Management Influence on the Quality of an Agricultural Soil Destined for Forage Production and Evaluated by Physico-Chemical and Biological Indicators
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Area and Crops
2.2. Soil Analysis
2.3. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Forage Yields
3.3. Soil Physico-Chemical Properties
3.4. Soil Health Diagnosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jongeneel, R.A. Research for AGRI Committee—The CAP Support beyond 2020: Assessing the Future Structure of Direct Payments and the Rural Developments Interventions in the Light of the EU Agricultural and Environmental Challenges; European Parliament, Policy Department for Structural and Cohesion Policies: Brussels, Belgium, 2018. [Google Scholar]
- Hauck, J.; Schleyer, C.; Winkler, K.J.; Maes, J. Shades of Greening: Reviewing the Impact of the new EU Agricultural Policy on Ecosystem Services. Change Adapt. Socio-Ecol. Syst. 2014, 1, 51–62. [Google Scholar] [CrossRef]
- European Commission. The Post-2020 Common Agricultural Policy: Environmental Benefits and Simplification; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Jiménez-Calderón, J.D.; Martínez-Fernández, A.; Prospero-Bernal, F.; Velarde-Guillén, J.; Arriaga-Jordán, C.M.; Vicente, F. Using manure as fertilizer for maize could improve sustainability of milk production. Span. J. Agric. Res. 2018, 16, e0601. [Google Scholar] [CrossRef]
- Jiménez-Calderón, J.D.; Martínez-Fernández, A.; Soldado, A.; González, A.; Vicente, F. Faba bean-rapeseed silage as substitute for Italian ryegrass silage: Effects on performance and milk quality of grazing dairy cows. Anim. Prod. Sci. 2020, 60, 913–922. [Google Scholar] [CrossRef]
- Martínez-Fernández, A.; Soldado, A.; De-La-Roza-Delgado, B.; Vicente, F.; González-Arrojo, M.A.; Argamentería, A. Modelling a quantitative ensilability index adapted to forages from wet temperate areas. Span. J. Agric. Res. 2013, 11, 455–462. [Google Scholar] [CrossRef]
- Baizán, S.; Vicente, F.; González, M.A.; González, C.; de la Roza, B.; Soldado, A.; Martínez-Fernández, A. Alternativas forrajeras sostenibles como cultivo invernal en zonas templadas. Pastos 2015, 45, 23–32. [Google Scholar]
- Baizán, S.; Vicente, F.; Oliveira, J.A.; Afif-Khouri, E.; Martínez-Fernández, A. Effect of replacing conventional Italian ryegrass by organic nitrogen source systems on chemical soil properties. Span. J. Agric. Res. 2021, 18, e1105. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; Dos Santos, C.A.; Alves, P.R.L.; De Paula, A.M.; Nakatani, A.S.; Pereira, J.D.M.; Nogueira, M.A. Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci. Agric. 2013, 70, 274–289. [Google Scholar] [CrossRef]
- Papadakis, J. Climates of the World and Their Agricultural Potentialities; DAPCO: Rome, Italy, 1996. [Google Scholar]
- SIGA. Sistema de Información Geográfica de Datos Agrarios. 2020. Available online: https://sig.mapama.gob.es/siga/ (accessed on 6 July 2019).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- SITPA. Sistema de Información Territorial del Principado de Asturias y la Infraestructura de Datos Espaciales. 2020. Available online: http://sitpa.cartografia.asturias (accessed on 6 July 2019).
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA—Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Hack, H.; Bleiholder, H.; Buhr, L.; Meier, U.; Schnock-Fricke, U.; Weber, E.; Witzenberger, A. Einheitliche codierung der phänologischen entwicklungsstadien mono-und dikotyler pflanzen-erweiterte BBCH-Skala, Allgemein. Nachrichtenblatt des deutschen. Pflanzenschutzdienstes 1992, 44, 265–270. [Google Scholar]
- Martínez-Fernández, A.; Baizán, S.; Jiménez-Calderón, J.D.; Vicente, F.; González, C.; Carballal, A. Protocolos de muestreo para la predicción del rendimiento de forrajes y cultivos forrajeros. Vaca Pinta 2018, 5, 74–80. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Oliveira, J.A.; Afif, E.; Mayor, M. Análisis de Suelos y Plantas y Recomendaciones de Abonado; University of Oviedo: Oviedo, Spain, 2006. [Google Scholar]
- Klute, A. Nitrogen-total. In Methods of Soil Analyses: Part 1; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 595–624. [Google Scholar]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Mijangos, I.; Muguerza, E.; Garbisu, C.; Anza, M.; Epelde, L. Health cards for the evaluation of agricultural sustainability. Span. J. Soil Sci. 2016, 6, 15–20. [Google Scholar]
- Bano, R.; Roy, S. Extraction of Soil Microarthropods: A low cost Berlese-Tullgren funnels extractor. Int. J. Fauna Biol. 2016, 2, 14–17. [Google Scholar]
- Mijangos, I.; Becerril, J.M.; Albizu, I.; Epelde, L.; Garbisu, C. Effects of glyphosate on rhizosphere soil microbial communities under two different plant compositions by cultivation-dependent and-independent methodologies. Soil Biol. Biochem. 2009, 41, 505–513. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.R-project.org/ (accessed on 6 July 2019).
- Canals, R.M.; Peralta, J.; Zubiri, E. Flora Pratense y Forrajera Cultivada de la Península Ibérica. 2009. Available online: http://www.unavarra.es/herbario/pratenses/htm/inicio.htm (accessed on 6 July 2019).
- Martínez-Fernández, A.; de la Roza Delgado, B.; Modroño-Lozano, S.; Argamentería, A. Producción y Contenido en Principios Nutritivos de Prados, Praderas y de la Rotación Raigrás Italiano Maíz en la rasa Marítima Centro Oriental de Asturias. Pastos 2011, 38, 187–224. [Google Scholar]
- Martínez-Fernández, A.; Argamentería, A.; de la Roza-Delgado, B. Manejo de Forrajes para Ensilar; Servicio Regional de Inves-tigación y Desarrollo Agroalimentario: Villaviciosa, Spain, 2014; 280p. [Google Scholar]
- Fernández-Lorenzo, B.; Castro, P.; Flores, G.; Arráez, A.G.; Valladares, J. Estimación de la composición química del guisante (Pisum sativum L.) y triticale (x Triticosecale Wittm.) mediante NIRS. In Pastos y Ganadería Extensiva; García-Criado, B., Ed.; Sociedad Española para el Estudio de los Pastos: Salamanca, Spain, 2004; pp. 285–290. [Google Scholar]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.-F.; Rees, R.M.; Peyraud, J.-L. Potential of legume-based grassland–livestock systems in Europe: A review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Helgadóttir, Á.; Suter, M.; Gylfadóttir, T.Ó.; Kristjánsdóttir, T.A.; Luscher, A. Grass–legume mixtures sustain strong yield advantage over monocultures under cool maritime growing conditions over a period of 5 years. Ann. Bot. 2018, 122, 337–348. [Google Scholar] [CrossRef]
- Li, L.; Zhang, F.; Li, X.; Christie, P.; Sun, J.; Yang, S.; Tang, C. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutr. Cycl. Agroecosyst. 2003, 65, 61–71. [Google Scholar] [CrossRef]
- Agegnehu, G.; Ghizaw, A.; Sinebo, W. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. Eur. J. Agron. 2006, 25, 202–207. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E.S. Grain legume–cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew. Agric. Food Syst. 2008, 23, 3–12. [Google Scholar] [CrossRef]
- Doltra, J.; Olesen, J.E. The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate. Eur. J. Agron. 2013, 44, 98–108. [Google Scholar] [CrossRef]
- Sturludóttir, E.; Brophy, C.; Belanger, G.; Gustavsson, A.-M.; Jørgensen, M.; Lunnan, T.; Helgadottir, A. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass Forage Sci. 2013, 69, 229–240. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Wright, J.P.; Cadotte, M.W.; Carroll, I.T.; Hector, A.; Srivastava, D.S.; Loreau, M.; Weis, J.J. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. USA 2007, 104, 18123–18128. [Google Scholar] [CrossRef]
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; De Fries, R.; Galloway, J.; Heimann, M.; et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 465–544. [Google Scholar]
- Bauer, A.; Black, A.L. Quantification of the Effect of Soil Organic Matter Content on Soil Productivity. Soil Sci. Soc. Am. J. 1994, 58, 185–193. [Google Scholar] [CrossRef]
- Vázquez, D.; García, M.I.; Báez, D.; García, V. Interpretación del análisis de suelo para una fertilización racional del maíz forrajero. Afriga 2017, 128, 44–57. [Google Scholar]
- Gianfreda, L.; Ruggiero, P. Enzyme Activities in Soil. In Nucleic Acids and Proteins in Soil; Nannipieri, P., Smalla, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 257–311. [Google Scholar]
- Paz-Ferreiro, J.; Trasar-Cepeda, C.; Leirós, M.C.; Seoane, S.; Gil-Sotres, F. Biochemical properties of acid soils under native grassland in a temperate humid zone. N. Z. J. Agric. Res. 2007, 50, 537–548. [Google Scholar] [CrossRef]
- Mijangos, I.; Pérez, R.; Albizu, I.; Garbisu, C. Effects of fertilization and tillage on soil biological parameters. Enzym. Microb. Technol. 2006, 40, 100–106. [Google Scholar] [CrossRef]
- Shipitalo, M.J. Structure and earthworms. In Encyclopedia of Soil Science; Lal, R., Ed.; Marcel Dekker: New York, NY, USA, 2002; pp. 1255–1258. [Google Scholar]
- Huggins, D.R.; Reganold, J.P. No-Till: How Farmers Are Saving the Soil by Parking Their Plows. Sci. Am. 2008, 299, 71–77. [Google Scholar]
- Socarrás, A. Mesofauna edáfica: Indicador biológico de la calidad del suelo. Pastos Forrajes 2013, 36, 5–13. [Google Scholar]
- Vidal, S. Plant biodiversity and vegetation structure in traditional cocoa forest gardens in southern Cameroon under different management. Biodivers. Conserv. 2008, 17, 1821–1835. [Google Scholar] [CrossRef]
- Zak, J.; Willig, M.; Moorhead, D.; Wildman, H. Functional diversity of microbial communities: A quantitative approach. Soil Biol. Biochem. 1994, 26, 1101–1108. [Google Scholar] [CrossRef]
- Powlson, D.; Prookes, P.; Christensen, B. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 1987, 19, 159–164. [Google Scholar] [CrossRef]
- Paul, E.A. Dynamics of organic matter in soils. Plant Soil 1984, 76, 275–285. [Google Scholar] [CrossRef]
Agronomic Year | IR | FB | FBIR | Maize | |
---|---|---|---|---|---|
Dates | |||||
2014/15 | Sown | 20/10/2014 | 20/10/2014 | 20/10/2014 | 11/06/2015 |
Harvest | 1st cut: 20/04/2015 2nd cut: 25/05/2015 | 05/05/2015 | 05/05/2015 | 30/09/2015 | |
2015/16 | Sown | 30/10/2015 | 30/10/2015 | 30/10/2015 | 11/06/2016 |
Harvest | 1st cut: 13/04/2016 2nd cut: 31/05/2016 | 22/04/2016 | 13/04/2016 | 03/10/2016 |
Agronomic Years | 2014–2015 | 2015–2016 | ||
---|---|---|---|---|
Growing Season | Winter | Summer | Winter | Summer |
Period considered | 20/10/14–25/05/15 | 11/06/15–30/09/15 | 30/10/15–30/05/16 | 11/06/16–03/10/16 |
Days of crop | 218 | 112 | 214 | 115 |
Minimum temperature (°C) | 8.4 | 14.9 | 8.6 | 15.3 |
Maximum temperature (°C) | 15.1 | 21.8 | 16.1 | 21.7 |
Average temperature (°C) | 11.7 | 18.3 | 12.3 | 18.5 |
Rainy days | 129 | 36 | 104 | 33 |
Rainfall accumulated (mm) | 945 | 170 | 921 | 271 |
Chemical Properties | Management Strategies (M) | Significance | |||||
---|---|---|---|---|---|---|---|
IR | FB | FBIR | rse | p (M) | p (Y) | p (MxY) | |
pH | 6.18 b | 7.16 a | 7.07 a | 0.562 | <0.001 | 0.574 | 0.267 |
Electrical conductivity (dS m−1) | 0.06 | 0.09 | 0.07 | 0.034 | 0.130 | <0.001 | 0.050 |
Organic matter (g kg−1) | 5.17 | 5.25 | 5.38 | 0.567 | 0.599 | <0.001 | 0.158 |
C (g kg−1) | 3.00 | 3.04 | 3.12 | 0.328 | 0.597 | <0.001 | 0.155 |
N (g kg−1) | 0.21 a | 0.18 b | 0.18 b | 0.033 | 0.031 | 0.294 | 0.044 |
C/N ratio | 14.89 b | 17.48 ab | 18.29 a | 3.566 | 0.036 | <0.001 | 0.131 |
Ca (cmol(+) kg−1) | 11.42 b | 12.04 ab | 12.74 a | 1.111 | 0.011 | <0.001 | 0.024 |
Mg (cmol(+) kg−1) | 0.61 b | 0.69 ab | 0.76 a | 0.132 | 0.015 | <0.001 | 0.004 |
K (cmol(+) kg−1) | 0.24 c | 0.42 a | 0.30 b | 0.060 | <0.001 | <0.001 | <0.001 |
Na (cmol(+) kg−1) | 0.91 | 0.94 | 0.89 | 0.252 | 0.890 | 0.094 | 0.981 |
Al (cmol(+) kg−1) | 0.01 | 0.01 | 0.02 | 0.022 | 0.246 | <0.001 | 0.210 |
Cation exchange capacity (cmol(+) kg−1) | 13.19 b | 14.10 ab | 14.72 a | 1.213 | 0.006 | <0.001 | 0.010 |
Al exchangeable (%) | 0.06 | 0.04 | 0.10 | 0.115 | 0.336 | <0.001 | 0.372 |
P (mg kg−1) | 17.86 b | 20.94 ab | 23.84 a | 4.084 | 0.002 | <0.001 | 0.147 |
Management Strategies (M) | Significance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
IR | FB | FBIR | rse | p (M) | p (Y) | p (MxY) | ||||
Health Services: | Value | Score | Value | Score | Value | Score | ||||
Biodiversity conservation | ||||||||||
Macrofauna (n°) | 2.33 | 3.28 | 2.83 | 3.72 | 3.17 | 4.02 | 0.682 | 0.213 | <0.001 | 0.467 |
Soil conservation | ||||||||||
Earthworms (n° m−2) | 2.67 | 1.47 b | 50.67 | 5.03 a | 48.00 | 5.25 a | 1.068 | <0.001 | <0.001 | 0.099 |
Infiltration (min) | 13.90 | 6.52 b | 2.08 | 8.40 a | 0.90 | 8.73 a | 0.887 | 0.002 | 0.001 | 0.003 |
Global change mitigation | ||||||||||
Soil colour (score) | 6.17 | 6.17 | 6.67 | 6.67 | 6.58 | 6.58 | 0.425 | 0.134 | 0.422 | 0.797 |
Basic diagnosis score | 4.50 b | 5.72 a | 5.85 a | 0.420 | <0.001 | 0.387 | 0.942 | |||
Biodiversity conservation | ||||||||||
Mesofauna (BQ) | 38.48 | 3.87 c | 48.07 | 4.52 b | 58.57 | 5.22 a | 0.361 | <0.001 | 0.001 | 0.019 |
Bacteria (H’) | 2.95 | 3.93 b | 3.52 | 5.05 a | 3.78 | 5.78 a | 0.660 | 0.001 | <0.001 | 0.104 |
Soil conservation | ||||||||||
Basal respiration (mg C-CO2 kg−1h−1) | 1.17 | 6.82 b | 1.92 | 8.62 a | 2.00 | 8.78 a | 0.514 | <0.001 | 0.002 | 0.128 |
Induced respiration (mg C-CO2 kg−1h−1) | 5.25 | 2.58 b | 8.02 | 3.43 a | 3.37 a | 7.90 | 0.258 | <0.001 | <0.001 | 0.158 |
Respiratory quotient (qCO2) | 0.23 | 1.00 | 0.25 | 1.00 | 0.27 | 1.00 | <0.001 | 0.397 | 0.337 | 0.397 |
Compaction (MPa) | 2131.68 | 5.75 b | 1625.08 | 6.68 a | 1658.72 | 6.73 a | 0.698 | 0.053 | 0.058 | 0.004 |
Global change mitigation | ||||||||||
CO2 emissions (g CO2 m−2 h−1) | 0.52 | 7.98 a | 0.94 | 7.13 b | 1.28 | 6.52 b | 0.493 | <0.001 | 0.358 | 0.130 |
Advanced diagnosis score | 5.18 b | 5.53 ab | 5.70 a | 0.282 | 0.023 | <0.001 | 0.680 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baizán, S.; Vicente, F.; Martínez-Fernández, A. Management Influence on the Quality of an Agricultural Soil Destined for Forage Production and Evaluated by Physico-Chemical and Biological Indicators. Sustainability 2021, 13, 5159. https://doi.org/10.3390/su13095159
Baizán S, Vicente F, Martínez-Fernández A. Management Influence on the Quality of an Agricultural Soil Destined for Forage Production and Evaluated by Physico-Chemical and Biological Indicators. Sustainability. 2021; 13(9):5159. https://doi.org/10.3390/su13095159
Chicago/Turabian StyleBaizán, Silvia, Fernando Vicente, and Adela Martínez-Fernández. 2021. "Management Influence on the Quality of an Agricultural Soil Destined for Forage Production and Evaluated by Physico-Chemical and Biological Indicators" Sustainability 13, no. 9: 5159. https://doi.org/10.3390/su13095159
APA StyleBaizán, S., Vicente, F., & Martínez-Fernández, A. (2021). Management Influence on the Quality of an Agricultural Soil Destined for Forage Production and Evaluated by Physico-Chemical and Biological Indicators. Sustainability, 13(9), 5159. https://doi.org/10.3390/su13095159