A New Multibranch Model for Metals in River Systems: Impacts and Control of Tannery Wastes in Bangladesh
Abstract
:1. Introduction
2. The INCA-Metals Model
2.1. The Simulation of Water Flow and Storage in the Landscape
2.2. The Simulation of the Transport, Storage and Transformations of Cyanide, Ammonium and Metals in the Landscape
2.3. Ammonium-N
2.4. Metals
2.5. The Simulation of Water Flow and Storage in the River
2.6. Cyanide, Ammonium, and Metal Process Equation: River System
3. Pollution Impacts on the Dhaleshwari River (Bangladesh)
3.1. Tannery Pollution Globally and in Bangladesh
3.2. Impacts of Tannery Discharges on Pollution on Bangladesh Rivers
References | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[23] | [24] | [25] | [26] | [27] | [28] | [29] | [30] | [31] | [32] | [33] | [34] | [35] | [36] | [37] | [38] | |
Dissolved oxygen (mg/L) | 0.5 | 2.73 | BDL | 2.7 | 1 | 3.085 | 1.75 | 1.3 | ||||||||
Total dissolved solids (mg/L) | 2711 | 4540 | 3200 | 4119 | 7190 | 77,923 | 21,300 | 7.5 | 4745 | 2130 | 915 | 13,000 | 44.3 | |||
Total suspended solids (mg/L) | 12,309 | 5010 | 850 | 710 | 1815 | 9849 | 1250 | 6888 | 0.86 | 2357 | 5500 | |||||
Biological oxygen demand (mg/L) | 9291.1 | 10,400 | 92.1 | <0.1 | 1364 | 4464 | 920 | 903 | 5504 | 830 | 3621 | |||||
Chemical oxygen demand (mg/L) | 15,305 | 15,800 | 3380 | 12,840 | 3980 | 2200 | 11,238 | 3790 | 5213 | |||||||
pH | 7.78 | 5.4 | 7.2 | 6.32 | 7.8 | 9 | 2.7 | 8.3 | 7.5 | 7.5 | 7.045 | 7.4 | 8.5 | 7.3 | 3.6 | |
Phosphate (mg/L) | 1.79 | 50.9 | 0.55 | 17.1 | ||||||||||||
Sulphate (mg/L) | 1410.5 | 4648 | 960 | 4000 | 3850 | |||||||||||
Sulphide (mg/L) | 220.3 | 5040 | ||||||||||||||
Nitrate (mg/L) | 226.11 | 20 | 0.7 | 0.14 | ||||||||||||
Nitrite (mg/L) | 0.36 | 1.17 | <0.01 | |||||||||||||
Chloride (mg/L) | 31,533 | 960 | 83.6 | 2200 | 13.8 | 5000 | 104 | 19,015 | ||||||||
Colour (Pt-Co) | 13,567 | 792 | 275 | 1640 | ||||||||||||
Sodium (mg/L) | 1835 | 3400 | 836 | 12,006 | 3840 | |||||||||||
Lead (mg/L) | 0.68 | 0.11 | 34.8 | 7.25 | 0.091 | 0.18 | 2.9 | 24.915 | 2.15 | 3.4 | ||||||
Copper (mg/L) | 0.22 | BDL | 0.058 | 0.41 | 10 | 2.05 | ||||||||||
Iron (mg/L) | 8.49 | 0.27 | 7.6 | 14.7 | 54.96 | 8.44 | 12.24 | |||||||||
Chromium (mg/L) | 1445.1 | 18.98 | 46,848 | 24.9 | 99 | 943 | 4038 | 10.35 | 7910 | 3391.9 | 235 | 7.8 | 25.6 | 3190.1 | ||
Cadmium (mg/L) | 0.015 | 0.6 | BDL | <0.001 | 0.005 | 2.9 | 1.875 | <1 | 1.6 | |||||||
Zinc (mg/L) | 1.396 | 608.1 | 0.37 | 0.27 | 1.52 | 4.68 | 6.3 | |||||||||
Nickel (mg/L) | BDL | BDL | 0.046 | 0.15 | 3.6 | BDL | 3.1 | 1.35 | ||||||||
Manganese (mg/L) | 0.08 | 0.29 | 0.49 | 8.845 | ||||||||||||
Arsenic (mg/L) | <0.01 | 16 |
Dissolved oxygen (mg/L) | 1.4 |
Total dissolved solids (mg/L) | 17,283.3 |
Total suspended solids (mg/L) | 4835.1 |
Biological oxygen demand (mg/L) | 3790.2 |
Chemical oxygen demand (mg/L) | 10,261.0 |
pH | 6.9 |
Phosphate (mg/L) | 17.6 |
Sulphate (mg/L) | 2754.6 |
Sulphide (mg/L) | 2630.2 |
Nitrate (mg/L) | 61.7 |
Nitrite (mg/L) | 0.5 |
Chloride (mg/L) | 6631.7 |
Color (Pt-Co) | 7179.5 |
Sodium (mg/L) | 4383.4 |
Lead (mg/L) | 7.2 |
Copper (mg/L) | 0.2 |
Iron (mg/L) | 7.8 |
Chromium (mg/L) | 6678.4 |
Cadmium (mg/L) | 0.2 |
Zinc (mg/L) | 122.3 |
Nickel (mg/L) | 0.0 |
Manganese (mg/L) | 0.3 |
4. An Experiment on the Dhaleshwari River System and the Savar Tannery Complex
5. Modelling the Savar Discharge and Mitigation Strategies
6. Policy Recommendations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Whitehead, P.G.; Bussi, G.; Hossain, M.A.; Dolk, M.; Das, P.; Comber, S.; Peters, R.; Charles, K.J.; Hope, R.; Hossain, S. Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: Modelling nutrient and total coliform intervention strategies. Sci. Total Environ. 2018, 631–632, 223–232. [Google Scholar] [CrossRef]
- Rampley, C.P.N.; Whitehead, P.G.; Softley, L.; Hossain, M.A.; Jin, L.; David, J.; Shawal, S.; Das, P.; Thompson, I.P.; Huang, W.E.; et al. River toxicity assessment using molecular biosensors: Heavy metal contamination in the Turag-Balu-Buriganga river systems, Dhaka, Bangladesh. Sci. Total Environ. 2020, 703, 134760. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Advances in the Hydrogeochemistry and Microbiology of Acid Mine Waters. Int. Geol. Rev. 2000, 42, 499–515. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Prior, H. Bioremediation of acid mine drainage: An introduction to the Wheal Jane wetlands project. Sci. Total Environ. 2005, 338, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Chapra, S.C.; Whitehead, P.G. Modelling impacts of pollution in river systems: A new dispersion model and a case study of mine discharges in the Abrud, Aries and Mures River System in Transylvania, Romania. Hydrol. Res. 2009, 40, 306–322. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilson, E.; Butterfield, D. A semi-distributed integrated nitrogen model for multiple source assessment in catchments (INCA): Part I—Model structure and process equations. Sci. Total Environ. 1998, 210–211, 547–558. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wilson, E.; Butterfield, D.; Seed, K. A semi-distributed integrated flow and nitrogen model for multiple source assessment in catchments (INCA): Part II—Application to large river basins in south Wales and eastern England. Sci. Total Environ. 1998, 210–211, 559–583. [Google Scholar] [CrossRef]
- Wade, A.J.; Durand, P.; Beaujouan, V.; Wessel, W.; Raat, K.J.; Whitehead, P.G.; Butterfield, D.; Rankinen, K.; Lepisto, A. A nitrogen model for European catchments: INCA, new model structure and equations. Hydrol. Earth Syst. Sci. 2002, 6, 559–582. [Google Scholar] [CrossRef]
- Wade, A.J.; Whitehead, P.G.; Butterfield, D. The Integrated Catchments model of Phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: Model structure and equations. Hydrol. Earth Syst. Sci. 2002, 6, 583–606. [Google Scholar] [CrossRef] [Green Version]
- Bussi, G.; Darby, S.E.; Whitehead, P.G.; Jin, L.; Dadson, S.J.; Voepel, H.E.; Vasilopoulos, G.; Hackney, C.R.; Hutton, C.; Berchoux, T.; et al. Impact of dams and climate change on suspended sediment flux to the Mekong delta. Sci. Total Environ. 2021, 755, 142468. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Sarkar, S.; Jin, L.; Futter, M.N.; Caesar, J.; Barbour, E.; Butterfield, D.; Sinha, R.; Nicholls, R.; Hutton, C.; et al. Dynamic modeling of the Ganga river system: Impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh. Environ. Sci. Process. Impacts 2015, 17, 1082–1097. [Google Scholar] [CrossRef]
- Jin, L.; Whitehead, P.G.; Appeaning Addo, K.; Amisigo, B.; Macadam, I.; Janes, T.; Crossman, J.; Nicholls, R.J.; McCartney, M.; Rodda, H.J.E. Modeling future flows of the Volta River system: Impacts of climate change and socio-economic changes. Sci. Total Environ. 2018, 637–638, 1069–1080. [Google Scholar] [CrossRef]
- Wade, A.J.; Neal, C.; Butterfield, D.; Futter, M.N. Assessing nitrogen dynamics in European ecosystems, integrating measurement and modelling: Conclusions. Hydrol. Earth Syst. Sci. 2004, 8, 846–857. [Google Scholar] [CrossRef] [Green Version]
- Wade, A.J.; Butterfield, D.; Whitehead, P.G. Towards an improved understanding of the nitrate dynamics in lowland, permeable river-systems: Applications of INCA-N. J. Hydrol. 2006, 330, 185–203. [Google Scholar] [CrossRef]
- Lazar, A.N.; Butterfield, D.; Futter, M.N.; Rankinen, K.; Thouvenot-Korppoo, M.; Jarritt, N.; Lawrence, D.S.; Wade, A.J.; Whitehead, P.G. An assessment of the fine sediment dynamics in an upland river system: INCA-Sed modifications and implications for fisheries. Sci. Total Environ. 2010, 408, 2555–2566. [Google Scholar] [CrossRef]
- Futter, M.N.; Butterfield, D.; Cosby, B.J.; Dillon, P.J.; Wade, A.J.; Whitehead, P.G. Modeling the mechanisms that control in-stream dissolved organic carbon dynamics in upland and forested catchments. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Futter, M.N.; Erlandsson, M.A.; Butterfield, D.; Whitehead, P.G.; Oni, S.K.; Wade, A.J. PERSiST: A flexible rainfall-runoff modelling toolkit for use with the INCA family of models. Hydrol. Earth Syst. Sci. 2014, 18, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Rankinen, K.; Kaste, Ø.; Butterfield, D. Adaptation of the Integrated Nitrogen Model for Catchments (INCA) to seasonally snow-covered catchments. Hydrol. Earth Syst. Sci. 2004, 8, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Covington, A.D.; Wise, W.R. Tanning Chemistry: The Science of Leather—Anthony D Covington, William R Wise, 2nd ed.; The Royal Society of Chemistry: London, UK, 2020. [Google Scholar]
- Islam, S.; Ahmed, K.; Al-Mamun, H.; Masunaga, S. Assessment of trace metals in fish species of urban rivers in Bangladesh and health implications. Environ. Toxicol. Pharmacol. 2015, 39, 347–357. [Google Scholar] [CrossRef]
- Rahman, M.A. Characteristics of Major Industrial Liquid Pollutants in Bangladesh. Master’s Thesis, Bangladesh University of Engineering & Technology, Dhaka, Bangladesh, 1997. [Google Scholar]
- Saha, G.C. Assessment of Groundwater Contamination in Dhaka City from Tannery Waste. Master’s Thesis, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, 2001. [Google Scholar]
- Arias-Barreiro, C.R.; Nishizaki, H.; Okubo, K.; Aoyama, I.; Mori, I.C. Ecotoxicological characterization of tannery wastewater in Dhaka, Bangladesh. J. Environ. Biol. 2010, 31, 471–475. [Google Scholar]
- Ahmed, M.K.; Das, M.; Islam, M.M.; Akter, M.S.; Islam, S.; Al-Mansur, M.A. Physico-chemical properties of tannery and textile effluents and surface water of river Buriganga and Karnatoli, Bangladesh. World Appl. Sci. J. 2011, 12, 152–159. [Google Scholar]
- Siraj, S.; Islam, M.M.; Das, P.C.; Masum, S.M.; Jahan, I.A.; Ahsan, M.A.; Shajahan, M. Removal of Chromium from Tannery Effluent Using Chitosan-Charcoal Composite. J. Bangladesh Chem. Soc. 2012, 25, 53–61. [Google Scholar] [CrossRef]
- Karim, M.R.; Manshoven, S.; Islam, M.R.; Gascon, J.A.; Ibarra, M.; Diels, L.; Rahman, M.M. Assessment of an Urban Contaminated Site from Tannery Industries in Dhaka City, Bangladesh. J. Hazard. Toxic Radioact. Waste 2013, 17, 52–61. [Google Scholar] [CrossRef]
- Paul, H.L.; Antunes, A.P.M.; Covington, A.D.; Evans, P.; Phillips, P.S. Bangladeshi leather industry: An overview of recent sustainable developments. J. Soc. Leather Technol. Chem. 2013, 97, 25–32. [Google Scholar]
- Hashem, M.A.; Islam, A.; Mohsin, S.; Nur-A-Tomal, M.S. Green environment suffers by discharging of high-chromium-containing wastewater from the tanneries at Hazaribagh, Bangladesh. Sustain. Water Resour. Manag. 2015, 1, 343–347. [Google Scholar] [CrossRef]
- Jahan, M.; Akhtar, N.; Khan, N.; Roy, C.; Islam, R.; Nurunnabi, M. Characterization of tannery wastewater and its treatment by aquatic macrophytes and algae. Bangladesh J. Sci. Ind. Res. 2015, 49, 233–242. [Google Scholar] [CrossRef]
- Chowdhury, M.; Mostafa, M.G.; Biswas, T.K.; Mandal, A.; Saha, A.K. Characterization of the Effluents from Leather Processing Industries. Environ. Process. 2015, 2, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Islam, S.; Al-Mamun, H.; Islam, S.A.; Eaton, D.W. Total and dissolved metals in the industrial wastewater: A case study from Dhaka Metropolitan, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2016, 5, 74–80. [Google Scholar] [CrossRef]
- Kabir, M.M.; Fakhruddin, A.N.M.; Chowdhury, M.A.Z.; Fardous, Z.; Islam, R. Characterization of tannery effluents of Hazaribagh area, Dhaka, Bangladesh. Pollution 2017, 3. [Google Scholar] [CrossRef]
- Abu Sayid Mia, M.A.S.; Nur-E-Alam, M.; Farid Ahmad, M.; Zahangir Alam, M.; Mafizur Rahman, M. Treatment of tannery wastewater by electrocoagulation technology. J. Sci. Innov. Res. 2017, 6, 129–134. [Google Scholar]
- Haque, M.A.; Chowdhury, R.A.; Chowdhury, W.A.; Baralaskar, A.H.; Bhowmik, S.; Islam, S. Immobilization possibility of tannery wastewater contaminants in the tiles fixing mortars for eco-friendly land disposal. J. Environ. Manag. 2019, 242, 298–308. [Google Scholar] [CrossRef]
- Abu Sayid Mia, M.; Uzzal Ali, M.; Nur-E-Alam, M.; Mafizur Rahman, M.; Zahangir Alam, M. Removal of Heavy Metals from Tannery Wastewater by using Sawdust and Spent Tea Leaves as an Adsorbent. Phys. Sci. Biophys. J. 2020, 4, 72–82. [Google Scholar]
- Hashem, M.A.; Hasan, M.; Momen, M.A.; Payel, S.; Nur-A-Tomal, M.S. Water hyacinth biochar for trivalent chromium adsorption from tannery wastewater. Environ. Sustain. Indic. 2020, 5, 100022. [Google Scholar] [CrossRef]
- Mimouni, Z. Assessment of Tanneries Wastewater Impact on Heavy Metals Post-Eid Al Adha in the Dhaleshwari River, Bangladesh. Master’s Thesis, University of Oxford, Oxford, UK, 2020. [Google Scholar]
- Islam, A.; Romić, D.; Akber, A.; Romić, M. Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh. Environ. Geochem. Health 2018, 40, 59–85. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, P.G.; Bussi, G.; Peters, R.; Hossain, M.A.; Softley, L.; Shawal, S.; Jin, L.; Rampley, C.P.N.; Holdship, P.; Hope, R.; et al. Modelling heavy metals in the Buriganga River System, Dhaka, Bangladesh: Impacts of tannery pollution control. Sci. Total Environ. 2019, 697, 134090. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.M.; Malmgren-Hansen, A.; Badruzzaman, A.B.M. Assessment of pollution of the River Buriganga, Bangladesh, using a water quality model. Water Sci. Technol. 1999, 40, 129–136. [Google Scholar] [CrossRef]
- Ahmed, M.K.; Ahamed, S.; Rahman, S.; Haque, M.R.; Islam, M.M. Heavy Metals Concentration in Water, Sediments and their Bioaccumulations in Some Freshwater Fishes and Mussel in Dhaleshwari River, Banglades’. Terr. Aquat. Environ. Toxicol. 2009, 3, 33–41. [Google Scholar]
- Jolly, Y.N.; Choudhury, T.R.; Islam, A.; Suravi, N.I.; Sultana, M. Background Chemical Study of Relocated Hazaribagh Tannery Complex Environment, Savar. J. Bangladesh Acad. Sci. 2012, 36, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, M.A.; Siddique, M.A.B.; Munni, M.A.; Akbor, M.A.; Akter, S.; Mia, M.Y. Analysis of Physicochemical Parameters, Anions and Major Heavy Metals of the Dhaleshwari River Water, Tangail, Bangladesh. Am. J. Environ. Prot. 2018, 7, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Liu, Y. Turning food waste to energy and resources towards a great environmental and economic sustainability: An innovative integrated biological approach. Biotechnol. Adv. 2019, 37, 107414. [Google Scholar] [CrossRef]
Symbol | Definition | Units |
---|---|---|
User-supplied inputs as time series | ||
peff | Hydrologically effective rainfall | m3 s−1 km2 |
SMD | Soil moisture deficit | mm |
θA | Air temperature | oC |
mnh4,in | Input ammonium load (includes input from livestock, fertiliser and wet and dry deposition) | kg N ha−1 day−1 |
User-supplied inputs as constants | ||
β | Base flow index | Ø |
Tsz | Soil zone response time | days |
Tgz | Groundwater zone response time | days |
qsz,initial | Initial outflow from soil zone | m3 s−1 km2 |
SMDmax | The maximum soil moisture deficit in the soil | mm |
deff,gw | The ‘effective’ depth of the groundwater zone equal to the depth of the active groundwater multiplied by the effective porosity | m |
C1 | Ratio of soil retention volume to ‘easily available’ soil moisture | Ø |
C2 | Fraction of total groundwater effective pore space occupied by water | Ø |
C3 | Cyanide volatilisation rate in the soil zone | m day−1 |
C4 | Rate of decay of cyanide to ammonium in the soil zone | m day−1 |
C5 | Rate of decay of cyanide to ammonium in the groundwater zone | m day−1 |
C6 | Maximum temperature difference between summer and winter | oC |
C7 | Plant ammonium uptake rate | m day−1 |
C8 | Soil zone ammonium nitrification rate | m day−1 |
C9 | Groundwater zone ammonium nitrification rate | m day−1 |
C10 | Day number associated with the start of the growing season | Ø |
C11 | Rate of adsorption of metal to soil sediment | m day−1 |
C12 | Rate of adsorption of metal to aquifer matrix | m day−1 |
tQ10 | Factor change in rate with a 10-degree change in temperature | Ø |
tQ10bas | Base temperature for the process rate at which the response is 1 | oC |
Variables in the landscape equations | ||
qsz | Outflow from soil zone | m3 s−1 km2 |
qgw | Outflow from groundwater zone | m3 s−1 km2 |
VD | Soil zone drainage volume | m3 km2 |
VR | Soil zone retention volume | m3 km2 |
Vgw | Groundwater zone volume | m3 km2 |
SSMD | Soil moisture factor | Ø |
SPGI | Plant growth index | Ø |
mcn,sz | Mass of cyanide in the soil zone | kg km−2 |
mcn,gz | Mass of cyanide in the groundwater zone | kg km−2 |
mnh4,sz | Mass of ammonium in the soil zone | kg N km−2 |
mnh4,gz | Mass of ammonium in the groundwater zone | kg N km−2 |
mmetal,sz | Mass of metal in the soil zone | kg km−2 |
mmetal,gz | Mass of metal in the groundwater zone | kg km−2 |
Symbol | Definition | Units |
---|---|---|
User-supplied inputs as constants | ||
Treach | Reach residence time | days |
L | Reach length | m |
a | Discharge-velocity parameter | m−2 |
b | Discharge-velocity parameter | Ø |
C13 | Cyanide volatilisation rate | m day−1 |
C14 | Rate of decay of cyanide to ammonium in the stream | m day−1 |
C15 | Reach ammonium nitrification rate | m day−1 |
C16 | Rate of metal sedimentation in the stream | m day−1 |
Variables in the instream equations | ||
qreach,out | Water flow from the reach | m−3 s−1 |
qreach,in | Water flow to the reach from upstream, point source effluent, diffuse inputs from soil and groundwater zones and loss via abstraction | m−3 s−1 |
mcn,reach | Mass of cyanide in the reach | kg |
mcn,reach | Mass of cyanide input to the reach from upstream, point source effluent, and diffuse inputs from soil and groundwater zones | kg |
mcn,abs | Mass of cyanide abstracted from the reach | kg |
mnh4,reach | Mass of ammonium in the reach | kg |
mnh4,reach | Mass of ammonium input to the reach from upstream, point source effluent, and diffuse inputs from soil and groundwater zones | kg |
mnh4,abs | Mass of ammonium abstracted from the reach | kg |
mmetal,reach | Mass of metal in the reach | kg |
mmetal,reach | Mass of metal input to the reach from upstream, point source effluent, and diffuse inputs from soil and groundwater zones | kg |
mmetal,abs | Mass of metal abstracted from the reach | kg |
ccn,reach | Concentration of cyanide in the reach | mg L−1 |
cnh4,reach | Concentration of ammonium in the reach | mg L−1 |
Cmetal,reach | Concentration of metal in the reach | mg L−1 |
Vreach | Reach volume | m3 |
Heavy Metal | Effect |
---|---|
Arsenic (As) | Nausea, diarrhoea, hyperpigmentation, hypopigmentation, skin cancer, bladder cancer, lung cancer, peripheral vascular disease, death |
Cadmium (Cd) | Pneumonitis, lung cancer, gastrointestinal tract disturbances, liver and kidney dysfunction |
Chromium (Cr) | Dermatitis, acute renal failure, gastrointestinal haemorrhage, lung cancer, asthma, nervous system damage |
Copper (Cu) | Gastrointestinal haemorrhage, liver and kidney damage, mental disorders, anaemia, rheumatoid arthritis, nausea, hypertension, death |
Mercury (Hg) | Elemental fever, Vomiting, Diarrhea, Acute lung and kidney damage, Central nervous system damage, Nutritional disturbances, Haemorrhagic gastritis |
Nickel (Ni) | Dermatitis, heart and liver damage, respiratory tract cancer |
Lead (Pb) | Impaired children development, memory loss, insomnia, joints weakness, vomiting, diarrhea, abdominal pain, anaemia, kidney damage, miscarriages, coma, cardiovascular diseases, hypertension, death |
Iron (Fe) | Anaemia, heart disease, cancer, diabetes |
Cobalt (Co) | Sterility, hair loss, respiratory irritation, vomiting, diarrhoea, coma, death |
Manganese (Mn) | Sleepiness, weakness, leg cramps and paralysis, speech disturbances, emotional distress |
Zinc (Zn) | Gastrointestinal distress, diarrhoea |
Mean Concentration Upstream μg/L | Mean Concentration Downstream μg/L | Estimated Dry Season Mean Concentration Upstream mg/L | Estimated Dry Season Mean Concentration Downstream mg/L | Percentage Change % | |
---|---|---|---|---|---|
Al | 5.54 | 5.56 | 0.72 | 0.72 | 0.36 |
Sr | 76.50 | 79.37 | 9.95 | 10.32 | 3.75 |
Ba | 23.13 | 24.21 | 3.01 | 3.15 | 4.67 |
Cr | 0.18 | 0.64 | 0.02 | 0.08 | 254.0 |
Co | 0.07 | 0.07 | 0.01 | 0.01 | 6.72 |
Zn | 6.68 | 8.17 | 0.87 | 1.06 | 22.3 |
As | 2.81 | 3.01 | 0.37 | 0.39 | 7.27 |
Li | 2.32 | 2.45 | 0.30 | 0.32 | 5.50 |
Cd | 0.27 | 0.45 | 0.04 | 0.06 | 65.0 |
USA | EU | INDIA | |
---|---|---|---|
As | 0.34 | 0.1 | 0.2 |
Cd | 0.0018 | 0.005 | 0.01 |
Cr | 0.05 | ||
Cu | 1 | 1.5 | |
Fe | 1 | 50 | |
Pb | 0.082 | 0.05 | 0.1 |
Ni | 0.47 | ||
Zn | 0.12 | 5 | 15 |
Mn | 1 | ||
Se | 0.005 | 0.01 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whitehead, P.G.; Mimouni, Z.; Butterfield, D.; Bussi, G.; Hossain, M.A.; Peters, R.; Shawal, S.; Holdship, P.; Rampley, C.P.N.; Jin, L.; et al. A New Multibranch Model for Metals in River Systems: Impacts and Control of Tannery Wastes in Bangladesh. Sustainability 2021, 13, 3556. https://doi.org/10.3390/su13063556
Whitehead PG, Mimouni Z, Butterfield D, Bussi G, Hossain MA, Peters R, Shawal S, Holdship P, Rampley CPN, Jin L, et al. A New Multibranch Model for Metals in River Systems: Impacts and Control of Tannery Wastes in Bangladesh. Sustainability. 2021; 13(6):3556. https://doi.org/10.3390/su13063556
Chicago/Turabian StyleWhitehead, Paul Geoffrey, Zineb Mimouni, Daniel Butterfield, Gianbattista Bussi, Mohammed Abed Hossain, Rebecca Peters, Shammi Shawal, Phillip Holdship, Cordelia Petra Nadine Rampley, Li Jin, and et al. 2021. "A New Multibranch Model for Metals in River Systems: Impacts and Control of Tannery Wastes in Bangladesh" Sustainability 13, no. 6: 3556. https://doi.org/10.3390/su13063556