A Survey of Technologies and Recent Developments for Sustainable Smart Cycling
Abstract
:1. Introduction
2. On the Use of Bikes in Cities
Work | Year | Country | Subject | Presented Discussions |
---|---|---|---|---|
MacArthur et al. [20] | 2014 | USA | E-bike | This work surveyed the purchase, cycling decisions and preferences concerning the use of e-bikes |
Popa et al. [21] | 2017 | Italy | Safety and health | The use of helmets among cyclists is investigated. Authors observed that male cyclists are more likely to wear helmets, as well as those who ride long distances or had accidents before |
Vith and Mössner [10] | 2017 | USA | Bike paths | It associates different requirements concerning city officials, cycling associations and transportation planners when creating bike paths. Social and economical concerns are raised |
Caulfield et al. [22] | 2017 | Ireland | Bike sharing | The challenges and benefits of bike sharing in a small city are discussed, raising comparisons to larger cities |
Zhang and Mi [23] | 2018 | China | Bike sharing | This work investigates the benefits of bike sharing systems for the environment, accounting the emission of carbon dioxide and nitrogen oxide |
Pokorny et al. [24] | 2018 | Norway | Accidents | Road accidents involving bikes and trucks are investigated, with important discussions about the accidents areas |
Bernardi et al. [25] | 2018 | The Netherlands | Bike paths | The use of smartphones by cyclists is analyzed, indicating the use of apps and preferences to assist routes planning |
Majumdar and Mitra [26] | 2018 | India | Bike paths | This work discusses the importance of adequate infrastructure as a way of encouraging the use of bikes for transportation |
Zheng et al. [27] | 2019 | China | Bike sharing | This work investigates how bike-sharing solutions reduce the environmental impacts caused by transportation, analyzing different cycling behaviors |
Luísa da Costa Lage and Rodrigues [28] | 2020 | Brazil | Bike delivery | The impacts of the COVID-19 Pandemic on delivery workers using bikes and motorcycles are discussed, considering different factors |
Hua et al. [29] | 2020 | China | Parking | The challenges of bikes parking without docking stations are discussed in this paper. Authors investigate the use of clustering algorithms as a way to tackle this problem |
Sun et al. [30] | 2020 | The Netherlands | E-bike | This work aims to identify the groups of people who are more likely to replace their cars for e-bikes based on socio-demographic analysis |
Ortiz-Prado et al. [31] | 2020 | Ecuador | Safety and health | The rate of infection by SARS-CoV-2 in cyclists and motorcyclists is investigated, when delivery services are being provided |
Castañon and Ribeiro [32] | 2021 | Portugal | Infrastructure | This work does a literature review towards the concept of Bikeability, discussing issues such as safety, comfort and efficiency of cycling infrastructure |
Plasencia-Lozano [33] | 2021 | Spain | Bike paths | The impacts of bike paths implantation is reviewed. Two surveys were applied in different moments as an attempt to evaluate such impacts in a city |
3. Bikes in the Age of Apps
3.1. Route Planning
3.2. Delivery Services
3.3. Bike Sharing
4. Bike as a Platform: The IoT Revolution
4.1. Sustainability and Environmental Monitoring
4.2. Promoting Health through Connected Bikes
4.3. Internet of Bikes
5. The Rise of E-Bikes
5.1. The E-Bike Market
5.2. Connecting E-Bikes
6. Open Challenges and Research Directions
6.1. The Foundations for Sustainable Mobility
6.2. Promising Technological Trends
6.3. Developing Smart Cycling Solutions
6.4. The Post-Pandemic World
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Ma, J.; Cheng, T.; van Genderen, J.L.; Shao, Z. Challenges and opportunities for the development of MEGACITIES. Int. J. Digit. Earth 2019, 12, 1382–1395. [Google Scholar] [CrossRef]
- Zhang, X.Q. The trends, promises and challenges of urbanisation in the world. Habitat Int. 2016, 54, 241–252. [Google Scholar] [CrossRef]
- Kolesnichenko, O.; Mazelis, L.; Sotnik, A.; Yakovleva, D.; Amelkin, S.; Grigorevsky, I.; Kolesnichenko, Y. Sociological modeling of smart city with the implementation of UN sustainable development goals. Sustain. Sci. 2020, 16, 581–599. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.P.; Chen, C.S.; Yu, H. Technology roadmap for building a smart city: An exploring study on methodology. Future Gener. Comput. Syst. 2019, 97, 727–742. [Google Scholar] [CrossRef]
- Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [Google Scholar] [CrossRef]
- Hyder, A.A.; Paichadze, N.; Toroyan, T.; Peden, M.M. Monitoring the decade of action for global road safety 2011–2020: An update. Glob. Public Health 2017, 12, 1492–1505. [Google Scholar] [CrossRef]
- Chen, S.; Kuhn, M.; Prettner, K.; Bloom, D.E. The global macroeconomic burden of road injuries: Estimates and projections for 166 countries. Lancet Planet. Health 2019, 3, e390–e398. [Google Scholar] [CrossRef]
- Šurdonja, S.; Giuffrè, T.; Deluka-Tibljaš, A. Smart mobility solutions—Necessary precondition for a well-functioning smart city. Transp. Res. Procedia 2020, 45, 604–611. [Google Scholar] [CrossRef]
- Bucchiarone, A.; Cicchetti, A. A Model-Driven Solution to Support Smart Mobility Planning. In Proceedings of the 21th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS’18, Amsterdam, The Netherlands, 15–21 July 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 123–132. [Google Scholar] [CrossRef]
- Vith, T.A.; Mössner, S. Contesting sustainable transportation: Bicycle mobility in Boston and beyond. DIE ERDE Geogr. Soc. Berl. 2017, 148, 229–237. [Google Scholar]
- Kim, J.; Choi, K.; Kim, S.; Fujii, S. How to promote sustainable public bike system from a psychological perspective? Int. J. Sustain. Transp. 2017, 11, 272–281. [Google Scholar] [CrossRef]
- European Cyclist’s Federation. Cycling Delivers on the Global Goals. 2021. Available online: https://ecf.com/ (accessed on 15 February 2021).
- International Road Assessment Programme. How Safe Are The Worlds Roads? Vaccines For Roads. 2018. Available online: www.vaccinesforroads.org/howsafe-are-the-worlds-roads/ (accessed on 15 February 2021).
- Desa, U. United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects; Online Edition UN DESA: New York, NY, USA, 2019. [Google Scholar]
- Bank, W. World Bank: World Development Indicators. 2020. Available online: https://data.worldbank.org/ (accessed on 15 February 2021).
- Schwanen, T. Beyond instrument: Smartphone app and sustainable mobility. Eur. J. Transp. Infrastruct. Res. 2015, 15, 675–690. [Google Scholar]
- Yang, F.; Ding, F.; Qu, X.; Ran, B. Estimating Urban Shared-Bike Trips with Location-Based Social Networking Data. Sustainability 2019, 11, 3220. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.G.; de Oliveira, F.P. A prioritization approach for optimization of multiple concurrent sensing applications in smart cities. Future Gener. Comput. Syst. 2020, 108, 228–243. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, H.; Qiu, F.; Wang, Z.; Abbas, H. iBike: Intelligent public bicycle services assisted by data analytics. Future Gener. Comput. Syst. 2019, 95, 187–197. [Google Scholar] [CrossRef]
- MacArthur, J.; Dill, J.; Person, M. Electric Bikes in North America: Results of an Online Survey. Transp. Res. Rec. 2014, 2468, 123–130. [Google Scholar] [CrossRef]
- Popa, I.; Ferraro, O.E.; Orsi, C.; Morandi, A.; Montomoli, C. Bicycle helmet use patterns in Italy. A description and analysis of survey data from an Italian friends of cycling association. Accid. Anal. Prev. 2017, 108, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, B.; O’Mahony, M.; Brazil, W.; Weldon, P. Examining usage patterns of a bike-sharing scheme in a medium sized city. Transp. Res. Part A Policy Pract. 2017, 100, 152–161. [Google Scholar] [CrossRef]
- Zhang, Y.; Mi, Z. Environmental benefits of bike sharing: A big data-based analysis. Appl. Energy 2018, 220, 296–301. [Google Scholar] [CrossRef]
- Pokorny, P.; Pritchard, R.; Pitera, K. Conflicts between bikes and trucks in urban areas—A survey of Norwegian cyclists. Case Stud. Transp. Policy 2018, 6, 147–155. [Google Scholar] [CrossRef]
- Bernardi, S.; La Paix Puello, L.; Geurs, K. Modelling route choice of Dutch cyclists using smartphone data. J. Transp. Land Use 2018, 11, 883–900. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, B.B.; Mitra, S. Analysis of bicycle route-related improvement strategies for two Indian cities using a stated preference survey. Transp. Policy 2018, 63, 176–188. [Google Scholar] [CrossRef]
- Zheng, F.; Gu, F.; Zhang, W.; Guo, J. Is Bicycle Sharing an Environmental Practice? Evidence from a Life Cycle Assessment Based on Behavioral Surveys. Sustainability 2019, 11, 1550. [Google Scholar] [CrossRef] [Green Version]
- Luísa da Costa Lage, M.; Rodrigues, A.C. Pandelivery 1: Reflections on Black Delivery App Workers Experiences during COVID-19 in Brazil; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Hua, M.; Chen, X.; Zheng, S.; Cheng, L.; Chen, J. Estimating the parking demand of free-floating bike sharing: A journey-data-based study of Nanjing, China. J. Clean. Prod. 2020, 244, 118764. [Google Scholar] [CrossRef]
- Sun, Q.; Feng, T.; Kemperman, A.; Spahn, A. Modal shift implications of e-bike use in the Netherlands: Moving towards sustainability? Transp. Res. Part D Transp. Environ. 2020, 78, 102202. [Google Scholar] [CrossRef]
- Ortiz-Prado, E.; Henriquez-Trujillo, A.R.; Rivera-Olivero, I.A.; Lozada, T.; Garcia-Bereguiain, M.A. High prevalence of SARS-CoV-2 infection among food delivery riders. A case study from Quito, Ecuador. Sci. Total Environ. 2020, 770, 145225. [Google Scholar] [CrossRef]
- Castañon, U.N.; Ribeiro, P.J.G. Bikeability and Emerging Phenomena in Cycling: Exploratory Analysis and Review. Sustainability 2021, 13, 2394. [Google Scholar] [CrossRef]
- Plasencia-Lozano, P. Evaluation of a New Urban Cycling Infrastructure in Caceres (Spain). Sustainability 2021, 13, 1910. [Google Scholar] [CrossRef]
- Conti, M.; Passarella, A.; Das, S.K. The Internet of People (IoP): A new wave in pervasive mobile computing. Pervasive Mob. Comput. 2017, 41, 1–27. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.; Ramos, J.; Luo, Z.; Jiang, Z.; Dey, A.K.; Pan, G. User profiling from their use of smartphone applications: A survey. Pervasive Mob. Comput. 2019, 59, 101052. [Google Scholar] [CrossRef]
- Lyons, G. Transport’s digital age transition. J. Transp. Land Use 2015, 8, 1–19. [Google Scholar]
- Trubia, S.; Severino, A.; Curto, S.; Arena, F.; Pau, G. On BRT Spread around the World: Analysis of Some Particular Cities. Infrastructures 2020, 5, 88. [Google Scholar] [CrossRef]
- Marqués, R.; Hernández-Herrador, V.; Calvo-Salazar, M.; García-Cebrián, J.A. How infrastructure can promote cycling in cities: Lessons from Seville. Res. Transp. Econ. 2015, 53, 31–44. [Google Scholar] [CrossRef]
- Oliveira, F.; Costa, D.G.; Duran-Faundez, C.; Dias, A. BikeWay: A Multi-Sensory Fuzzy-Based Quality Metric for Bike Paths and Tracks in Urban Areas. IEEE Access 2020, 8, 227313–227326. [Google Scholar] [CrossRef]
- Delling, D.; Goldberg, A.V.; Pajor, T.; Werneck, R.F. Customizable route planning. In International Symposium on Experimental Algorithms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 376–387. [Google Scholar]
- Bast, H.; Delling, D.; Goldberg, A.; Müller-Hannemann, M.; Pajor, T.; Sanders, P.; Wagner, D.; Werneck, R.F. Route planning in transportation networks. In Algorithm Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 19–80. [Google Scholar]
- Loidl, M. Spatial information for safer bicycling. In Advances and New Trends in Environmental and Energy Informatics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 219–235. [Google Scholar]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Hochmair, H. Decision support for bicycle route planning in urban environments. In Proceedings of the 7th AGILE Conference on Geographic Information Science, Heraklion, Greece, 29 April–1 May 2004; Crete University Press Heraklion: Crete, Greece, 2004; pp. 697–706. [Google Scholar]
- Lin, S.J.; Shyu, G.S.; Fang, W.T.; Cheng, B.Y. Using multivariate statistical methods to analyze high-quality bicycle path service systems: A case study of popular bicycle paths in Taiwan. Sustainability 2020, 12, 7185. [Google Scholar] [CrossRef]
- Hochmair, H.H.; Zielstra, D.; Neis, P. Assessing the Completeness of Bicycle Trail and Lane Features in O pen S treet M ap for the U nited S tates. Trans. GIS 2015, 19, 63–81. [Google Scholar] [CrossRef]
- Caggiani, L.; Camporeale, R.; Ottomanelli, M. A real time multi-objective cyclists route choice model for a bike-sharing mobile application. In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017; IEEE: New York, NY, USA, 2017; pp. 645–650. [Google Scholar]
- Zhang, J.; Philip, S.Y. Trip route planning for bicycle-sharing systems. In Proceedings of the 2016 IEEE 2nd International Conference on Collaboration and Internet Computing (CIC), Pittsburgh, PA, USA, 1–3 November 2016; IEEE: New York, NY, USA, 2016; pp. 381–390. [Google Scholar]
- Polkowska, D. Platform work during the COVID-19 pandemic: A case study of Glovo couriers in Poland. Eur. Soc. 2020, 23, S321–S331. [Google Scholar] [CrossRef]
- Horta, P.M.; Souza, J.d.P.M.; Rocha, L.L.; Mendes, L.L. Digital food environment of a Brazilian metropolis: Food availability and marketing strategies used by delivery apps. Public Health Nutr. 2021, 24, 544–548. [Google Scholar] [CrossRef]
- Nikolaeva, A.; Te Brömmelstroet, M.; Raven, R.; Ranson, J. Smart cycling futures: Charting a new terrain and moving towards a research agenda. J. Transp. Geogr. 2019, 79, 102486. [Google Scholar] [CrossRef] [Green Version]
- Kabra, A.; Belavina, E.; Girotra, K. Bike-share systems: Accessibility and availability. Manag. Sci. 2020, 66, 3803–3824. [Google Scholar] [CrossRef]
- Villwock-Witte, N.; van Grol, L. Case study of transit–bicycle integration: Openbaar vervoer-fiets (public transport–bike) (OV-Fiets). Transp. Res. Rec. 2015, 2534, 10–15. [Google Scholar] [CrossRef]
- Ma, X.; Yuan, Y.; Van Oort, N.; Hoogendoorn, S. Bike-sharing systems’ impact on modal shift: A case study in Delft, the Netherlands. J. Clean. Prod. 2020, 259, 120846. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Eluru, N. Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system. J. Transp. Geogr. 2015, 44, 53–64. [Google Scholar] [CrossRef]
- McKenzie, G. Docked vs. dockless bike-sharing: Contrasting spatiotemporal patterns (Short Paper). In Proceedings of the 10th International Conference on Geographic Information Science (Giscience 2018), Melbourne, Australia, 28–31 August 2018. [Google Scholar]
- Shen, Y.; Zhang, X.; Zhao, J. Understanding the usage of dockless bike sharing in Singapore. Int. J. Sustain. Transp. 2018, 12, 686–700. [Google Scholar] [CrossRef]
- Chen, F.; Turoń, K.; Kłos, M.; Czech, P.; Pamuła, W.; Sierpiński, G. Fifth-generation bike-sharing systems: Examples from Poland and China. In Zeszyty Naukowe; Transport/Politechnika Śląska: Katowice, Poland, 2018. [Google Scholar]
- Costa, D.G.; Duran-Faundez, C. Open-Source Electronics Platforms as Enabling Technologies for Smart Cities: Recent Developments and Perspectives. Electronics 2018, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- González-Zamar, M.D.; Abad-Segura, E.; Vázquez-Cano, E.; López-Meneses, E. IoT Technology Applications-Based Smart Cities: Research Analysis. Electronics 2020, 9, 1246. [Google Scholar] [CrossRef]
- Sánchez-Corcuera, R.; Nuñez-Marcos, A.; Sesma-Solance, J.; Bilbao-Jayo, A.; Mulero, R.; Zulaika, U.; Azkune, G.; Almeida, A. Smart cities survey: Technologies, application domains and challenges for the cities of the future. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719853984. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Bae, M.; Kim, H. Future of IoT Networks: A Survey. Appl. Sci. 2017, 7, 1072. [Google Scholar] [CrossRef]
- Romanillos, G.; Austwick, M.Z.; Ettema, D.; Kruijf, J.D. Big Data and Cycling. Transp. Rev. 2016, 36, 114–133. [Google Scholar] [CrossRef]
- Santos, P.M.; Rodrigues, J.G.; Cruz, S.B.; Lourenço, T.; d’Orey, P.M.; Luis, Y.; Rocha, C.; Sousa, S.; Crisóstomo, S.; Queirós, C.; et al. PortoLivingLab: An IoT-based sensing platform for smart cities. IEEE Internet Things J. 2018, 5, 523–532. [Google Scholar] [CrossRef]
- Behrendt, F. Cycling the Smart and Sustainable City: Analyzing EC Policy Documents on Internet of Things, Mobility and Transport, and Smart Cities. Sustainability 2019, 11, 763. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Wei, Z.Q.; Sun, L.J.; Su, Y.Q.; Wang, R.C.; Jiang, H.M. The Shared Bicycle and Its Network—Internet of Shared Bicycle (IoSB): A Review and Survey. Sensors 2018, 18, 2581. [Google Scholar] [CrossRef] [Green Version]
- Namiot, D.; Sneps-Sneppe, M. On bikes in smart cities. Autom. Control Comput. Sci. 2019, 53, 63–71. [Google Scholar] [CrossRef]
- Gadsby, A.; Watkins, K. Instrumented bikes and their use in studies on transportation behaviour, safety, and maintenance. Transp. Rev. 2020, 40, 774–795. [Google Scholar] [CrossRef]
- Katto, J.; Takeuchi, M.; Kanai, K.; Sun, H. Road infrastructure monitoring system using e-bikes and its extensions for smart community. In Proceedings of the 1st ACM Workshop on Emerging Smart Technologies and Infrastructures for Smart Mobility and Sustainability, Los Cabos, Mexico, 21 October 2019; pp. 43–44. [Google Scholar]
- Aguiari, D.; Delnevo, G.; Monti, L.; Ghini, V.; Mirri, S.; Salomoni, P.; Pau, G.; Im, M.; Tse, R.; Ekpanyapong, M.; et al. Canarin II: Designing a smart e-bike eco-system. In Proceedings of the 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Oliveira, F.; Costa, D.G.; Dias, A. A Multi-Tier Sensors-based Environmental Monitoring Approach to Assess the Quality of Bike Paths in Urban Areas. In Proceedings of the 2020 IEEE International Smart Cities Conference (ISC2), Piscataway, NJ, USA, 28 September–1 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Costa, D.G. Visual sensors hardware platforms: A review. IEEE Sens. J. 2019, 20, 4025–4033. [Google Scholar] [CrossRef]
- Corno, F.; Montanaro, T.; Migliore, C.; Castrogiovanni, P. SmartBike: An IoT crowd sensing platform for monitoring city air pollution. Int. J. Electr. Comput. Eng. 2017, 7, 3602–3612. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Lv, C.; Xu, X.; Liu, X. A Bicycle-Borne Sensor Node for Monitoring Air Pollution Based on NB-IoT. In Lecture Notes of the Institute for Computer Sciences Social-Informatics and Telecommunications Engineering, LNICST; Springer: New York, NY, USA, 2019; Volume 294, pp. 325–332. [Google Scholar]
- Liu, X.; Li, B.; Jiang, A.; Qi, S.; Xiang, C.; Xu, N. A bicycle-borne sensor for monitoring air pollution near roadways. In Proceedings of the 2015 IEEE International Conference on Consumer Electronics-Taiwan, Taipei, Taiwan, 6–8 June 2015; IEEE: New York, NY, USA, 2015; pp. 166–167. [Google Scholar]
- Vagnoli, C.; Martelli, F.; De Filippis, T.; Di Lonardo, S.; Gioli, B.; Gualtieri, G.; Matese, A.; Rocchi, L.; Toscano, P.; Zaldei, A. The SensorWebBike for air quality monitoring in a smart city. IET Semin. Dig. 2014, 2014, 4–7. [Google Scholar] [CrossRef]
- Costa, D.G.; Vasques, F.; Portugal, P.; Aguiar, A. A Distributed Multi-Tier Emergency Alerting System Exploiting Sensors-Based Event Detection to Support Smart City Applications. Sensors 2019, 20, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi, Y.; Nishii, K.; Hisamatsu, H. Evaluation of a Bicycle-Mounted Ultrasonic Distance Sensor for Monitoring Road Surface Condition. In Proceedings of the 7th International Conference on Computational Intelligence, Communication Systems and Networks, CICSyN 2015, Riga, Latvia, 3–5 June 2015; pp. 31–34. [Google Scholar] [CrossRef]
- Wijerathne, N.; Viswanath, S.K.; Hasala, M.S.; Beltran, V.; Yuen, C.; Lim, H. Towards comfortable cycling: A practical approach to monitor the conditions in cycling paths. arXiv 2017, arXiv:1712.05545. [Google Scholar]
- Zhao, Y.X.; Su, Y.S.; Chang, Y.C. A Real-Time Bicycle Record System of Ground Conditions Based on Internet of Things. IEEE Access 2017, 5, 17525–17533. [Google Scholar] [CrossRef]
- Grama, A.; Petreus, D.; Baciu, C.; Bia, B.; Coca, O.; Socaciu, V. Smart Bike Improvement Using Embedded Systems. In Proceedings of the 2018 41st International Spring Seminar on Electronics Technology (ISSE), Zlatibor, Serbia, 16–20 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Quintero, G.; Balastegui, A.; Romeu, J. Mobile sampling to enhance data acquisition for noise mapping. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: West Lafayette, IN, USA, 2019; Volume 259, pp. 2794–2803. [Google Scholar]
- Oja, P.; Titze, S.; Bauman, A.; de Geus, B.; Krenn, P.; Reger-Nash, B.; Kohlberger, T. Health benefits of cycling: A systematic review. Scand. J. Med. Sci. Sport. 2011, 21, 496–509. [Google Scholar] [CrossRef]
- Tainio, M.; de Nazelle, A.J.; Götschi, T.; Kahlmeier, S.; Rojas-Rueda, D.; Nieuwenhuijsen, M.J.; de Sá, T.H.; Kelly, P.; Woodcock, J. Can air pollution negate the health benefits of cycling and walking? Prev. Med. 2016, 87, 233–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nath, S.; Sinha, S.; Gladence, L.M.; Bevishjinila, Y.; Rajalakshmi, V. Health analysis of bicycle rider and security of bicycle using IoT. In Proceedings of the 2017 IEEE International Conference on Communication and Signal Processing, ICCSP 2017, Melmaruvathur, India, 6–8 April 2017; pp. 802–806. [Google Scholar] [CrossRef]
- Muhamad, W.N.W.; Razali, S.A.; Wahab, N.A.; Azreen, M.M.; Sarnin, S.S.; Naim, N.F. Smart Bike Monitoring System for Cyclist via Internet of Things (IoT). In Proceedings of the 2020 IEEE 5th International Symposium on Telecommunication Technologies (ISTT), Shah Alam, Malaysia, 9–11 November 2020; pp. 168–173. [Google Scholar] [CrossRef]
- Wang, Y.; Cang, S.; Yu, H. A survey on wearable sensor modality centred human activity recognition in health care. Expert Syst. Appl. 2019, 137, 167–190. [Google Scholar] [CrossRef]
- Tabei, F.; Askarian, B.; Chong, J.W. Accident Detection System for Bicycle Riders. IEEE Sens. J. 2021, 21, 878–885. [Google Scholar] [CrossRef]
- Alam, A.I.; Rahman, M.; Afroz, S.; Alam, M.; Uddin, J.; Alam, M.A. IoT Enabled Smart Bicycle Safety System. In Proceedings of the 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 25–29 June 2018; IEEE: New York, NY, USA, 2018; pp. 374–378. [Google Scholar] [CrossRef]
- Zguira, Y.; Rivano, H.; Meddeb, A. Internet of Bikes: A DTN Protocol with Data Aggregation for Urban Data Collection. Sensors 2018, 18, 2819. [Google Scholar] [CrossRef] [Green Version]
- Zguira, Y.; Rivano, H.; Meddeb, A. IoB-DTN: A lightweight DTN protocol for mobile IoT applications to smart bike sharing systems. In Proceedings of the 2018 Wireless Days (WD), Dubai, United Arab Emirates, 3–5 April 2018; pp. 131–136. [Google Scholar] [CrossRef] [Green Version]
- Pettigrew, S.; Nelson, J.D.; Norman, R. Autonomous vehicles and cycling: Policy implications and management issues. Transp. Res. Interdiscip. Perspect. 2020, 7, 100188. [Google Scholar] [CrossRef]
- Piramuthu, O.B. Connected Bicycles—State-of-the-Art and Adoption Decision. IEEE Internet Things J. 2017, 4, 987–995. [Google Scholar] [CrossRef]
- Pu, Z.; Zhu, M.; Li, W.; Cui, Z.; Guo, X.; Wang, Y. Monitoring Public Transit Ridership Flow by Passively Sensing Wi-Fi and Bluetooth Mobile Devices. IEEE Internet Things J. 2021, 8, 474–486. [Google Scholar] [CrossRef]
- Tang, T.; Guo, Y.; Zhou, X.; Labi, S.; Zhu, S. Understanding electric bike riders’ intention to violate traffic rules and accident proneness in China. Travel Behav. Soc. 2021, 23, 25–38. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, Y.; Li, J. Deployment of Electric Bicycle Sharing Stations: Model Formulation and Solution Technique. Netw Spat Econ 2020, 20, 99–136. [Google Scholar] [CrossRef]
- Tripathi, R.; Parth, A.; Shukla, M.K. Modeling and Designing of E-bike for Local Use. In Electric Vehicles: Modern Technologies and Trends; Patel, N., Bhoi, A.K., Padmanaban, S., Holm-Nielsen, J.B., Eds.; Springer: Singapore, 2021; pp. 199–212. [Google Scholar] [CrossRef]
- Qiu, T.; Chi, J.; Zhou, X.; Ning, Z.; Atiquzzaman, M.; Wu, D.O. Edge Computing in Industrial Internet of Things: Architecture, Advances and Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 2462–2488. [Google Scholar] [CrossRef]
- Galatoulas, N.F.; Genikomsakis, K.N.; Ioakimidis, C.S. Spatio-Temporal Trends of E-Bike Sharing System Deployment: A Review in Europe, North America and Asia. Sustainability 2020, 12, 4611. [Google Scholar] [CrossRef]
- Rathee, D.S.; Asrat, T. Analysis and Development of Zero-Emission Individual Transportation Vehicles—E-bike. In ICT Analysis and Applications; Fong, S., Dey, N., Joshi, A., Eds.; Springer: Singapore, 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Rodrigues, T.K.; Suto, K.; Nishiyama, H.; Liu, J.; Kato, N. Machine Learning Meets Computation and Communication Control in Evolving Edge and Cloud: Challenges and Future Perspective. IEEE Commun. Surv. Tutor. 2020, 22, 38–67. [Google Scholar] [CrossRef]
- Shanmuga Sundaram, J.P.; Du, W.; Zhao, Z. A Survey on LoRa Networking: Research Problems, Current Solutions, and Open Issues. IEEE Commun. Surv. Tutor. 2020, 22, 371–388. [Google Scholar] [CrossRef] [Green Version]
- Sisinni, E.; Carvalho, D.F.; Ferrari, P. Emergency Communication in IoT Scenarios by Means of a Transparent LoRaWAN Enhancement. IEEE Internet Things J. 2020, 7, 10684–10694. [Google Scholar] [CrossRef]
- Wang, H.; Liu, T.; Kim, B.; Lin, C.W.; Shiraishi, S.; Xie, J.; Han, Z. Architectural Design Alternatives Based on Cloud/Edge/Fog Computing for Connected Vehicles. IEEE Commun. Surv. Tutor. 2020, 22, 2349–2377. [Google Scholar] [CrossRef]
- Ambika bhuvaneswari, C.; Muthumari, M. Design and realization of radio communication using LoRa XBee module for an e-Bike. In Proceedings of the 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India, 13–15 December 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Sanchez-Iborra, R.; Bernal-Escobedo, L.; Santa, J. Eco-Efficient Mobility in Smart City Scenarios. Sustainability 2020, 12, 8443. [Google Scholar] [CrossRef]
- Santos, P.M.; Pinto, L.R.; Aguiar, A.; Almeida, L. A Glimpse at Bicycle-to-Bicycle Link Performance in the 2.4GHz ISM Band. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Baqer, M.; Krings, A. Reliability of VANET Bicycle Safety Applications in Malicious Environments. In Proceedings of the 2019 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Marchiori, M. Safe Cycle: Infrastructural Control for Bikers. In Proceedings of the 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 16th International Conference on Pervasive Intelligence and Computing, 4th International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12–15 August 2018; pp. 874–880. [Google Scholar] [CrossRef]
- Nelson, T.; Ferster, C.; Laberee, K.; Fuller, D.; Winters, M. Crowdsourced data for bicycling research and practice. Transp. Rev. 2021, 41, 97–114. [Google Scholar] [CrossRef]
- Puri, V.; Priyadarshini, I.; Kumar, R. Smart contract based policies for the Internet of Things. Cluster Comput. 2021. [Google Scholar] [CrossRef]
- Abdellaoui Alaoui, E.A.; Koumetio Tekouabou, S.C. Intelligent management of bike sharing in smart cities using machine learning and Internet of Things. Sustain. Cities Soc. 2021, 67, 102702. [Google Scholar] [CrossRef]
- Forno, E.; Moio, S.; Schenatti, M.; Macii, E.; Urgese, G. Techniques for improving localization applications running on low-cost IoT devices. In Proceedings of the 2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Turin, Italy, 18–20 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Weller, M.; Classen, J.; Ullrich, F.; Waßmann, D.; Tews, E. Lost and Found: Stopping Bluetooth Finders from Leaking Private Information. In Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec’20, Linz, Austria, 8–10 July 2020; pp. 184–194. [Google Scholar] [CrossRef]
- Tu, W.; Zhao, T.; Zhou, B.; Jiang, J.; Xia, J.; Li, Q. OCD: Online Crowdsourced Delivery for On-Demand Food. IEEE Internet Things J. 2020, 7, 6842–6854. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Y.; Qiu, W.; Qin, Z.; Tan, C.; Yang, C.; Zhang, D. MIFF: Human Mobility Extractions with Cellular Signaling Data under Spatio-Temporal Uncertainty. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–9. [Google Scholar] [CrossRef]
- Erdei, E.H.; Steinmann, J.; Hagemeister, C. Comparing perception of signals in different modalities during the cycling task: A field study. Transp. Res. Part F Traffic Psychol. Behav. 2020, 73, 259–270. [Google Scholar] [CrossRef]
- Alam, M.Y.; Anurag, H.; Imam, M.S.; Saha, S.; Saha, M.; Nandi, S.; Chakraborty, S. Urban Safety as a Service During Bike Navigation: My Smartphone Can Monitor My Street-Lights. In Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 14–17 September 2020; pp. 114–121. [Google Scholar] [CrossRef]
- Afonso, J.A.; Duarte, H.G.; Cardoso, L.A.L.; Monteiro, V.; Afonso, J.L. Wireless Communication and Management System for E-Bike Dynamic Inductive Power Transfer Lanes. Electronics 2020, 9, 1485. [Google Scholar] [CrossRef]
- Amarnath, S.; Muralitharan, R.; Robinson, R.; Vijay Sanmugam, M.; Rajamani, M. Biometric authentication based management for e-bike sharing system. Int. J. Sci. Technol. Res. 2020, 9, 187–190. [Google Scholar]
- Pellitteri, F.; Campagna, N.; Castiglia, V.; Damiano, A.; Miceli, R. Design, implementation and experimental results of a wireless charger for E-bikes. In Proceedings of the 2019 International Conference on Clean Electrical Power (ICCEP), Otranto, Italy, 2–4 July 2019; pp. 364–369. [Google Scholar] [CrossRef]
- Venkatanarayanan, A.; Vijayavel, A.; Rajagopal, A.; Nagaradjane, P. Design of sensor system for air pollution and human vital monitoring for connected cyclists. IET Commun. 2019, 13, 3181–3186. [Google Scholar] [CrossRef]
- Ksouri, C.; Jemili, I.; Mosbah, M.; Belghith, A. A Unified Smart Mobility System Integrating Terrestrial, Aerial and Marine Intelligent Vehicles. In Communication Technologies for Vehicles; Krief, F., Aniss, H., Mendiboure, L., Chaumette, S., Berbineau, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 203–214. [Google Scholar]
- Chen, S.; Cui, H.; Tang, M. The Injuries and Helmet Use in Bike Share Programs: A Systematic Review. J. Community Health 2021, 46, 203–210. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Road Safety—WHO. 2018. Available online: https://www.who.int/publications/i/item/9789241565684 (accessed on 15 February 2021).
- Tenenbaum, S.; Weltsch, D.; Bariteau, J.T.; Givon, A.; Peleg, K.; Thein, R. Orthopaedic injuries among electric bicycle users. Injury 2017, 48, 2140–2144. [Google Scholar] [CrossRef]
- Gitelman, V.; Korchatov, A.; Elias, W. Speeds of Young E-Cyclists on Urban Streets and Related Risk Factors: An Observational Study in Israel. Safety 2020, 6, 29. [Google Scholar] [CrossRef]
- Poos, H.P.A.M.; Lefarth, T.L.; Harbers, J.S.; Wendt, K.W.; El Moumni, M.; Reininga, I.H. E-bikers are more often seriously injured in bicycle accidents: Results from the Groningen bicycle accident database. Ned Tijdschr Geneeskd 2017, 161, D1520. [Google Scholar]
- Verbeek, A.; de Valk J, S.D. E-bike and classic bicycle-related traumatic brain injuries presenting to the emergency department. Emerg. Med. J. 2021. [Google Scholar] [CrossRef]
- Ikpeze, T.C.; Glaun, G.; McCalla, D.; Elfar, J.C. Geriatric Cyclists: Assessing Risks, Safety, and Benefits. Geriatr. Orthop. Surg. Rehabil. 2018, 9, 2151458517748742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheong, H.S.; Tham, K.Y. Injury patterns in elderly cyclists and motorcyclists presenting to a tertiary trauma centre in Singapore. Singap. Med. J. 2020, 9, 2151458517748742. [Google Scholar] [CrossRef]
- Hertach, P.; Uhr, A.; Niemann, S.; Cavegn, M. Characteristics of single-vehicle crashes with e-bikes in Switzerland. Accid. Anal. Prev. 2018, 117, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhou, J.; Wu, Y.; Li, Z. Identifying the factors affecting bike-sharing usage and degree of satisfaction in Ningbo, China. PLoS ONE 2017, 12, 0185100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cairns, S.; Behrendt, F.; Raffo, D.; Beaumont, C.; Kiefer, C. Electrically-assisted bikes: Potential impacts on travel behaviour. Transp. Res. Part A Policy Pract. 2017, 103, 327–342. [Google Scholar] [CrossRef] [Green Version]
- O’Hern, S.; Estgfaeller, N. A Scientometric Review of Powered Micromobility. Sustainability 2020, 12, 9505. [Google Scholar] [CrossRef]
- De Kruijf, J.; Ettema, D.; Kamphuis, C.B.; Dijst, M. Evaluation of an incentive program to stimulate the shift from car commuting to e-cycling in the Netherlands. J. Transp. Health 2018, 10, 74–83. [Google Scholar] [CrossRef]
- Oeschger, G.; Carroll, P.; Caulfield, B. Micromobility and public transport integration: The current state of knowledge. Transp. Res. Part D Transp. Environ. 2020, 89, 102628. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, W. Design and development of embedded system of portable bicycle exerciser. Microprocess. Microsyst. 2021, 81. [Google Scholar] [CrossRef]
- Chamoso, P.; González-Briones, A.; Rodríguez, S.; Corchado, J.M. Tendencies of technologies and platforms in smart cities: A state-of-the-art review. Wirel. Commun. Mob. Comput. 2018, 2018, 3086854. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D. The construction of smart city information system based on the Internet of Things and cloud computing. Comput. Commun. 2020, 150, 158–166. [Google Scholar] [CrossRef]
- Muni Mohith Reddy, K.; Venkata Krishna Rohith, D.; Akash Reddy, C.; Mamatha, I. Smart Helmet using Advanced Technology. In Information and Communication Technology for Intelligent Systems; Senjyu, T., Mahalle, P.N., Perumal, T., Joshi, A., Eds.; Springer: Singapore, 2021; pp. 479–488. [Google Scholar] [CrossRef]
- Subbarayappa, S.; Kempasatti, R.; Kulkarni, S.S.; Johari, S. Smart helmet system with accident safety gears and bike tracking mechanism using non IOT methods. J. Phys. Conf. Ser. 2020, 1706, 012069. [Google Scholar] [CrossRef]
- Carvajal, G.A.; Sarmiento, O.L.; Medaglia, A.L.; Cabrales, S.; Rodríguez, D.A.; Quistberg, D.A.; López, S. Bicycle safety in Bogotá: A seven-year analysis of bicyclists’ collisions and fatalities. Accid. Anal. Prev. 2020, 144, 105596. [Google Scholar] [CrossRef]
- Sze, V. Designing Hardware for Machine Learning: The Important Role Played by Circuit Designers. IEEE Solid State Circuits Mag. 2017, 9, 46–54. [Google Scholar] [CrossRef]
- Pasetti, M.; Ferrari, P.; Silva, D.R.C.; Silva, I.; Sisinni, E. On the Use of LoRaWAN for the Monitoring and Control of Distributed Energy Resources in a Smart Campus. Appl. Sci. 2020, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Signoretti, G.; Silva, M.; Dias, A.; Silva, I.; Silva, D.; Ferrari, P. Performance Evaluation of an Edge OBD-II Device for Industry 4.0. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 IoT), Naples, Italy, 4–6 June 2019; pp. 432–437. [Google Scholar] [CrossRef]
- Adams, V.; Murari, S.; Round, C. Biking and the Connected City. In Disrupting Mobility: Impacts of Sharing Economy and Innovative Transportation on Cities; Meyer, G., Shaheen, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 307–321. [Google Scholar]
- Chamoso, P.; González-Briones, A.; Prieta, F.D.L.; Venyagamoorthy, G.K.; Corchado, J.M. Smart city as a distributed platform: Toward a system for citizen-oriented management. Comput. Commun. 2020, 152, 323–332. [Google Scholar] [CrossRef]
- Lim, C.; Kim, K.J.; Maglio, P.P. Smart cities with big data: Reference models, challenges, and considerations. Cities 2018, 82, 86–99. [Google Scholar] [CrossRef]
- Costa, D.G.; Duran-Faundez, C.; Andrade, D.C.; Rocha-Junior, J.B.; Just Peixoto, J.P. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications. Sensors 2018, 18, 1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, D.G.; Peixoto, J.P.J. COVID-19 pandemic: A review of smart cities initiatives to face new outbreaks. IET Smart Cities 2020, 2, 64–73. [Google Scholar] [CrossRef]
- Pase, F.; Chiariotti, F.; Zanella, A.; Zorzi, M. Bike Sharing and Urban Mobility in a Post-Pandemic World. IEEE Access 2020, 8, 187291–187306. [Google Scholar] [CrossRef]
- Bergantino, A.S.; Intini, M.; Tangari, L. Influencing factors for potential bike-sharing users: An empirical analysis during the COVID-19 pandemic. Res. Transp. Econ. 2021, 101028. [Google Scholar] [CrossRef]
- Sutherland, M.; McKenney, M.; Elkbuli, A. Vehicle related injury patterns during the COVID-19 pandemic: What has changed? Am. J. Emerg. Med. 2020, 38, 1710–1714. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.I.; Huang, W.; Khan, S.; Lobanova, I.; Siddiq, F.; Gomez, C.R.; Suri, M.F.K. Mandated societal lockdown and road traffic accidents. Accid. Anal. Prev. 2020, 146, 105747. [Google Scholar] [CrossRef] [PubMed]
- Jechow, A.; Hölker, F. Evidence That Reduced Air and Road Traffic Decreased Artificial Night-Time Skyglow during COVID-19 Lockdown in Berlin, Germany. Remote Sens. 2020, 12, 3412. [Google Scholar] [CrossRef]
- Rossi, R.C.; Gastaldi, M. Effect of Road Traffic on Air Pollution.Experimental Evidence from COVID-19 Lockdown. Sustainability 2020, 12, 8984. [Google Scholar] [CrossRef]
Parameters | Low Income | Middle Income | High Income |
---|---|---|---|
Population in thousands (2020) | 775,711 | 5,753,052 | 1,263,093 |
Gross Domestic Product (GDP) in US$ (2019) | $541.512 billion | $32.153 trillion | $55.141 trillion |
Estimated road traffic death rate per 100,000 people (2019) | 28.34 | 17.1 | 8.39 |
Human impact of road injuries: new costs every year | $27.4 billion | $1210.7 billion | $973.8 billion |
Percent of countries with cities committed to an increase in modal share of cycling | 0% | 7.1% | 30.1% |
Number of cities committed to increase cycling modal share | 0% | 4 (3.78%) | 65 (33.5%) |
App | Main Service | Release | Bike-Centric | Free |
---|---|---|---|---|
Bikemap | Route planning | 2014 | x | x |
Busby | Road safety | 2019 | x | x |
Glovo | Food delivery | 2015 | x | |
Google maps | Route planning | 2005 | x | |
GSMtasks | Route planning | 2019 | ||
iFood | Food delivery | 2011 | x | |
Komoot | Route planning | 2010 | x | x |
Rappi | Food delivery | 2018 | x | |
Routific | Route planning | 2012 | ||
Uber eats | Food delivery | 2014 | x |
Approach | Year | Application | Sensed Data |
---|---|---|---|
Vagnoli et al. [76] | 2014 | Environment monitoring | Noise, humidity, temperature, air and road quality |
Liu et al. [75] | 2015 | Air quality | Air pollution |
Taniguchi et al. [78] | 2015 | Path quality | Pavement quality indicators |
Wijerathne et al. [79] | 2017 | Path quality | Pavement quality indicators |
Zhao et al. [80] | 2017 | Path quality | Pavement quality indicators, bike speed |
Corno et al. [73] | 2017 | Environment monitoring | Temperature, humidity, pressure |
Grama et al. [81] | 2018 | Environment monitoring | Multiple scalar data |
Shen et al. [74] | 2019 | Environment monitoring | Multiple scalar data |
Katto et al. [69] | 2019 | Path quality | Images |
Quintero et al. [82] | 2019 | Noise level | Audio (noise) sensed data |
Oliveira et al. [71] | 2020 | Monitoring of any variable | Scalar and multimedia data |
BANETs | Communication Technology | Research Topics |
---|---|---|
B2B | LoRa, LoRaWAN, NB-IoT, IEEE 802.11x, IEEE 802.15.4x | Performance, Simulation, Security, Privacy, Dependability |
B2P | Bluetooth, NFC, IEEE 802.11x, Mobile Network | Localization, Authentication, Safety |
B2S | Bluetooth, Legacy Wired Technologies | Testbed, Instrumentation |
B2X | 5G, LoRa, LoRaWAN | Interoperability, Multimedia Stream Applications |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, F.; Nery, D.; Costa, D.G.; Silva, I.; Lima, L. A Survey of Technologies and Recent Developments for Sustainable Smart Cycling. Sustainability 2021, 13, 3422. https://doi.org/10.3390/su13063422
Oliveira F, Nery D, Costa DG, Silva I, Lima L. A Survey of Technologies and Recent Developments for Sustainable Smart Cycling. Sustainability. 2021; 13(6):3422. https://doi.org/10.3390/su13063422
Chicago/Turabian StyleOliveira, Franklin, Dilan Nery, Daniel G. Costa, Ivanovitch Silva, and Luciana Lima. 2021. "A Survey of Technologies and Recent Developments for Sustainable Smart Cycling" Sustainability 13, no. 6: 3422. https://doi.org/10.3390/su13063422
APA StyleOliveira, F., Nery, D., Costa, D. G., Silva, I., & Lima, L. (2021). A Survey of Technologies and Recent Developments for Sustainable Smart Cycling. Sustainability, 13(6), 3422. https://doi.org/10.3390/su13063422