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Abstract: A seasonal cycle of sulfide, nitrate, phosphate, ammonium, chlorophyll a (Chl a) and
Oscillatoria sp. abundance (<100µm), as well as the relative contribution of taxonomic phytoplanktonic
groups (cyanobacteria, green algae, cryptomonads, diatoms and dinoflagellates) to total Chl a
were measured by fluorometric measurements at La Hedionda sulfide-rich spa (southern Spain).
Fluorometry determined that cyanobacteria Chl a concentration correlated positively with the
abundance of Oscillatoria sp. Aggregates at 45–100 µm equivalent spherical diameter (ESD) and was
used as an indicator of Oscillatoria sp. Abundance, including for aggregates <45 and >100µm (ESD).
In addition, air temperature, radiation and precipitation were downloaded from meteorological
databases. In agreement with the meteorological annual cycle observed in air temperature, radiation
and precipitation, sulfide concentration at La Hedionda Spa shows an annual cycle with concentrations
around 40 µM in winter and up to 200 µM in the dry summer period. Phytoplankton composition was
dominated by cyanobacteria (mainly Oscillatoria sp.), but other groups were also represented (green
algae, cryptomonads, diatoms and dinoflagellates), although they remained constant throughout
the year (median Chl a < 0.2 µg L−1). Cyanobacteria, in contrast, showed an annual cycle with a
significantly higher median in summer (Chl a = 1.6 µg L−1) than in winter (Chl a = 0.4 µg L−1). No
linear relationship between nutrients and cyanobacteria concentration was observed, but an optimum
curve of cyanobacteria concentration to sulfide concentration was fitted through a general additive
model (GAM). The four-fold increase of cyanobacteria concentration under exposition of an elevated
sulfide concentration can be due to higher growth rates at elevated sulfide concentrations reported for
an Oscillatoria sp. strain isolated during the same annual cycle at La Hedionda and we suggest that
the selective agent, sulfide, positively triggers Oscillatoria sp. proliferation in summer. According to
our findings, the Oscillatoria sp. population of La Hedionda not only is sulfide-resistant, but requires
sulfide in its optimal niche.
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1. Introduction

La Hedionda is a sulfide-rich (200 µM) thermal (20 ◦C) spring outflow in southern Spain [1,2]
(Figure 1). While the sulfide-rich water of La Hedionda has been appreciated in thermal baths since
almost 61 before Christ [3,4], sulfide is also a biocide because it blocks photosystem II (PSII) and
respiratory electron transport [5–9]. However, cyanobacteria strains inhabiting sulfureous habitats
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can usually overcome the toxic effect of sulfide, maintaining oxygenic photosynthesis through the
sulfide-resistance of PSII [6,10–12] and/or enabling PSII-independent anoxygenic photosynthesis with
sulfide as an electron donor to PSI [11,13–16]. For this reason, we initially addressed the study of the
adaptation processes of cyanobacteria to La Hedionda water [2] and, in this study, we hypothesized
that the levels of sulfide in this habitat could be the main trigger of cyanobacteria populations.
However, despite the fact that sulfide-rich spas are natural laboratories for studying eco-evolutionary
processes involved in the adaptation of photosynthetic organisms to sulfide [2,4,17,18], little information
exists about the seasonal variability of the sulfide concentration and low diversity populations of
photosynthetic organisms inhabiting these extreme ecosystems [4]. It must be highlighted that the
usual phytoplankton succession has been widely studied in epicontinental waters where annual
cycles depend on physical control, nutrients and grazing [19]. Curiously, few studies of extreme
environments cover an annual cycle, and little is known about seasonality and the main factors that
trigger cyanobacterial populations in extreme environments. This is surprising, as the ancient origin of
cyanobacteria [20] has determined the present-day distribution in more extreme environments, and
precisely this diversity of adaptations including tolerance to high temperatures, salinity, UV radiation
and desiccation may be important for future global change scenarios [21]. In order to figure out the
seasonal pattern of phytoplankton succession and the main driving factors, we here show the first
annual cycle of abiotic conditions with associated phytoplankton concentration and composition in the
sulfide-rich environment of La Hedionda spa.
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basin (white dot, Figure 1c). When available, additional weekly samplings were included to increase 
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Figure 1. (a) Iberian Peninsula, (b) Municipality of Casares, (c) Location of Casares and La Hedionda
spa, (d) La Hedionda spa with a roofed part on the left and the outflow in the open air on the right with
the sampling point (white dot).

2. Materials and Methods

The sulfide-rich, thermal (20 ◦C) spring flows into a 5 m × 5 m × 1 m roofed pond and is then
released into subsequent basins. A ten-year flow measurement reveals a minimum and maximum
flow of 40–60 L s−1 and 110–135 L s−1 related to precipitation patterns [1]. In order to cover an annual
cycle, monthly sampling was carried out between March 2016 and June 2017 at the inflow in the first
basin (white dot, Figure 1c). When available, additional weekly samplings were included to increase
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sampling frequency as much as possible. At each sampling date, pH and total sulfide concentrations
were measured in situ with a pH meter (Hanna HI 9125) and a multiparameter portable colorimeter
(DR900, Hatch Co., Loveland, CO, USA), respectively. Sulfide determinations were performed in
triplicates, with a Coefficient of Variation (CV) < 3% at all sampling times [22,23]. Mean annual
pH value (7.23 ± 0.06) was reported previously [2], and shown to keep a constant value throughout
the year.

Regarding nutrient determination, 500 mL water samples were taken in polyethylene bottles rinsed
previously with 10% HCl, kept in the dark and cold until the sample was frozen at −20 ◦C. Phosphate
and nitrate concentrations were analyzed through ion chromatography analysis (930 Compact IC Flex,
Methrom) using a Metrosep C3 250/4.0 column for the determination of cations and a Metrosep A Supp
7-250/4.0 column for the determination of anions. Ammonium concentration was analyzed using the
colorimetric Berthelot method [24].

Likewise, for phytoplankton analysis, 5 L samples were taken between 09:00 and 11:00 UTC,
in polyethylene bottles and maintained in the dark and cold during the 1 h transport to the
laboratory. Immediately after arriving at the laboratory of the University of Malaga, total chlorophyll
a (Chl a) concentration and taxonomic groups of phytoplankton were estimated with a submersible
fluorometer with a five-point excitation spectra (Biological-Biophysical-Engineering (BBE) -Moldaenke
FluoroProbe [25]). The submersible fluorometer discriminated among four phytoplanktonic groups
(i.e. diatoms and dinoflagellates together, cyanobacteria, green algae and cryptophytes) based on the
relative fluorescence intensity of Chl a at 680 nm, following sequential light excitation by 5 light-emitting
diodes (LEDs) emitting at 450 nm, 525 nm, 570 nm, 590 nm and 610 nm [25,26]. For abundance and size
estimation of Oscillatoria sp., identified according to Kómarek and Anagnostidis [27] by using an optical
microscope, 2 L water samples were passed through a 45 µm mesh and recuperated in 20 mL. Then,
the samples were analyzed with a Flow Imaging Microscopy (FlowCAM, Benchtop VS4C/488/DSP;
Fluid Imaging, Scarborough, Maine, USA) using a 100 µm flow cell and 100-fold magnification (10×
objective). The analysis was carried out in autoimage mode in order to take individual pictures of each
particle in the vision field. Moreover, phytoplankton abundance and size estimations in the original
data were manually reprocessed in order to distinguish between detritus and phytoplanktonic cells
(aggregates) [28].

Cyanobacteria concentration significantly correlated with Oscillatoria sp (45–100 µm equivalent
spherical diameter (ESD)) abundance (r = 0.665; n = 19; p < 0.01) and biovolume (r = 0.456; n = 19;
p < 0.05). Therefore, data from cyanobacteria concentration was used in this work as a proxy for
Oscillatoria sp. abundance and biovolume, as it also includes aggregates <45 µm and >100 µm ESD of
this filamentous species.

Meteorological data were acquired from the meteorological sampling station in Estepona, located
10.5 km from the spa [29].

Statistical Analysis.
Environmental–biological relationships were analyzed through correlation and regression

(SigmaStatt) if linear relationships were observed. A general additive model (GAM) was calculated for
fitting non-linear relationships using the ‘mgcv 1.8–17’ package (R version 3.4.1). The best model was
chosen according to the Akaike Information Criterion (AIC), where a lower AIC indicates a higher
goodness-of-fit and an inferior tendency to over-fit.

3. Results

3.1. Abiotic Factors

La Hedionda spa is located in an area characterized by a Mediterranean climate with dry summers
and mild, wet winters [30,31]. The mean air temperature and radiation (Figure 2a) shows an annual
cycle where radiation anticipates temperature. The minimum and maximum overall mean solar
radiation was recorded at the solstices of December (5 MJ m−2) and June (25 MJ m−2), respectively.
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Thus, the minimum and maximum temperatures were found 1–2 months later (approximately 10 ◦C
and 25 ◦C in midwinter and midsummer, respectively). It must be highlighted that temperatures
above 20 ◦C were observed from June to November. During the summer months (June–September),
precipitation was absent, then some small precipitation was observed in autumn (October–November)
before considerable precipitation occurred in winter (December) (Figure 2b). Sulfide concentrations
>100 µM were observed during the warm (>20 ◦C) and dry season, which dropped down after the
strong precipitation in December (Figure 2a,b). Low sulfide concentrations (<12 µM) maintained from
January to May, and increased again in the last sampling to 67 µM, approaching 109 µM and 97 µM
in May and June of the previous year (Figure 2b). Thus, the annual cycle shows two phases: one
with high sulfide concentration (>100 µM) between June and December, and another with low sulfide
concentration between January and June. Cyanobacteria concentration followed the seasonal sulfide
pattern (Figure 2b). Nitrate and ammonium ranged from 8–42 µM and 0–20 µM, respectively; the
phosphate level was 1–2 orders of magnitude lower than the level recorded for inorganic nitrogen,
which ranged from 9–0.6 µM. Excluding the two dates with undetectable phosphate concentrations
(June and December 2016), the lowest phosphate concentration was 0.07 µM. The N/P ((NO3

− +

NH4
+)/PO4

−3) ratio was always >16, suggesting a relative limitation of phytoplankton growth of
phosphate with respect to nitrate.

3.2. Phytoplankton Abundance and Diversity

The highest Chl a concentration (11 µg L−1) was observed in late June 2016 (Figure 3a). Chl a
concentration was significantly higher (median = 1.8 µg L−1) during the dry season, with a higher
(>100 µM) sulfide concentration than in the period of low (<100 µM) sulfide concentration (median =

0.5 µg L−1) (p < 0.004, Mann–Whitney Rank Sum Test). Cyanobacteria (Oscillatoria sp.) dominated Chl
a concentration throughout the year (Figure 3b). The phytoplanktonic group concentration, the relative
contribution of cyanobacteria (Oscillatoria sp.) to total Chl a concentration, and the sulfide concentration
in summer and in winter are compared in Table 1. Only Oscillatoria sp. showed significant differences
between summer and winter, with higher concentrations in summer, coinciding with significantly
higher sulfide concentrations.

Table 1. Differences among cyanobacteria, diatoms, dinoflagellates and green algae concentration
(Chl a µg L−1) during summer and winter (Mann–Whitney Rank Sum Test, median). The relative
contribution of Oscillatoria sp. to total Chl a concentration, and the comparison between winter and
summer sulfide concentration (t-student, mean ± standard deviation), is shown as well. Numbers in
brackets indicate numbers of replicates, * p < 0.005, ** p < 0.001, ns indicates non-significance.

Summer Winter Differences

Cyanobacteria concentration (Oscillatoria sp., Chl a µg L−1) 1.6 (13) 0.4 (9) **

Relative contribution of cyanobacteria (Oscillatoria sp.) to
total Chl a concentration 85% (13) 67% (9) *

Sulfide concentration (µM) 147 ± 39 (13) 13 ± 27 (9) **

Diatoms and dinoflagellates concentration(Chl a µg L−1) 0.02 (13) 0.02 (9) ns

Green algae concentration(Chl a µg L−1) 0.2 (13) 0.1 (9) ns

Cryptomonads concentration(Chl a µg L−1) 0.05 (13) 0.03 (9) ns
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Figure 2. (a) Ten-day running mean of solar radiation and air temperature. (b) Rainfall at
the meteorological sampling station in Estepona; sulfide concentration and cyanobacteria Chl a
concentration in La Hedionda water measured at each sampling site. (c) Nitrate, ammonia, phosphate
concentrations and N/P ((NO3

− + NH4
+)/PO4

−3) ratio measured in La Hedionda water at each sampling.
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Figure 3. (a) Annual cycle of total chlorophyll a (Chl a) concentration and (b) relative contribution of 
the main phytoplanktonic groups (cyanobacteria, green algae, diatoms and dinoflagellates, and 
cryptomonads), derived from fluoroprobe measurements (wide bars correspond to monthly 
sampling and narrow bars to weekly sampling). 

3.3. What Triggers Cyanobacteria (Oscillatoria sp.) Concentration? 

By plotting Oscillatoria sp. abundance and biovolume of cells/aggregates <100 m against 
sulfide concentration, low abundance/biovolume values were observed at lower and higher sulfide 
concentrations, and the highest abundance/biovolume values were observed between 100 and 200 
M (Figure 4). As the N/P ratio is higher than 16, in the case of nutrient limitation of algal growth, 
phosphorus would be the limiting macronutrient. However, sulfide is a selective agent that 
negatively affects oxygenic photosynthesis and phytoplankton growth. Therefore, both variables 
could trigger Oscillatoria sp. growth. 

Figure 3. (a) Annual cycle of total chlorophyll a (Chl a) concentration and (b) relative contribution
of the main phytoplanktonic groups (cyanobacteria, green algae, diatoms and dinoflagellates, and
cryptomonads), derived from fluoroprobe measurements (wide bars correspond to monthly sampling
and narrow bars to weekly sampling).

Thus, changes in total Chl a concentration and the relative contribution of the four groups depend
only on the temporal variability of cyanobacteria (Oscillatoria sp.), while the other groups remain
similar throughout the year (Figure 3).

3.3. What Triggers Cyanobacteria (Oscillatoria sp.) Concentration?

By plotting Oscillatoria sp. abundance and biovolume of cells/aggregates <100 µm against
sulfide concentration, low abundance/biovolume values were observed at lower and higher sulfide
concentrations, and the highest abundance/biovolume values were observed between 100 and 200
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µM (Figure 4). As the N/P ratio is higher than 16, in the case of nutrient limitation of algal growth,
phosphorus would be the limiting macronutrient. However, sulfide is a selective agent that negatively
affects oxygenic photosynthesis and phytoplankton growth. Therefore, both variables could trigger
Oscillatoria sp. growth.
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Presenting the cyanobacteria concentration as proxy for the whole size range of Oscillatoria sp.
against sulfide concentration, and indicating the phosphate concentration with a color scale, the optimal
sulfide concentration for Oscillatoria sp. growth is detected in the range of 100–200 µM (Figure 5). High
phosphate concentrations beyond a sulfide concentration of 200 µM did not lead to elevated Oscillatoria
sp. concentration. As the relation between cyanobacteria and sulfide and phosphate concentration
was not linear, a general additive model (GAM) analysis was carried out in order to predict Oscillatoria
sp. concentration at La Hedionda spa.

GAM Analysis

The GAM analysis [32] was fitted using the ‘mgcv 1.8–17’ package in R version 3.4.1. Three GAMs
were analyzed by considering sulfide, phosphate or both compounds as explanatory variables. The
percentage of explained variation was 97.3%, 58.8% and 99.3%, respectively, with AIC values of −10.4,
19.4 and −18.7. Consequently, the GAM which considers both sulfide and phosphate was chosen
(Appendix A).

Sulfide was the most important predictor, and explains almost 97.3% of the variability. The
predicted curve of the model shows Chl a concentration corresponding to cyanobacteria (Oscillatoria
sp.) ≥2 µg L−1 at sulfide concentrations ranging between 100–160 µM, and Chl a concentrations >1 µg
L−1 at sulfide concentrations between 70–200 µM (Figure 6).
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4. Discussion

Sulfide, Chl a and cyanobacteria (Oscillatoria sp.) concentrations follow a clear annual cycle at
La Hedionda spa, with a hot, dry and sulfide-rich summer period (June–November), and a colder,
sulfide-poor winter period (December–May). Low sulfide concentration is related to dilution by
recharging of the aquifer through precipitation in winter and spring. It is worth mentioning that the
highest Chl a and cyanobacteria (Oscillatoria sp.) concentrations were found during the sulfide-rich
period. The remaining variables do not provide relevant information explaining the annual cycle. The
concentration of the remaining phytoplanktonic groups was low and constant during the year. Low
Chl a concentration during the period of low sulfide concentration could be related to higher cell loss
of phytoplankton by water runoff. However, algal loss by runoff would affect all planktonic groups
in a similar way, but the other taxa remain at similar concentrations during the whole year and no
significant differences have been observed between summer and winter. Therefore, factors other than
runoff could trigger the cyanobacteria (Oscillatoria sp.) concentration cycle. From an ecophysiological
point of view, an Oscillatoria sp. strain isolated from La Hedionda spa in the framework of the same
research project showed maximum growth rates when exposed to 100–350 µM daily sulfide additions
in the growth medium [2]. Field data and the adjusted GAM model show an optimum curve with
the highest cyanobacteria concentration (2.97 µg L−1) at a sulfide concentration of 125 µM. This is
close to the mean sulfide concentration (147 ± 36 µM) of La Hedionda water in summer, showing that
the degree of Oscillatoria sp. sulfide tolerance is correlated with the environmental sulfide level, as
observed previously in other cyanobacteria inhabiting sulfidic habitats [6]. In fact, the prevalence of
sulfide in the source water is one of the most noticeable features at La Hedionda. It seems logical that
this component is related to the cyanobacterial richness and abundance, taking into account that a
common trait of these kinds of springs is that sulfide is the factor that modulates the cyanobacteria
composition of the phytoplankton [10].

The fact that a strain of the Oscillatoria genus shows a higher abundance under sulfide conditions
due to the resistance of PSII is already described in the literature [6,10,11]. This compound blocks the
electron flow from the donor side of PSII, inhibiting oxygenic photosynthesis [6,33], an effect observed
in many cyanobacteria groups regardless of the strain’s evolutionary history or its degree of sulfide
tolerance [6]. Thus, Oscillatoria sp. found in La Hedionda seem to exhibit sulfide-resistant oxygenic
photosynthesis, which is not common in cyanobacteria since the majority of groups are sensitive to
H2S concentrations in the range 10–50 µM [11]. Indeed, even some cyanobacteria living in low sulfide
springs are sulfide-sensitive [11], so this strain found in La Hedionda that showed sulfide-resistance is
a remarkable fact.

However, Oscillatoria sp. found in La Hedionda not only seem to exhibit sulfide-resistant
photosynthesis, but sulfide seems to improve its fitness as its relative abundance in its natural medium
is enhanced by sulfide (Figure 6), along with its growing rate [2] and the maximum quantum yield of
PSII (data not shown) is higher in the presence than in the absence of sulfide. This result is similar
to that found in a strain of Oscillatoria sp. isolated from Wilbur Hot Springs (California, USA), that
showed sulfide-resistant oxygenic photosynthesis, which increased more than two-fold in presence of
approximately 100 µM H2S [11]. Moreover, an Oscillatoria terebriformis strain from a sulfide spring in
Hunter’s Hot Springs (Oregon, USA) was also described as a sulfide-resistant strain, but was incapable
of performing anoxygenic photosynthesis [10].

These strains [10,11] could not perform anoxygenic photosynthesis using sulfide as an electron
donor to PSI, which has also been seen in the preliminary results with the strain presented in this work
(data not shown). Consequently, sulfide-resistant oxygenic photosynthesis instead of sulfide-dependent
anoxygenic photosynthesis seems to be a common strategy followed by Oscillatoria sp. to survive
under sulfide conditions in springs with moderate sulfide levels and oxygenated waters on the mat
layer. It is remarkable that in the present study, not the classical factors (physical factors, nutrients,
grazing [19]) but precisely the selective variable of the extreme environment positively affects adapted
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organisms. Although thermal spas are less variable than other epicontinental aquatic ecosystems, we
suggest future studies covering several annual cycles to confirm our findings.

5. Conclusions

• Total sulfide concentration in La Hedionda Spa shows an annual cycle, with concentrations around
40 µM in winter and up to 200 µM in summer.

• Regardless of cyanobacteria, other phytoplankton groups show consistently similar and low
concentrations throughout the year.

• The fact that cyanobacteria (Oscillatoria sp.) reaches the highest concentration at high sulfide
concentrations suggests the presence of a high sulfide-adapted Oscillatoria sp. population.

• In contrast to generally accepted succession models in epicontinental waters, neither nutrient nor
light, but the selective agent (sulfide) positively triggers Oscillatoria sp. proliferation in summer.

• While Oscillatoria sp. are distributed worldwide, the present strain might be the result of an almost
2000 year adaptation with the annual sulfide cycle of La Hedionda Spa.
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Appendix A

Detailed information of the GAM analysis.

Table A1. Formulae, coefficient and significant level of the GAM analysis. The used smoothing method
was Restricted Maximum Likelihood (REML), k refers to knots and indicates the maximum number of
turning points, edf refers to estimated degrees of freedom and indicates the turning points found in the
smoothing process, Ref.df refers to reference degrees of freedom, F is the F value, the Pr(>|t|) is the t
value for the t test. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Family: Tweedie (p = 1.116)

Link function: log
Formula:

Cyanobacteria ~ s(Sulfide, k = 6) + s(Phosphate, k = 6)
Parametric coefficients:

Estimate Standard Error t value Pr(>|t|)
(Intercept) −0.42269 0.03862 −10.94 0.00035 ***

Approximate significance of smooth terms:
edf Ref.df F p-value

s(Sulfide) 4.056 4.305 38.795 0.000548 ***
s(Phosphate) 2.851 3.023 5.898 0.060124.

R2 (adjusted) = 0.993 Deviance explained = 99.3%
−REML = 2.5089 Scale est. = 0.010243 n = 12
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