Mapping the Territorial Adaptation of Technological Innovation Systems—Trajectories of the Internal Combustion Engine
Abstract
:1. Introduction
2. Conceptual Background
2.1. The Concept of TIS, Technological Trajectories and Context
2.2. Spatial Development of TIS
2.3. TIS Life Cycle Framework
2.4. The Transformation between the Mature and Decline Phase
2.5. A Short History of the Internal Combustion Engine
3. Materials and Methods
3.1. Method
3.2. Data
4. Results
Robustness
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Markard, J.; Raven, R.; Truffer, B. Sustainability transitions: An emerging field of research and its prospects. Res. Policy 2012, 41, 955–967. [Google Scholar] [CrossRef]
- Carlsson, B.; Stankiewicz, R. On the nature, function and composition of technological systems. J. Evol. Econ. 1991, 1, 93–118. [Google Scholar] [CrossRef]
- Markard, J. The life cycle of technological innovation systems. Technol. Forecast. Soc. Chang. 2020, 153, 119407. [Google Scholar] [CrossRef]
- Hekkert, M.P.; Negro, S.O.; Heimeriks, G.; Harmsen, R. Technological Innovation System Analysis: A Manual for Analysts; Copernicus Institute for Sustainable Development and Innovation, Utrecht University: Utrecht, The Netherlands, 2011. [Google Scholar]
- Isoaho, K.; Markard, J. The Politics of Technology Decline: Discursive Struggles over Coal Phase-Out in the UK. Rev. Policy Res. 2020, 37, 342–368. [Google Scholar] [CrossRef]
- Markard, J.; Bento, N.; Kittner, N.; Nunez-Jimenez, A. Destined for decline? Examining nuclear energy from a technological innovation systems perspective. Energy Res. Soc. Sci. 2020, 67, 101512. [Google Scholar] [CrossRef]
- Dosi, G. Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Res. Policy 1982, 11, 147–162. [Google Scholar] [CrossRef]
- Hekkert, M.; Negro, S. Functions of innovation systems as a framework to understand sustainable technological change: Empirical evidence for earlier claims. Technol. Forecast. Soc. Chang. 2009, 76, 584–594. [Google Scholar] [CrossRef] [Green Version]
- Bergek, A.; Hekkert, M.; Jacobsson, S.; Markard, J.; Sandén, B.; Truffer, B. Technological innovation systems in contexts: Conceptualizing contextual structures and interaction dynamics. Environ. Innov. Soc. Transit. 2015, 16, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Coenen, L.; Truffer, B. Places and Spaces of Sustainability Transitions: Geographical Contributions to an Emerging Research and Policy Field. Eur. Plan. Stud. 2012, 20, 367–374. [Google Scholar] [CrossRef]
- Coenen, L.; Benneworth, P.; Truffer, B. Toward a spatial perspective on sustainability transitions. Res. Policy 2012, 41, 968–979. [Google Scholar] [CrossRef]
- Binz, C.; Truffer, B.; Coenen, L. Why space matters in technological innovation systems—Mapping global knowledge dynamics of membrane bioreactor technology. Res. Policy 2014, 43, 138–155. [Google Scholar] [CrossRef] [Green Version]
- Binz, C.; Truffer, B. Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts. Res. Policy 2017, 46, 1284–1298. [Google Scholar] [CrossRef] [Green Version]
- Oltra, V.; Jean, M.S. Variety of technological trajectories in low emission vehicles (LEVs): A patent data analysis. J. Clean. Prod. 2009, 17, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Sushandoyo, D.; Magnusson, T.; Berggren, C. ‘Sailing Ship Effects’ in the Global Automotive Industry? Competition between ‘New’ and ‘Old’ Technologies in the Race for Sustainable Solutions. In The Greening of the Automotive Industry; Calabrese, G., Macmillan, P., Eds.; Palgrave Macmillan: London, UK, 2012; pp. 103–123. [Google Scholar]
- Dijk, M.; Orsato, R.J.; Kemp, R. The emergence of an electric mobility trajectory. Energy Policy 2013, 52, 135–145. [Google Scholar] [CrossRef]
- Bohnsack, R.; Kolk, A.; Pinkse, J.; Bidmon, C.M. Driving the electric bandwagon: The dynamics of incumbents’ sustainable innovation. Bus. Strateg. Environ. 2020, 29, 727–743. [Google Scholar] [CrossRef] [Green Version]
- Cames, M.; Helmers, E. Critical evaluation of the European diesel car boom-global comparison, environmental effects and various national strategies. Environ. Sci. Eur. 2013, 25, 15. [Google Scholar] [CrossRef] [Green Version]
- Bohnsack, R.; Kolk, A.; Pinkse, J. Catching recurring waves: Low-emission vehicles, international policy developments and firm innovation strategies. Technol. Forecast. Soc. Chang. 2015, 98, 71–87. [Google Scholar] [CrossRef]
- Hummon, N.P.; Doreian, P. Connectivity in a citation network: The development of DNA theory. Soc. Netw. 1989, 11, 39–63. [Google Scholar] [CrossRef]
- Verspagen, B. Mapping Technological Trajectories as Patent Citation Networks: A Study on the History of Fuel Cell Research. Adv. Complex Syst. 2007, 10, 93–115. [Google Scholar] [CrossRef] [Green Version]
- Negro, S.O.; Hekkert, M.P.; Smits, R.E.H.M. Stimulating renewable energy technologies by innovation policy. Sci. Public Policy 2008, 35, 403–416. [Google Scholar] [CrossRef]
- Islam, N.; Miyazaki, K. Nanotechnology innovation system: Understanding hidden dynamics of nanoscience fusion trajectories. Technol. Forecast. Soc. Chang. 2009, 76, 128–140. [Google Scholar] [CrossRef]
- Dewald, U.; Fromhold-Eisebith, M. Trajectories of sustainability transitions in scale-transcending innovation systems: The case of photovoltaics. Environ. Innov. Soc. Transit. 2015, 17, 110–125. [Google Scholar] [CrossRef]
- Oltra, V.; Saint Jean, M. The dynamics of environmental innovations: Three stylized trajectories of clean technology. Econ. Innov. New Technol. 2005, 14, 189–212. [Google Scholar] [CrossRef]
- Frenken, K.; Hekkert, M.; Godfroij, P. R&D portfolios in environmentally friendly automotive propulsion: Variety, competition and policy implications. Technol. Forecast. Soc. Chang. 2004, 71, 485–507. [Google Scholar]
- Köhler, J.; Schade, W.; Leduc, G.; Wiesenthal, T.; Schade, B.; Espinoza, L.T. Leaving fossil fuels behind? An innovation system analysis of low carbon cars. J. Clean. Prod. 2013, 48, 176–186. [Google Scholar] [CrossRef]
- Liesenkötter, B.; Schewe, G. E-Mobility: Zum Sailing-Ship-Effect in der Automobilindustrie; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Borgstedt, P.; Neyer, B.; Schewe, G. Paving the road to electric vehicles—A patent analysis of the automotive supply industry. J. Clean. Prod. 2017, 167, 75–87. [Google Scholar] [CrossRef]
- Hekkert, M.; Suurs, R.; Negro, S.; Kuhlmann, S.; Smits, R. Functions of innovation systems: A new approach for analysing technological change. Technol. Forecast. Soc. Chang. 2007, 74, 413–432. [Google Scholar] [CrossRef] [Green Version]
- Markard, J.; Wirth, S.; Truffer, B. Institutional dynamics and technology legitimacy—A framework and a case study on biogas technology. Res. Policy 2016, 45, 330–344. [Google Scholar] [CrossRef]
- Jacobsson, S.; Johnson, A. The diffusion of renewable energy technology: An analytical framework and key issues for research. Energy Policy 2000, 28, 625–640. [Google Scholar] [CrossRef] [Green Version]
- Markard, J.; Truffer, B. Technological innovation systems and the multi-level perspective: Towards an integrated framework. Res. Policy 2008, 37, 596–615. [Google Scholar] [CrossRef]
- Hellsmark, H.; Mossberg, J.; Söderholm, P.; Frishammar, J. Innovation system strengths and weaknesses in progressing sustainable technology: The case of Swedish biorefinery development. J. Clean. Prod. 2016, 131, 702–715. [Google Scholar] [CrossRef]
- Markard, J.; Hekkert, M.; Jacobsson, S. The technological innovation systems framework: Response to six criticisms. Environ. Innov. Soc. Transit. 2015, 16, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Dreher, C.; Kovač, M.; Schwäbe, C. Competing technological innovation systems as a challenge for new mission orientation-insights from the German Energiewende. Int. J. Foresight Innov. Policy 2016, 11, 43–72. [Google Scholar] [CrossRef]
- Berggren, C.; Magnusson, T. Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy. Energy Policy 2012, 41, 636–643. [Google Scholar] [CrossRef] [Green Version]
- Pucher, E.; Schäfer, F.; Bergmann, A.; Mayer, A.C.R.; Kasper, M.; Burtscher, H. Abgasemissionen. In Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven; van Basshuysen, R., Schäfer, F., Eds.; Springer: Wiesbaden, Germany, 2017; Chapter 21; pp. 923–1010. [Google Scholar] [CrossRef]
- Breuer, C.; Zima, S. Geschichtlicher Rückblick. In Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven; van Basshuysen, R., Schäfer, F., Eds.; Springer: Wiesbaden, Germany, 2017; Chapter 1; pp. 1–8. [Google Scholar]
- Phirouzabadi, A.M.; Savage, D.; Blackmore, K.; Juniper, J. The evolution of dynamic interactions between the knowledge development of powertrain systems. Transp. Policy 2020, 93, 1–16. [Google Scholar] [CrossRef]
- ACEA. The Automobile Industry Pocket Guide 2019–2020; European Automobile Manufacturers’ Association: Brussels, Belgium, 2019. [Google Scholar]
- Foray, D. The dynamic implications of increasing returns: Technological change and path dependent inefficiency. Int. J. Ind. Organ. 1997, 15, 733–752. [Google Scholar] [CrossRef]
- Furr, N.; Snow, D. Last Gasp or Crossing the Chasm? The Case of the Carburetor Technological Discontinuity. In Social Science and Technology Seminar Fall 2012; BYU Working Paper; Stanford University: Stanford, CA, USA, 2012. [Google Scholar]
- Hascic, I.; de Vries, F.; Johnstone, N.; Medhi, N. Effects of environmental policy on the type of innovation: The case of automotive emission-control technologies. OECD J. Econ. Stud. 2009, 2009, 49–66. [Google Scholar] [CrossRef]
- Bergek, A.; Berggren, C.; Magnusson, T.; Hobday, M. Technological discontinuities and the challenge for incumbent firms: Destruction, disruption or creative accumulation? Res. Policy 2013, 42, 1210–1224. [Google Scholar] [CrossRef] [Green Version]
- Seiffert, U.; Voß, B.; Schütte, K.; Wascheck, R. Alternative Fahrzeugantriebe und APUs (Auxiliary Power Units). In Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven; van Basshuysen, R., Schäfer, F., Eds.; Springer: Wiesbaden, Germany, 2017; pp. 1315–1337. [Google Scholar] [CrossRef]
- Wappelhorst, S. The End of the Road? An Overview of Combustion-Engine Car Phase-Out Announcements across Europe; International Council on Clean Transportation: San Francisco, CA, USA, 2020. [Google Scholar]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Schäfer, F.; von Essen, C.; Köhler, E.; Hopp, M. Hybridantriebe. In Handbuch Verbrennungsmotor: Grundlagen, Komponenten, Systeme, Perspektiven; van Basshuysen, R., Schäfer, F., Eds.; Springer: Wiesbaden, Germany, 2017; Chapter 29; pp. 1231–1314. [Google Scholar] [CrossRef]
- Schreuers, M.; de Hann, F. Business as Unusual. In Keep Moving, towards Sustainably Mobolity; van Wee, B., Ed.; Eleven International Publishing: The Hague, The Netherlands, 2012; Chapter 8; pp. 179–196. [Google Scholar]
- ACEA. Report—Vehicles in Use, Europe 2018; European Automobile Manufacturers’ Association: Southfield, MI, USA, 2018. [Google Scholar]
- Dijk, M.; Yarime, M. The emergence of hybrid-electric cars: Innovation path creation through co-evolution of supply and demand. Technol. Forecast. Soc. Chang. 2010, 77, 1371–1390. [Google Scholar] [CrossRef]
- Dechezleprêtre, A.; Neumayer, E.; Perkins, R. Environmental regulation and the cross-border diffusion of new technology: Evidence from automobile patents. Res. Policy 2015, 44, 244–257. [Google Scholar] [CrossRef]
- Mina, A.; Ramlogan, R.; Tampubolon, G.; Metcalfe, J.S. Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge. Res. Policy 2007, 36, 789–806. [Google Scholar] [CrossRef]
- Fontana, R.; Nuvolari, A.; Verspagen, B. Mapping technological trajectories as patent citation networks. An application to data communication standards. Econ. Innov. New Technol. 2009, 18, 311–336. [Google Scholar] [CrossRef]
- Barberá-Tomás, D.; Jiménez-Sáez, F.; Castelló-Molina, I. Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks. Res. Policy 2011, 40, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Chen, J.; Chen, Y. Backbone of technology evolution in the modern era automobile industry: An analysis by the patents citation network. J. Syst. Sci. Syst. Eng. 2011, 20, 416–442. [Google Scholar] [CrossRef]
- Martinelli, A. An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry. Res. Policy 2012, 41, 414–429. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.C.; Saw, E.-C.; Lu, L.Y.; Liu, J.S. Technological barriers and research trends in fuel cell technologies: A citation network analysis. Technol. Forecast. Soc. Chang. 2014, 82, 66–79. [Google Scholar] [CrossRef]
- Xiao, Y.; Lu, L.Y.; Liu, J.S.; Zhou, Z. Knowledge diffusion path analysis of data quality literature: A main path analysis. J. Inf. 2014, 8, 594–605. [Google Scholar] [CrossRef]
- Nomaler, Ö.; Verspagen, B. River deep, mountain high: Of long run knowledge trajectories within and between innovation clusters. J. Econ. Geogr. 2016, 16, 1259–1278. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Shin, J. Mapping extended technological trajectories: Integration of main path, derivative paths, and technology junctures. Scientometrics 2018, 116, 1439–1459. [Google Scholar] [CrossRef]
- Lacerda, J.S. Linking scientific knowledge and technological change: Lessons from wind turbine evolution and innovation. Energy Res. Soc. Sci. Sci. 2019, 50, 92–105. [Google Scholar] [CrossRef]
- Marco, A.C. The dynamics of patent citations. Econ. Lett. 2007, 94, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Grupp, H. Messung und Erklärung des Technischen Wandels. In Grundzüge einer Empirischen Innovationsökonomik; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Haupt, R.; Kloyer, M.; Lange, M. Patent indicators for the technology life cycle development. Res. Policy 2007, 36, 387–398. [Google Scholar] [CrossRef]
- Gao, L.; Porter, A.L.; Wang, J.; Fang, S.; Zhang, X.; Ma, T.; Wang, W.; Huang, L. Technology life cycle analysis method based on patent documents. Technol. Forecast. Soc. Chang. 2013, 80, 398–407. [Google Scholar] [CrossRef]
- Schmoch, U.; Grupp, H. Wettbewerbsvorsprung durch Patentinformation. In Handbuch für die Recherchepraxis; TÜV Rheinland GmbH: Köln, Germany, 1990. [Google Scholar]
- Walter, L.; Schnittker, F.C. Patentmanagement: Recherche, Analyse, Strategie; Walter de Gruyter: Berlin, Germany, 2016. [Google Scholar]
- Cohen, W.; Nelson, R.; Walsh, J. Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not); National Bureau of Economic Research: Cambridge, MA, USA, 2000. [Google Scholar]
- Jaffe, A.B.; de Rassenfosse, G. Patent citation data in social science research: Overview and best practices. J. Assoc. Inf. Sci. Technol. 2017, 68, 1360–1374. [Google Scholar] [CrossRef]
- Noailly, J.; Shestalova, V. Knowledge spillovers from renewable energy technologies: Lessons from patent citations. Environ. Innov. Soc. Transit. 2017, 22, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.S.; Lu, L.Y.Y.; Ho, M.H.-C. A few notes on main path analysis. Scientometrics 2019, 119, 379–391. [Google Scholar] [CrossRef]
- Batagelj, V. Efficient algorithms for citation network analysis. arXiv 2003, arXiv:cs/0309023. Available online: https://arxiv.org/abs/cs/0309023 (accessed on 3 November 2020).
- de Nooy, W.; Mrvar, A.; Batagelj, V. Exploratory Social Network Analysis with Pajek: Revised and Expanded Edition for Updated Software; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Putnam, J.D. The Value of International Patent Rights; Yale University: New Haven, CT, USA, 1996. [Google Scholar]
- Aghion, P.; Dechezleprêtre, A.; Hemous, D.; Martin, R.; van Reenen, J. Carbon taxes, path dependency, and directed technical change: Evidence from the auto industry. J. Polit. Econ. 2016, 124, 1–51. [Google Scholar] [CrossRef] [Green Version]
- OuYang, K.; Weng, C.S. A new comprehensive patent analysis approach for new product design in mechanical engineering. Technol. Forecast. Soc. Chang. 2011, 78, 1183–1199. [Google Scholar] [CrossRef]
- Reyinger, J.; Durst, M.; Klein, G.-M. Kraftstofffilter für zukünftige Diesel-und Ottomotoren mit Direkteinspritzung. MTZ-Mot. Z. 2004, 65, 190–195. [Google Scholar] [CrossRef]
- Reif, K. (Ed.) Ottomotor-Management. In Überblick, Bosch Fachinformation Automobil; Springer Fachmedien: Wiesbaden, Germany, 2015. [Google Scholar] [CrossRef]
- Bellmann, V.; Gemmeke, M. Kraftstofffilter beim Dieselmotor. In Handbuch Dieselmotoren, Springer Nachschlage Wissen; Tschöke, H., Mollenhauer, K., Maier, R., Eds.; Springer: Wiesbaden, Germany, 2016; pp. 1–8. [Google Scholar]
- Sperling, D.; Gordon, D. Two Billion Cars: Driving Toward Sustainability; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Sierzchula, W.; Bakker, S.; Maat, K.; van Wee, B. Technological diversity of emerging eco-innovations: A case study of the automobile industry. J. Clean. Prod. 2012, 37, 211–220. [Google Scholar] [CrossRef]
- Dijk, M. A socio-technical perspective on the electrification of the automobile: Niche and regime interaction. Int. J. Automot. Technol. Manag. 2014, 14, 158–171. [Google Scholar] [CrossRef]
- Pohl, H.; Yarime, M. Integrating innovation system and management concepts: The development of electric and hybrid electric vehicles in Japan. Technol. Forecast. Soc. Chang. 2012, 79, 1431–1446. [Google Scholar] [CrossRef]
- Díaz, S.; MIller, J.; Mock, P.; Minjares, R.; Anenberg, S.; Meszler, D. Shifting Gears: The Effect of a Future Decline in Diesel Market Share on Tailpipe CO2 and NOx Emissions in Europe; International Council on Clean Transportation: San Francisco, CA, USA, 2017. [Google Scholar]
- Helmers, E. Bewertung der Umwelteffizienz moderner Autoantriebe—Auf dem Weg vom Diesel-Pkw-Boom zu Elektroautos. Umweltwiss. Schadst-Forsch 2010, 22, 564–578. [Google Scholar] [CrossRef] [Green Version]
- Weiss, D.; Nemeczek, F. A text-based monitoring tool for the legitimacy and guidance of technological innovation systems. Technol. Soc. 2021, 66, 101686. [Google Scholar] [CrossRef]
- Bento, N.; Nuñez-Jimenez, A.; Kittner, N. Decline Processes in Technological Innovation Systems: Lessons from Energy Technologies. In Proceeding of the International Sustainability Transitions Conference, Karlsruhe, Germany, 5–8 October 2021. [Google Scholar]
- Stephan, A.; Schmidt, T.S.; Bening, C.R.; Hoffmann, V.H. The sectoral configuration of technological innovation systems: Patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan. Res. Policy 2017, 46, 709–723. [Google Scholar] [CrossRef]
- Berg, S.; Wustmans, M.; Bröring, S. Identifying first signals of emerging dominance in a technological innovation system: A novel approach based on patents. Technol. Forecast. Soc. Chang. 2019, 146, 706–722. [Google Scholar] [CrossRef]
- Normann, H.E.; Hanson, J. The role of domestic markets in international technological innovation systems. Ind. Innov. 2018, 25, 482–504. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, A.J.; Hekkert, M.P.; Coenen, L.; Harmsen, R. Broadening the national focus in technological innovation system analysis: The case of offshore wind. Environ. Innov. Soc. Transit. 2015, 14, 128–148. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.-N.; Hsu, S.-L. Constructing conceptual trajectory maps to trace the development of research fields. J. Assoc. Inf. Sci. Technol. 2015, 67, 2016–2031. [Google Scholar] [CrossRef]
- Geels, F.W. Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. Res. Policy 2002, 31, 1257–1274. [Google Scholar] [CrossRef] [Green Version]
IPC Patent Class | Definition |
---|---|
F02B | Internal-combustion piston engines; combustion engines in general |
F02D | Controlling combustion engines |
F02F | Cylinders, pistons, or casings for combustion engines; arrangements of sealings in combustion engines |
F02M | Supplying combustion engines in general with combustible mixtures or constituents thereof |
F02P | Ignition, other than compression ignition, for internal-combustion engines; testing of ignition timing in compression-ignition engines |
Time Period | Trajectory | Main Objective | Changes in TIS | Changes in Context |
---|---|---|---|---|
1980–1995 | Indirect fuel injection | Transition from carburettors to fuel-efficient injection systems. | First ICE emission regulations (e.g., Clean Air Act). | Concerns about adverse effects of emissions on human heal, air pollution in metropolitan cities, increase in fuel prices. |
1996–2002 | ICE fuel tank filter | Increasing performance of fuel filters for advanced fuel injection systems. | Extension and intensification of emission regulations (e.g., Low-emission vehicle Program). | Emerging climate change concerns across the broad society, further increases in fuel prices, commencing a search for alternative powertrains. |
2003–2019 | Hybrid powertrain | Sharp reduction of fuel consumption and emissions. | Extension and intensification of emission regulations and introduction of low/zero-emission zones. | Continuing climate change concerns and increase in fuel prices, increasing competition from fully electric powertrains. |
Territory | Trajectory | Territory Specific Adaption of TIS Structures to Context Changes |
---|---|---|
EU | Diesel fuel filter and heater | Emission regulations put diesel at an advantage over gasoline and hybrid powertrains. Several national support programs for diesel. Cost advantage of diesel cars due to lower fuel prices. Lobbying activities of car manufacturers. |
Japan | Hybrid powertrain | Advanced Clean Energy Program favouring hybrid cars. Phase-out of diesel cars due to comparatively more stringent regulations for diesel cars. Denigration of diesel technology. |
USA | Hybrid powertrain | National Low Emissions Vehicle Program favouring hybrid cars. Fuel-neutral ICE regulation approach. No cost advantage for diesel cars due to the absence of a fuel price difference from gasoline. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiss, D.; Scherer, P. Mapping the Territorial Adaptation of Technological Innovation Systems—Trajectories of the Internal Combustion Engine. Sustainability 2022, 14, 113. https://doi.org/10.3390/su14010113
Weiss D, Scherer P. Mapping the Territorial Adaptation of Technological Innovation Systems—Trajectories of the Internal Combustion Engine. Sustainability. 2022; 14(1):113. https://doi.org/10.3390/su14010113
Chicago/Turabian StyleWeiss, Daniel, and Philipp Scherer. 2022. "Mapping the Territorial Adaptation of Technological Innovation Systems—Trajectories of the Internal Combustion Engine" Sustainability 14, no. 1: 113. https://doi.org/10.3390/su14010113
APA StyleWeiss, D., & Scherer, P. (2022). Mapping the Territorial Adaptation of Technological Innovation Systems—Trajectories of the Internal Combustion Engine. Sustainability, 14(1), 113. https://doi.org/10.3390/su14010113