Environmental Sustainability Analysis of Case Studies of Agriculture Residue Exploitation
Abstract
:1. Introduction
1.1. State of the Art of Exploitation of Agriculture Residues
1.2. The GRASCIARI RIUNITI Project
2. Materials and Methods
2.1. Methods and Software
- -
- What are the environmental hotspots in the considered exploitation processes of agriculture residues? What is the environmental impact of these innovative processes?
- -
- What is the environmental impact of these processes compared with the most common manufacture of comparable products (using conventional raw materials)?
- The electricity consumption reported within the datasheet of real industrial machineries is considered to calculate the energy environmental load of mechanical-physical steps (e.g., grinding, sieving, mixing, heating); the further implementation of a renewable energy production system by a photovoltaic panel system is considered as an alternative to supply the energy to the machineries [47]. This possibility is not considered for the traditional processes (from raw materials) since it is more likely that a new technology invests in a renewable technology.
- The recirculation of 90% of organic solvents for extraction and washing treatments is applied. This assumption, consistent with the real-scale conditions, makes the processes more efficient and environmentally sustainable, thanks to both the reduction of raw material consumptions and waste flow [47,48].
- The conditions selected for the washing operations have been the residue and the washing solution ratio: 1:2 ratio and the time: 1 h, if not specified elsewhere.
- Considering the low electricity demand, compared to the other process steps (<0.002 kWh/kg residue), the filtration energy demand is considered negligible [49].
2.2. Exploitation Processes
3. Results
3.1. Classification and Characterization
3.1.1. From Rice Straw to Composite Panel
3.1.2. From Wheat Straw to Graphene and Nanoparticles
3.1.3. From Tomato Pomace to Polyester
3.1.4. From Orange Peel to Metal-Adsorbent Polymer
3.2. Normalization and Weighing
3.3. Comparison with Traditional Production Processes
4. Discussion and Limitation of the Study
- Zero burden approach for agricultural residues was used, effects of redirection of residue from today’s application is not included.
- The effect of using other impact assessment methods or normalization sets was not evaluated. Nevertheless, the authors selected the updated method EF 3.0 (recommended by European Commission), which ensured the result validity.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Agricultural Production. Available online: https://ourworldindata.org/agricultural-production (accessed on 30 July 2020).
- ISTAT. Andamento dell’Economia Agricola. Available online: https://www.istat.it/it/archivio/243183#:~:text=L’agricoltura%20in%20senso%20stretto,%2C7%25%20del%20valore%20aggiunto.&text=Nel%202019%20%C3%A8%20proseguita%20la,2%2C0%25%20in%20volume (accessed on 30 July 2020).
- ISTAT. Istituto Nazionale di Statistica. Available online: https://www.istat.it/it/agricoltura?dati (accessed on 20 November 2019).
- Food and Agriculture Organization of the United Nations (FAO). The Future of Food and Agriculture—Trends and Challenges; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017. [Google Scholar]
- Benítez, J.J.; Castillo, P.M.; Del Río, J.C.; León-Camacho, M.; Domínguez, E.; Heredia, A.; Guzmán-Puyol, S.; Athanassiou, A.; Heredia-Guerrero, J.A. Valorization of tomato processing by-products: Fatty acid extraction and production of bio-based materials. Materials 2018, 11, 2211. [Google Scholar] [CrossRef] [Green Version]
- Ashori, A.; Nourbakhsh, A. Bio-based composites from waste agricultural residues. Waste Manag. 2010, 30, 680–684. [Google Scholar] [CrossRef]
- Mahieu, A.; Alix, S.; Leblanc, N. Properties of particleboards made of agricultural by-products with a classical binder or self-bound. Ind. Crop. Prod. 2019, 130, 371–379. [Google Scholar] [CrossRef]
- Larrosa, M.; Llorach, R.; Espìn, J.C.; Tomás-Barberán, F.A. Increase of antioxidant activity of tomato juice upon functionalisation with vegetable by-product extracts. LWT Food Sci. Technol. 2002, 35, 532–542. [Google Scholar] [CrossRef]
- Plazzotta, S.; Ibarz, R.; Manzocco, L.; Martín-Belloso, O. Optimizing the antioxidant biocompound recovery from peach waste extraction assisted by ultrasounds or microwaves. Ultrason. Sonochem. 2020, 63, 104954. [Google Scholar] [CrossRef]
- Zhang, J.; Hori, N.; Takemura, A. Optimization of agricultural wastes liquefaction process and preparing biobased polyurethane foams by the obtained polyols. Ind. Crop. Prod. 2019, 138, 111455. [Google Scholar] [CrossRef]
- Gheribi, R.; Habibi, Y.; Khwaldia, K. Prickly pear peels as a valuable resource of added-value polysaccharide: Study of structural, functional and film forming properties. Int. J. Biol. Macromol. 2018, 126, 238–245. [Google Scholar] [CrossRef]
- Teigiserova, D.A.; Hamelin, L.; Thomsen, M. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour. Conserv. Recycl. 2019, 149, 413–426. [Google Scholar] [CrossRef]
- Petruccioli, M.; Raviv, M.; Di Silvestro, R.; Dinelli, G. Agriculture and agro-industrial wastes, by-products, and wastewaters: Origin, characteristics, and potential in bio-based-compounds production. In Comprehensive Biotechnology; Murray, M.Y., Ed.; Environmental Biotechnology and Safety; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 6, pp. 531–545. [Google Scholar] [CrossRef]
- Sharma, R.; Jafari, S.M.; Sharma, S. Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 2020, 112, 107086. [Google Scholar] [CrossRef]
- Heise, K.; Kirsten, M.; Schneider, Y.; Jaros, D.; Keller, H.; Rohm, H.; Kalbitz, K.; Fischer, S. From agricultural by-products to value-added materials: Wheat straw-based hydrogels as soil conditioners? ACS Sustain. Chem. Eng. 2019, 7, 8604–8612. [Google Scholar] [CrossRef]
- Feng, N.; Guo, X.; Liang, S. Adsorption study of copper (II) by chemically modified orange peel. J. Hazard. Mater. 2009, 164, 1286–1292. [Google Scholar] [CrossRef]
- Nešic, A.; Cabrera-Barjas, G.; Dimitrijevic-Brankovic, S.; Davidovic, S.; Radovanovic, N.; Delattre, C. Prospect of polysaccharide-based materials as advanced food packaging. Molecules 2019, 25, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saratale, R.G.; Saratale, G.D.; Ghodake, G.; Cho, S.K.; Kadam, A.; Kumar, G.; Jeon, B.H.; Pant, D.; Bhatnagar, A.; Shin, H.S. Wheat straw extracted lignin in silver nanoparticles synthesis: Expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. Int. J. Biol. Macromol. 2019, 128, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Ullah, Z.; Fazal, A.; Irfan, M. Use of vegetable waste extracts for controlling microstructure of CuO nanoparticles: Green synthesis, characterization, and photocatalytic applications. J. Chem. 2017. [Google Scholar] [CrossRef]
- Tabasso, S.; Mariatti, F.; Grillo, G.; Boffa, L.; Tibaldi, P.S.; Cravotto, G. Sustainable microwave-assisted aerobic oxidation of tomato plant waste into bioaromatics and organic acids. Ind. Eng. Chem. Res. 2019, 58, 8578–8584. [Google Scholar] [CrossRef]
- Choi, H.J. Agricultural bio-waste for adsorptive removal of crude oil in aqueous solution. J. Mater. Cycles Waste Manag. 2018, 21, 356–364. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Cai, W.; Cao, Y.; Sun, Y.; Tan, F. Preparation of corn straw based spongy aerogel for spillage oil capture. Korean J. Chem. Eng. 2018, 35, 1119–1127. [Google Scholar] [CrossRef]
- Chen, F.; Yang, J.; Bai, T.; Long, B.; Zhou, Z. Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries. J. Electroanal. Chem. 2016, 768, 18–26. [Google Scholar] [CrossRef]
- Narayanan, A.; Kumar, V.A.S.; Ramana, K.V. Production and characterization of poly (3-Hydroxybutyrateco-3-Hydroxyvalerate) from Bacillus mycoides DFC1 using rice husk hydrolysate. Waste Biomass Valorization 2013, 5, 109–118. [Google Scholar] [CrossRef]
- Chi, W.; Cao, L.; Sun, G.; Meng, F.; Zhang, C.; Li, J.; Wang, L. Developing a highly pH-sensitive k-carrageenan-based intelligent film incorporating grape skin powder via a cleaner process. J. Clean. Prod. 2019, 244, 118862. [Google Scholar] [CrossRef]
- Spring. Available online: http://www.clusterspring.it/home/ (accessed on 30 July 2020).
- Dahy, H. Efficient fabrication of sustainable building products from annually generated non-wood cellulosic fibres and bioplastics with improved flammability resistance. Waste Biomass Valorization 2017, 10, 1167–1175. [Google Scholar] [CrossRef]
- Xie, Y.; Niu, X.; Yang, J.; Fan, R.; Shi, J.; Ullah, N.; Feng, X.; Chen, L. Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin. Int. J. Biol. Macromol. 2020, 150, 480–491. [Google Scholar] [CrossRef]
- Guzmán, Á.; Delvasto, S.; Sánchez, E. Valorization of rice straw waste: An alternative ceramic raw material. Cerâmica 2015, 61, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, P.A.; Caliari, M.; Júnior, M.S.S.; Silva, K.S.; Viana, L.F.; Garcia, L.G.C.; De Lima, M.S. Use of agricultural by-products in extruded gluten-free breakfast cereals. Food Chem. 2019, 297, 124956. [Google Scholar] [CrossRef]
- Andrzejewski, J.; Barczewski, M.; Szostak, M. Injection molding of highly filled polypropylene-based biocomposites. buckwheat husk and wood flour filler: A comparison of agricultural and wood industry waste utilization. Polymers 2019, 11, 1881. [Google Scholar] [CrossRef] [Green Version]
- Bastos-Arrieta, J.; Florido, A.; Pérez-Ràfols, C.; Serrano, N.; Fiol, N.; Poch, J.; Villaescusa, I. Green synthesis of Ag nanoparticles using grape stalk waste extract for the modification of screen-printed electrodes. Nanomaterials 2018, 8, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crizel, T.D.M.; Jablonski, A.; Rios, A.D.L.; Rech, R.; Flôres, S.H. Dietary fiber from orange byproducts as a potential fat replacer. LWT Food Sci. Technol. 2013, 53, 9–14. [Google Scholar] [CrossRef]
- Cinelli, P.; Mallegni, N.; Gigante, V.; Montanari, A.; Seggiani, M.; Coltelli, M.B.; Bronco, S.; Lazzeri, A. Biocomposites based on polyhydroxyalkanoates and natural fibres from renewable by-products. Appl. Food Biotechnol. 2018, 6, 35–43. [Google Scholar] [CrossRef]
- Rhim, J.W.; Reddy, J.P.; Luo, X. Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 2014, 22, 408–420. [Google Scholar] [CrossRef]
- Verónica, F.M.; Bengardino, M.; Jagus, R.J.; Agüero, M.V. Enrichment and preservation of a vegetable smoothie with an antioxidant and antimicrobial extract obtained from beet by-products. LWT 2019, 117, 108622. [Google Scholar] [CrossRef]
- Schott, A.B.S.; Wenzel, H.; la Cure Jansen, J. Identification of decisive factors for greenhouse gas emissions in comparative life cycle assessments of food waste management—An analytical review. J. Clean. Prod. 2016, 119, 13–24. [Google Scholar] [CrossRef]
- Ekvall, T.; Weidema, B.P. System boundaries and input data in consequential life cycle inventory analysis. Int. J. LCA 2004, 9, 161–171. [Google Scholar] [CrossRef]
- ISO Valutazione del Ciclo di Vita, Definizione e Linee Guida. 2018. Available online: https://www.uni.com/index.php?option=com_content&view=article&id=6978%3Avalutazione-del-ciclo-di-vita&catid=170&Itemid=2612 (accessed on 30 July 2020).
- Ahlgren, S.; Björklund, A.; Ekman, H.; Berlin, J.; Börjesson, P.; Ekvall, T.; Finnveden, G.; Jansenn, M.; Strid, I. Review of methodological choices in LCA of biorefinery systems-key issues and recommendations. Biofuels Bioprod. Biorefin. 2015, 9, 606–619. [Google Scholar] [CrossRef] [Green Version]
- CIA Lombardia. Available online: http://www.cialombardia.org/fattoriascuola/C-r-lavorazione.htm#:~:text=In%20funzione%20della%20variet%C3%A0%2C%20dell,usate%20per%20gli%20altri%20cereali (accessed on 30 July 2020).
- Perozzi, D. PROGETTO GLUME Ricerca Sperimentale per la Valorizzazione Degli Scarti di Molitura. Caso Studio: Mulino Marino (PROGETTO GLUME Experimental Research to Valorize Milling Waste. Case Study: Mulino Marino). Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2019. [Google Scholar]
- Rossi, L.; Piccinini, S. Sottoprodotti agroindustriali, un potenziale da sfruttare. Inf. Agrar. 2007, 63, 67. [Google Scholar]
- Espadas-Aldana, G.; Vialle, C.; Belaud, J.P.; Vaca-Garcia, C.; Sablayrolles, C. Analysis and trends for Life Cycle Assessment of olive oil production. Sustain. Prod. Consum. 2019, 19, 216–230. [Google Scholar] [CrossRef] [Green Version]
- European Commission-Joint Research Centre (JRC). Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment Methods; European Commission-Joint Research Centre—Institute for Environment and Sustainability: Ispra, Italy, 2012. [Google Scholar] [CrossRef]
- European Commission. The Development of the PEF and OEF Methods. Available online: https://ec.europa.eu/environment/eussd/smgp/dev_methods.htm (accessed on 8 March 2021).
- Van der Hulst, M.K.; Huijbregts, M.A.; van Loon, N.; Theelen, M.; Kootstra, L.; Bergesen, J.D.; Hauck, M. A systematic approach to assess the environmental impact of emerging technologies: A case study for the GHG footprint of CIGS solar photovoltaic laminate. J. Ind. Ecol. 2020, 24, 1234–1249. [Google Scholar] [CrossRef]
- Piccinno, F.; Hischier, R.; Seeger, S.; Som, C. Predicting the environmental impact of a future nanocellulose production at industrial scale: Application of the life cycle assessment scale-up framework. J. Clean. Prod. 2018, 174, 283–295. [Google Scholar] [CrossRef]
- Adiansyah, J.S.; Haque, N.; Rosano, M.; Biswas, W. Application of a life cycle assessment to compare environmental performance in coal mine tailings management. J. Environ. Manag. 2017, 199, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Stark, N.M.; Cai, Z.; Carll, C. Wood-based composite materials-panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials. In Wood Handbook: Wood as an Engineering Material; General technical report FPL.; GTR-190; Centennial, Ed.; Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010; Chapter 11; pp. 11.1–11.28. [Google Scholar]
- Aadil, K.R.; Barapatre, A.; Sahu, S.; Jha, H.; Tiwary, B.N. Free radical scavenging activity and reducing power of Acacia nilotica wood lignin. Int. J. Biol. Macromol. 2014, 67, 220–227. [Google Scholar] [CrossRef]
- Cossutta, M.; McKechnie, J.; Pickering, S.J. A comparative LCA of different graphene production routes. Green Chem. 2017, 19, 5874–5884. [Google Scholar] [CrossRef]
- Pourzahedi, L.; Eckelman, M.J. Comparative life cycle assessment of silver nanoparticle synthesis. Environ. Sci. Nano 2015, 2, 361–369. [Google Scholar] [CrossRef]
- Rivas, B.; Torrado, A.; Torre, P.; Converti, A.; Domínguez, J.M. Submerged citric acid fermentation on orange peel autohydrolysate. J. Agric. Food Chem. 2008, 56, 2380–2387. [Google Scholar] [CrossRef] [PubMed]
- GABI Process Data Eet: Polyester Resin Unsaturated (UP); Esterification and Polymerization, from Propylene Glycol, Phthalic Anhydride and Styrene; Single Route, at Plant; 1.22 to 1.38 g/cm3 (en). Available online: http://gabi-documentation-2019.gabi-software.com/xml-data/processes/b6801f51-3d8e-47d1-96bb-dbbea7b14e16.xml (accessed on 30 July 2020).
- Liu, Y.; Cao, Q.; Luo, F.; Chen, J. Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J. Hazard. Mater. 2008, 163, 931–938. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Filipkowska, U.; Szymczyk, P.; Rodziewicz, J.; Mielcarek, A. Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye. React. Funct. Polym. 2017, 114, 58–74. [Google Scholar] [CrossRef]
- Loya-Gonzalez, D.; Loredo-Cancino, M.; Soto-Regalado, E.; Rivas-García, P.; Cerino-Cordova, F.D.J.; García-Reyes, R.B.; Bustos-Martínez, D.; Estrada-Baltazar, A. Optimal activated carbon production from corn pericarp: A life cycle assessment approach. J. Clean. Prod. 2019, 219, 316–325. [Google Scholar] [CrossRef]
- Bernier, E.; Lavigne, C.; Robidoux, P.Y. Life cycle assessment of kraft lignin for polymer applications. Int. J. LCA 2012, 18, 520–528. [Google Scholar] [CrossRef]
- Nägele, H.; Pfitzer, J.; Nägele, E.; Inone, E.R.; Eisenreich, N.; Eckl, W.; Eyerer, P. Arboform®—A thermoplastic, processable material from lignin and natural fibers. In Chemical Modification, Properties, and Usage of Lignin; Springer: Boston, MA, USA, 2002; pp. 101–119. [Google Scholar] [CrossRef]
- Schmidt, A.; Frydendal, J. Methods for calculating the environmental benefits of “green” products. In Buying into the Environment; Routledge: Oxfordshire, UK, 2003. [Google Scholar]
- Van Oers, L.; Guinée, J. The abiotic depletion potential: Background, updates, and future. Resources 2016, 5, 16. [Google Scholar] [CrossRef]
- Amato, A.; Becci, A.; Birloaga, I.; Michelis, I.D.; Ferella, F.; Innocenzi, V.; Ippolito, N.; Gomez, C.P.J.; Vegliò, F.; Beolchini, F. Sustainability analysis of innovative technologies for the rare earth elements recovery. Renew. Sustain. Energy Rev. 2019, 106, 41–53. [Google Scholar] [CrossRef]
- Frischknecht, R.; Braunschweig, A.; Hofstetter, P.; Suter, P. Human health damages due to ionizing radiation in life cycle impact assessment. Environ. Impact Assess. Rev. 2000, 20, 159–189. [Google Scholar] [CrossRef]
- Stocker, T.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Proceedings of the Intergovernmental Panel on Climate Change, Batumi, GA, USA, 14–17 October 2013. [Google Scholar]
- Hung, N.V.; Maguyon-Detras, M.C.; Migo, M.V.; Quilloy, R.; Balingbing, C.; Chivenge, P.; Gummert, M. Rice straw overview: Availability, properties, and management practices. In Sustainable Rice Straw Management; Springer: Cham, Switzerland, 2020; pp. 1–13. [Google Scholar]
- Chevanana, N.; Womac, A.R.; Bitra, V.S.P.; Igathinathene, C.; Yang, Y.T.; Miu, P.I.; Sokhansanj, S. Bulk density and compaction behavior of knife mill chopped switchgrass, wheat straw, and corn stover. Bioresour. Technol. 2009, 101, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Sin, E.H.K. The Extraction and Fractionation of Waxes from Biomass. Ph.D. Thesis, University of York, York, UK, 2012. [Google Scholar]
- Jahanbakhshi, A.; Sharabiani, V.R.; Heidarbeigi, K.; Kaveh, M.; Taghinezhad, E. Evaluation of engineering properties for waste control of tomato during harvesting and postharvesting. Food Sci. Technol. 2019, 7, 1473–1481. [Google Scholar] [CrossRef]
- Stelte, W.; Clemons, C.; Holm, J.K.; Ahrenfeldt, J.; Henriksen, U.B.; Sanadi, A.R. Fuel pellets from wheat straw: The effect of lignin glass transition and surface waxes on pelletizing properties. Bioenergy Res. 2011, 5, 450–458. [Google Scholar] [CrossRef] [Green Version]
- Cuccolini, S.; Aldini, A.; Visai, L.; Daglia, M.; Ferrari, D. Environmentally friendly lycopene purification from tomato peel waste: Enzymatic assisted aqueous extraction. J. Agric. Food Chem. 2012, 61, 1646–1651. [Google Scholar] [CrossRef]
- Olabinjo, O.O.; Ogunlowo, A.S.; Ajayi, O.O.; Olalusi, A.P. Analysis of physical and chemical composition of sweet orange (Citrus sinensis) peels. Int. J. Environ. Agric. Biotechnol. 2017, 2, 238892. [Google Scholar] [CrossRef] [Green Version]
- Munagapati, V.S.; Kim, D.S. Adsorption of anionic azo dye Congo Red from aqueous solution by cationic modified orange peel powder. J. Mol. Liq. 2016, 220, 540–548. [Google Scholar] [CrossRef]
- National Library of Medicine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1_4-Benzoquinone#section=Solubility (accessed on 30 July 2020).
- Ahmed, M.; Mashkoor, F.; Nasar, A. Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution. Groundw. Sustain. Dev. 2019, 10, 100322. [Google Scholar] [CrossRef]
- Cai, J.; Gao, Y.; Zhu, X.; Su, Q. Matrix solid phase dispersion–Soxhlet simultaneous extraction clean-up for determination of organochlorine pesticide residues in tobacco. Anal. Bioanal. Chem. 2005, 383, 869–874. [Google Scholar] [CrossRef]
Bio-Based Product | Exploitation Process | Reference |
---|---|---|
Rice byproducts | ||
Composite panel filter | Chopping; mixing with Lignin bioplastic Arboform®; extrusion; injection molding | [27] |
Ceramic material | Combustion; calcination; pressing; sintering | [29] |
Breakfast bar | Mixing with passion fruit peel and whey; extrusion | [30] |
Rice husk broth for polymer production | Pulverizing; acid hydrolysis and steam treatment; neutralization with NaOH; dilution | [24] |
Wheat byproducts | ||
Filler in polypropylene-based composites | Milling; mixing with polypropylene and additive; drying; extrusion; granulation; drying; injection molding | [31] |
Li-Ag NPs | Mechanical pre-treatment; alkali extraction; purification; mixing with AgNO3 | [18] |
Hydrogel | Milling; treatment with sodium monochloroacetate in isopropanol/NaOH; crosslinking; crushing; sieving; water suspension; washing; drying | [15] |
Graphene layers | Mechanical pre-treatment; hydrothermal treatment; pyrolysis; graphitization | [23] |
Corn byproducts | ||
Adsorbent powder | Washing; cutting; drying; crushing; sieving | [21] |
Adsorbent spongy aerogel | Mechanical pre-treatment; stirring in NaOH solution; HCl addition; washing; mixing with filter paper; freezing; freeze-drying; silanization with methyltrimethoxysilane | [22] |
Tomato by-products | ||
Vanillin, syringaldehyde | Milling; suspension in NaOH solution; heating under microwave radiation; vacuum filtration; acidification with HCl; extraction with ethyl acetate | [20] |
Polyester film | Drying; crushing; dewaxing with hexane and methanol; drying; hydrolysis; fraction separation; melt-polycondensation | [5] |
Grape byproducts | ||
Ag NPs | Mechanical pre-treatment; extraction; centrifugation; mixing with silver nitrate; centrifugation | [32] |
Indicator in intelligent film | Freeze-drying; milling; sieving; mixing with k-carrageenan, sorbitol, distilled water, hydroxypropyl methylcellulose; casting; drying | [25] |
Sunflower byproducts | ||
Particleboards | Grinding; sieving; mixing with synthetic binder; thermopressing | [7] |
Reinforcement for thermoplastic material | Steaming; drying; extrusion with polypropylene and coupling agent; granulation; drying; compression molding | [6] |
Orange byproducts | ||
Functional ingredient in food products | Washing; sanitization in sodium hypochlorite solution; dehydration; grounding; sieving | [33] |
Adsorbent polymer | Mechanical pre-treatment; crosslinking; polymerization; extraction; hydrolysis; post-treatment | [16] |
Other agriculture byproducts | ||
Active polymeric film from potato peel | Mechanical pre-treatment; water suspension; glycerol addition; stirring; bacterial cellulose addition; homogenization; stirring; degasification by ultrasound; pouring in petri plates; drying | [28] |
Filler in polyhydroxyalkanoates composites from peas fibers | Drying; milling; mixing with poly(3-hydroxybutyrate-co-3-hydroxyvalerate), acetyltributylcitrate and CaCO3; extrusion; injection molding | [34] |
Cellulose nanocrystals for the preparation of agar-based bio-nanocomposites films from onion peel | Mechanical pre-treatment; bleaching with sodium chlorite solution; boiling; washing; treatment with NaOH; treatment with acetic acid; washing; drying; acid hydrolysis with sulfuric acid; centrifugation; sonication; freeze-drying | [35] |
Film from prickly pear peels | Mechanical pressing; ethanol addition; drying; dispersion in water; glycerol addition; stirring; casting; drying | [11] |
Polyphenols, flavonoids, anthocyanins, vitamin C from peach peel, seeds, and pulp | Dispersion in ethanol; mixing; extraction (ultrasound/microwave) | [9] |
Functional ingredient in food products from beet leaves | Cutting; extraction in ethanol; centrifugation; drying; resuspension in water | [36] |
Reinforcement for thermoplastic material from bagasse fiber | Steaming; drying; extrusion with polypropylene and coupling agent; granulation; drying; compression molding | [6] |
Polyurethane foam from rice, oilseed rape and wheat straw and corn stover | Drying; liquefaction; washing with acetone; rotary evaporation; drying; polyol neutralization with NaOH; mixing with reagents | [10] |
Functional ingredient in food products from cauliflower and celery leaves and stem, onion peel, carrot bottom and tips | Extraction in boiling water; hand-squeezing; homogenization | [8] |
CuO NPs from cauliflower waste, potatoes and peas peels | Mechanical pre-treatment; water-dispersion; shaking; mixing with solutions of CuCl2·2H2O under shaking; washing; drying; sintering | [19] |
Environmental Impact Category | Resulting Bio-Based Products (BBP) | ||||
---|---|---|---|---|---|
Composite Panel | Graphene | Lignin | Polyester Film | Metal-Adsorbent Polymer | |
Acidification terrestrial and freshwater (mole of H+ eq.) | 1.66 × 10−2 | 1.32 × 10−2 | 1.02 × 10−2 | 1.11 × 10−2 | 2.85 × 10−2 |
Cancer human health effects (CTUh) | 9.81 × 10−10 | 1.92 × 10−9 | 1.66 × 10−9 | 1.37 × 10−9 | 3.93 × 10−9 |
Climate change (kg CO2 eq.) | 3.64 | 7.91 | 6.64 | 6.20 | 1.26 × 10+1 |
Ecotoxicity freshwater (CTUe) | 2.87 × 10+1 | 7.10 × 10+1 | 5.98 × 10+1 | 4.88 × 10+1 | 1.90 × 10+2 |
Eutrophication freshwater (kg P eq.) | 1.33 × 10−5 | 8.50 × 10−5 | 6.06 × 10−5 | 7.28 × 10−5 | 2.95 × 10−4 |
Eutrophication marine (kg N eq.) | 2.37 × 10−3 | 3.97 × 10−3 | 2.74 × 10−3 | 3.20 × 10−3 | 7.60 × 10−3 |
Eutrophication terrestrial (mole of N eq.) | 2.55 × 10−2 | 4.06 × 10−2 | 2.74 × 10−2 | 3.18 × 10−2 | 7.17 × 10−2 |
Ionizing radiation-human health (kBq u235 eq.) | 1.40 × 10−1 | 1.04 | 1.13 × 10−1 | 5.96 × 10−1 | 1.41 |
Land use (Pt) | 6.25 | 5.15 × 10+1 | 3.85 | 2.73 × 10+1 | 1.69 × 10+1 |
Non-cancer human health effects (CTUh) | 7.20 × 10−8 | 7.43 × 10−8 | 8.41 × 10−8 | 6.76 × 10−8 | 2.10 × 10−7 |
Ozone depletion (Kg CFC-11 eq.) | 2.48 × 10−14 | 2.46 × 10−13 | 8.73 × 10−13 | 1.29 × 10−13 | 1.01 × 10−9 |
Photochemical ozone formation-human health (kg NMVOC eq.) | 1.05 × 10−2 | 1.04 × 10−2 | 1.01 × 10−2 | 8.64 × 10−3 | 2.52 × 10−2 |
Resource use, energy carriers (MJ) | 1.75 × 10+2 | 1.13 × 10+2 | 1.66 × 10+2 | 1.17 × 10+2 | 3.47 × 10+2 |
Resource use, mineral and metals (kg Sb eq.) | 5.89 × 10−5 | 3.07 × 10−6 | 5.64 × 10−7 | 1.66 × 10−6 | 1.63 × 10−5 |
Respiratory inorganics (disease incidences) | 1.33 × 10−7 | 1.30 × 10−7 | 9.38 × 10−8 | 1.11 × 10−7 | 2.44 × 10−7 |
Water scarcity (m3 world equiv.) | 1.12 | 2.26 | 1.16 | 1.25 | 2.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amato, A.; Mastrovito, M.; Becci, A.; Beolchini, F. Environmental Sustainability Analysis of Case Studies of Agriculture Residue Exploitation. Sustainability 2021, 13, 3990. https://doi.org/10.3390/su13073990
Amato A, Mastrovito M, Becci A, Beolchini F. Environmental Sustainability Analysis of Case Studies of Agriculture Residue Exploitation. Sustainability. 2021; 13(7):3990. https://doi.org/10.3390/su13073990
Chicago/Turabian StyleAmato, Alessia, Marianna Mastrovito, Alessandro Becci, and Francesca Beolchini. 2021. "Environmental Sustainability Analysis of Case Studies of Agriculture Residue Exploitation" Sustainability 13, no. 7: 3990. https://doi.org/10.3390/su13073990