascariu [87], Hedelin et al. [89], Stritih et al. [92], Stritih et al. [92], Dembski et al. [120] | ||
Policy recommendation | Marcucci et al. [27], Halligey [59], Pereverza et al. [60], Melkonyan et al. [62], Stańczuk-Gałwiaczek et al. [68], Macmillan and Woodcock [72], Gaddis and Voinov [85], Elliot et al. [96] | ||
Methodology | Framework | Yang et al. [38], Kuru and Ansell [40], Andreani et al. [45], Stauskis [55], Pereverza et al. [60], González-Méndez et al. [61], Omidipoor et al. [67], Beirão et al. [105], McDermott et al. [101], Ranjan [118], Gaudron et al. [121] | |
Model | Shafqat et al. [54], Smajgl [88] | ||
Uncertainty analysis | Graveline et al. [78] | ||
Living lab | Fu et al. [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.; Baalsrud Hauge, J.; Wiktorsson, M. Simulation-Based Participatory Modelling in Urban and Production Logistics: A Review on Advances and Trends. Sustainability 2022, 14, 17. https://doi.org/10.3390/su14010017
Singh A, Baalsrud Hauge J, Wiktorsson M. Simulation-Based Participatory Modelling in Urban and Production Logistics: A Review on Advances and Trends. Sustainability. 2022; 14(1):17. https://doi.org/10.3390/su14010017
Chicago/Turabian StyleSingh, Amita, Jannicke Baalsrud Hauge, and Magnus Wiktorsson. 2022. "Simulation-Based Participatory Modelling in Urban and Production Logistics: A Review on Advances and Trends" Sustainability 14, no. 1: 17. https://doi.org/10.3390/su14010017
APA StyleSingh, A., Baalsrud Hauge, J., & Wiktorsson, M. (2022). Simulation-Based Participatory Modelling in Urban and Production Logistics: A Review on Advances and Trends. Sustainability, 14(1), 17. https://doi.org/10.3390/su14010017