Wastewater Discharge through a Stream into a Mediterranean Ramsar Wetland: Evaluation and Proposal of a Nature-Based Treatment System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Sites
2.2. Abiotic Variables
2.3. Biotic Variables
2.4. Statistical Analysis
3. Results
3.1. Abiotic Variables
3.2. Biotic Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Millennium Ecosystem Assessment (Program) (Ed.) Ecosystems and Human Well-Being: Wetlands and Water Synthesis: A Report of the Millennium Ecosystem Assessment; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Russi, D.; ten Brink, P.; Farmer, A.; Badura, T.; Coates, D.; Förster, J.; Kumar, R.; Davidson, N. The Economics of Ecosystems and Biodiversity for Water and Wetlands; Institute for European Environmental Policy & Ramsar Secretariat: London, UK, 2013; p. 85. [Google Scholar]
- Grooten, M.; Almond, R. (Eds.) Living Planet Report. Aiming Higher; WWF: Gland, Switzerland, 2018. [Google Scholar]
- Perrino, E.V.; Musarella, C.M.; Magazzini, P. Management of grazing Italian river buffalo to preserve habitats defined by Directive 92/43/EEC in a protected wetland area on the Mediterranean coast: Palude Frattarolo, Apulia, Italy. Euro-Mediterr. J. Environ. Integr. 2021, 6, 32. [Google Scholar] [CrossRef]
- Brook, B.; Sodhi, N.; Bradshaw, C. Synergies among extinction drivers under global change. Trends Ecol. Evol. 2008, 23, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Brinson, M.M.; Malvárez, A.I. Temperate freshwater wetlands: Types, status, and threats. Environ. Conserv. 2002, 29, 115–133. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163. [Google Scholar] [CrossRef] [PubMed]
- García-Muñoz, E.; Gilbert, J.D.; Parra, G.; Guerrero, F. Wetlands classification for amphibian conservation in Mediterranean landscapes. Biodivers. Conserv. 2010, 19, 901–911. [Google Scholar] [CrossRef]
- Gilbert, J.D.; de Vicente, I.; Ortega, F.; García-Muñoz, E.; Jiménez-Melero, R.; Parra, G.; Guerrero, F. Linking watershed land uses and crustacean assemblages in Mediterranean wetlands. Hydrobiologia 2017, 799, 181–191. [Google Scholar] [CrossRef]
- Sánchez-Carrillo, S.; Angeler, D.; Álvarez Cobelas, M.; Sánchez-Andrés, R. Freshwater Wetland Eutrophication. In Eutrophication: Causes, Consequences and Control; Ansari, A.A., Singh Gill, S., Lanza, G.R., Rast, W., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 195–210. [Google Scholar] [CrossRef]
- Dymond, J. (Ed.) Ecosystem Services in New Zealand: Conditions and Trends; Manaaki Whenua Press: Lincoln, New Zealand, 2013. [Google Scholar]
- de-los-Ríos-Mérida, J.; Reul, A.; Muñoz, M.; Arijo, S.; Tapia-Paniagua, S.; Rendón-Martos, M.; Guerrero, F. How Efficient are Semi-Natural Ponds in Assimilating Wastewater Effluents? Application to Fuente de Piedra Ramsar, Mediterranean Salt Lake (South of Spain). Water 2017, 9, 600. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, C.; Gharipour, M. Pipe Dreams: Urban Wastewater Treatment for Biodiversity Protection. Urban Sci. 2018, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment. Available online: http://data.europa.eu/eli/dir/1991/271/oj/eng (accessed on 12 February 2021).
- Jodar-Abellan, A.; López-Ortiz, M.I.; Melgarejo-Moreno, J. Wastewater Treatment and Water Reuse in Spain. Current Situation and Perspectives. Water 2019, 11, 1551. [Google Scholar] [CrossRef] [Green Version]
- Adem Esmail, B.; Suleiman, L. Analyzing Evidence of Sustainable Urban Water Management Systems: A Review through the Lenses of Sociotechnical Transitions. Sustainability 2020, 12, 4481. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, M. Hydrogeology of ponds, pools, and playa-lakes of southern Spain. Wetlands 2007, 27, 819–830. [Google Scholar] [CrossRef]
- Official Gazette of the Junta de Andalucía. LAW 1/1984, of January 9, of the Declaration of the Laguna de Fuente de Piedra as an Integral Reserve (Boletín Oficial de la Junta de Andalucía. LEY 1/1984, de 9 de enero, de la Declaración de la Laguna de Fuente de Piedra como Reserva Integral). Available online: https://www.juntadeandalucia.es/boja/1984/4/boletin.4.pdf (accessed on 12 February 2021).
- Official Gazette of the Junta de Andalucía. Decree 70/2013, of July 2, Which Declares the Laguna de Fuente de Piedra Special Conservation Zone (ES0000033) and Approves the Natural Resources Management Plan of the Laguna de Fuente de Piedra Natural Reserve (Boletín Oficial de la Junta de Andalucía. Decreto 70/2013, de 2 de julio, por el que se declara la Zona Especial de Conservación Laguna de Fuente de Piedra (ES0000033) y se aprueba el Plan de Ordenación de los Recursos Naturales de la Reserva Natural Laguna de Fuente de Piedra). Available online: https://www.juntadeandalucia.es/boja/2013/144/BOJA13-144-00114-12146-01_00030952.pdf (accessed on 12 February 2021).
- Chapra, S.C. Surface Water-Quality Modeling, reissued ed.; Waveland Press: Long Grove, IL, USA, 2008. [Google Scholar]
- Murphy, J.; Riley, J. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Rice, E.W.; American Public Health Association (Eds.) Standard Methods for the Examination of Water and Wastewater, 22th ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Rodier, J. Análisis de las Aguas: Aguas Naturales, Aguas Residuales, Agua de mar, 6quíMica, Fisicoquímica, Bacteriología, Biología; Omega: Barcelona, Spain, 1989. [Google Scholar]
- Beutler, M.; Wiltshire, K.H.; Meyer, B.; Moldaenke, C.; Lüring, C.; Meyerhöfer, M.; Hansen, U.P.; Dau, H. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth. Res. 2002, 72, 39–53. [Google Scholar] [CrossRef]
- Reul, A.; Martín-Clemente, E.; Melero-Jiménez, I.J.; Bañares-España, E.; Flores-Moya, A.; García-Sánchez, M.J. What Triggers the Annual Cycle of Cyanobacterium Oscillatoria sp. in an Extreme Environmental Sulfide-Rich Spa? Water 2020, 12, 883. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Austin, B. Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish Shellfish Immunol. 2006, 21, 513–524. [Google Scholar] [CrossRef]
- Johnson, B.T. Microtox® Acute Toxicity Test. In Small-scale Freshwater Toxicity Investigations; Blaise, C., Férard, J.F., Eds.; Springer: Berlin/Heidelberg, Germnay, 2005; pp. 69–105. [Google Scholar] [CrossRef]
- Petala, M.; Tsiridis, V.; Kyriazis, S.; Samaras, P.; Kungolos, A.; Sakellaropoulos, G.P. Evaluation of toxic response of heavy metals and organic pollutants using microtox acute toxicity test. In Proceedings of the 9th International Conference on Environmental Science and Technology, Rhodes Isl, Greece, 1–3 September 2005. [Google Scholar]
- Soballe, D.M.; Kimmel, B.L. A Large-Scale Comparison of Factors Influencing Phytoplankton Abundance in Rivers, Lakes, and Impoundments. Ecology 1987, 68, 1943–1954. [Google Scholar] [CrossRef]
- Gerba, C.P. Indicator Microorganisms. In Environmental Microbiology, 2nd ed.; Academic Press: San Diego, CA, USA, 2009; pp. 485–499. [Google Scholar] [CrossRef]
- Chrost, R.J.; Adamczewski, T.; Kalinowska, K.; Skowronska, A. Inorganic phosphorus and nitrogen modify composition and diversity of microbial communities in water of mesotrophic lake. Pol. J. Microbiol. 2009, 58, 77–90. [Google Scholar]
- Royal Decree 1341/2007, of October 11, on the Management of the Quality of Bathing Water (Real Decreto 1341/2007, de 11 de octubre, sobre la gestión de la calidad de las aguas de baño). Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2007-18581 (accessed on 12 February 2021).
- Soler-Figueroa, B.M.; Otero, E. The Influence of Rain Regimes and Nutrient Loading on the Abundance of Two Dinoflagellate Species in a Tropical Bioluminescent Bay, Bahía Fosforescente, La Parguera, Puerto Rico. Estuaries Coasts 2015, 38, 84–92. [Google Scholar] [CrossRef]
- de Vicente, I.; Serrano, L.; Amores, V.; Clavero, V.; Cruz-Pizarro, L. Sediment phosphate fractionation and interstitial water phosphate concentration in two coastal lagoons (Albuferas de Adra, SE Spain). Hydrobiologia 2003, 492, 95–105. [Google Scholar] [CrossRef]
- Conde-Álvarez, R.M.; Bañares-España, E.; Nieto-Caldera, J.M.; Flores-Moya, A.; Figueroa, F.L. Submerged macrophyte biomass distribution in the shallow saline lake Fuente de Piedra (Spain) as function of environmental variables. Anales Jardín Botánico Madrid 2012, 69, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Poquet, J.M.; Mezquita, F.; Rueda, J.; Miracle, M.R. Loss of Ostracoda biodiversity in Western Mediterranean wetlands. Aquat. Conserv. Mar. Freshw. Ecosyst. 2008, 18, 280–296. [Google Scholar] [CrossRef]
- Richardson, C.; Vaithiyanathan, P. Biogeochemical Dynamics II: Cycling and Storage of Phosphorus in Wetlands. In The Wetlands Handbook; Maltby, E., Barker, T., Eds.; Wiley-Blackwell: Oxford, UK, 2009; pp. 228–249. [Google Scholar] [CrossRef]
- Andreo-Martínez, P.; García-Martínez, N.; Almela, L. Domestic Wastewater Depuration Using a Horizontal Subsurface Flow Constructed Wetland and Theoretical Surface Optimization: A Case Study under Dry Mediterranean Climate. Water 2016, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.A.; Menninger, H.L.; Bernhardt, E. River restoration, habitat heterogeneity and biodiversity: A failure of theory or practice? Freshw. Biol. 2010, 55, 205–222. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology: The metacommunity concept. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- Leibold, M.A.; Norberg, J. Biodiversity in metacommunities: Plankton as complex adaptive systems? Limnol. Oceanogr. 2004, 49, 1278–1289. [Google Scholar] [CrossRef] [Green Version]
- de Vicente, I.; Merino-Martos, A.; Guerrero, F.; Amores, V.; de Vicente, J. Chemical interferences when using high gradient magnetic separation for phosphate removal: Consequences for lake restoration. J. Hazard. Mater. 2011, 192, 995–1001. [Google Scholar] [CrossRef]
- Funes, A.; Martínez, F.J.; Álvarez Manzaneda, I.; Conde-Porcuna, J.M.; de Vicente, J.; Guerrero, F.; de Vicente, I. Determining major factors controlling phosphorus removal by promising adsorbents used for lake restoration: A linear mixed model approach. Water Res. 2018, 141, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Álvarez Manzaneda, I.; Guerrero, F.; Cruz-Pizarro, L.; Rendón, M.; de Vicente, I. Magnetic particles as new adsorbents for the reduction of phosphate inputs from a wastewater treatment plant to a Mediterranean Ramsar wetland (Southern Spain). Chemosphere 2021, 270, 128640. [Google Scholar] [CrossRef]
- Milke, J.; Gałczyńska, M.; Wróbel, J. The Importance of Biological and Ecological Properties of Phragmites Australis (Cav.) Trin. Ex Steud., in Phytoremendiation of Aquatic Ecosystems—The Review. Water 2020, 12, 1770. [Google Scholar] [CrossRef]
- Ali, Z.; Mohammad, A.; Riaz, Y.; Quraishi, U.M.; Malik, R.N. Treatment efficiency of a hybrid constructed wetland system for municipal wastewater and its suitability for crop irrigation. Int. J. Phytoremediat. 2018, 20, 1152–1161. [Google Scholar] [CrossRef]
- Amare, E.; Kebede, F.; Mulat, W. Wastewater treatment by Lemna minor and Azolla filiculoides in tropical semi-arid regions of Ethiopia. Ecol. Eng. 2018, 120, 464–473. [Google Scholar] [CrossRef]
BOD5 | COD | SS | |||||||
---|---|---|---|---|---|---|---|---|---|
Date | Input | Output | EFF | Input | Output | EFF | Input | Output | EFF |
Mean 2018 | 87.4 | 12.6 | 71% | 252.3 | 56.2 | 69% | 109.9 | 59.9 | 38% |
11/06/2018 | 90 | 6.4 | 93% | 184 | 60 | 67% | 92 | 78 | 15% |
Abiotic Variables | Point 1 | Point 2 | Point 3 | Point 4 |
---|---|---|---|---|
Cond. (µS·cm) | 2549 (2545; 2569) | 2585 (2579; 2585) | 2657 (2657; 2656) | 2668 (2686; 2688) |
pH | 8.12 ± 0.03 | 7.72 ± 0.02 | 7.63 ± 0.03 | 7.36 ± 0.01 |
Nutrient Concentration (mg·L) | Point 1 | Point 2 |
Dissolved Inorganic Phosphorus | 0.70 (0.68; 0.70) | 0.75 (0.68; 0.76) |
Total Phosphorus | 1.45 (1.42; 1.66) | 1.44 (1.41; 1.47) |
Nitrates | 0.56 (0.56; 0.57) | 0.47 (0.45; 0.50) |
Nitrites | 0.51 (0.48; 0.59) | 0.55 (0.54; 0.55) |
Ammonium | 10.92 (9.97; 13.6) | 9.27 (9.18; 9.92) |
Total Nitrogen | 15.48 ± 1.56 | 13.92 ± 2.63 |
Nutrient Concentration (mg·L) | Point 3 | Point 4 |
Dissolved Inorganic Phosphorus | 0.86 (0.82; 0.87) | 1.04 (0.97; 1.04) |
Total Phosphorus | 1.48 (1.47; 1.54) | 1.34 (1.30; 1.36) |
Nitrates | 1.14 (1.12; 1.17) | 0.10 (0.09; 0.13) |
Nitrites | 0.16 (0.16; 0.16) | 0.02 (0.02; 0.02) |
Ammonium | 8.55 (8.50; 8.64) | 7.68 (6.61; 8.22) |
Total Nitrogen | 10.53 ± 2.86 | 10.16 ± 2.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de-los-Ríos-Mérida, J.; Guerrero, F.; Arijo, S.; Muñoz, M.; Álvarez-Manzaneda, I.; García-Márquez, J.; Bautista, B.; Rendón-Martos, M.; Reul, A. Wastewater Discharge through a Stream into a Mediterranean Ramsar Wetland: Evaluation and Proposal of a Nature-Based Treatment System. Sustainability 2021, 13, 3540. https://doi.org/10.3390/su13063540
de-los-Ríos-Mérida J, Guerrero F, Arijo S, Muñoz M, Álvarez-Manzaneda I, García-Márquez J, Bautista B, Rendón-Martos M, Reul A. Wastewater Discharge through a Stream into a Mediterranean Ramsar Wetland: Evaluation and Proposal of a Nature-Based Treatment System. Sustainability. 2021; 13(6):3540. https://doi.org/10.3390/su13063540
Chicago/Turabian Stylede-los-Ríos-Mérida, Jesús, Francisco Guerrero, Salvador Arijo, María Muñoz, Inmaculada Álvarez-Manzaneda, Jorge García-Márquez, Begoña Bautista, Manuel Rendón-Martos, and Andreas Reul. 2021. "Wastewater Discharge through a Stream into a Mediterranean Ramsar Wetland: Evaluation and Proposal of a Nature-Based Treatment System" Sustainability 13, no. 6: 3540. https://doi.org/10.3390/su13063540
APA Stylede-los-Ríos-Mérida, J., Guerrero, F., Arijo, S., Muñoz, M., Álvarez-Manzaneda, I., García-Márquez, J., Bautista, B., Rendón-Martos, M., & Reul, A. (2021). Wastewater Discharge through a Stream into a Mediterranean Ramsar Wetland: Evaluation and Proposal of a Nature-Based Treatment System. Sustainability, 13(6), 3540. https://doi.org/10.3390/su13063540