Green Infrastructures and the Consideration of Their Soil-Related Ecosystem Services in Urban Areas—A Systematic Literature Review
Abstract
:1. Introduction
- How are soil-related Ecosystem Services represented within the peer-reviewed publications on Green Infrastructure?
- How are Green Infrastructures investigated in peer-reviewed publications in regard to soil-related Ecosystem Services and soil function loss?
2. Materials and Methods
2.1. Systematic Literature Review
2.2. Extended Content Analysis
3. Results
3.1. General Analysis (Phase II.a)
3.2. Thematic Distribution (Phase II.a)
3.3. Keyword Analysis (Phase II.b)
3.4. Parameter Analysis (Phase II.c)
3.4.1. Evaluation of ES Provided by Soil Functions
3.4.2. Assessment of the ES Provided by GI Types
3.5. Past and Future Trends of Soil-Related ES in GI Measures
4. Discussion
4.1. Representation of Soil-Related ES in GI Measures
4.1.1. Stormwater Management
4.1.2. Regulation of Water Quality
4.1.3. Diversity and Ecology
4.1.4. Climate Change Adaptation and Mitigation
4.1.5. Social Aspects and Cultural ES
4.2. Soil Function Loss in the Context of GI Measures
4.3. Limitations of this Review
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Ranking | Country | Country Affiliation | |
---|---|---|---|
All Authors [%] | Main Author [%] | ||
1 | USA | 23.3 | 28.2 |
2 | United Kingdom | 7.7 | 6.3 |
3 | Italy | 7.4 | 8.1 |
4 | China | 6.5 | 6.7 |
5 | Germany | 6.5 | 6.0 |
6 | Australia | 5.0 | 5.6 |
7 | Spain | 4.0 | 4.6 |
8 | Sweden | 4.0 | 3.2 |
9 | Canada | 3.5 | 3.5 |
10 | The Netherlands | 3.0 | 2.1 |
% | Stormwater Management (Infiltration, Retention) | Eco-System Services | Biodiversity and Ecology | Assessment of Green Infrastructures in Urban Areas | Urban Heat Islands | Governance and Policies | Land Cover Changes | Biomass and Food | Soil Nutrients | Carbon Pool | Filtration and Transformation | % TOTAL |
---|---|---|---|---|---|---|---|---|---|---|---|---|
USA | 14.3 | 1.5 | 2.3 | 0.5 | 1.5 | 0.3 | 0.3 | 0.3 | 2.0 | 0.3 | 0.5 | 23.6 |
UK | 2.5 | 1.0 | 1.0 | 1.0 | 0.5 | 0.8 | 0.8 | 0.3 | 7.8 | |||
Italy | 1.8 | 2.0 | 0.5 | 1.5 | 0.3 | 0.8 | 0.5 | 0.3 | 7.5 | |||
China | 4.3 | 1.0 | 0.0 | 0.3 | 0.8 | 0.3 | 6.5 | |||||
Germany | 0.8 | 1.5 | 1.5 | 0.5 | 0.8 | 0.3 | 0.5 | 0.8 | 6.5 | |||
Australia | 2.3 | 0.8 | 0.3 | 0.3 | 0.8 | 0.3 | 0.3 | 0.3 | 5.0 | |||
Spain | 0.8 | 1.5 | 0.8 | 0.5 | 0.3 | 0.3 | 4.0 | |||||
Sweden | 1.3 | 0.8 | 0.5 | 0.3 | 0.5 | 0.3 | 0.3 | 0.3 | 4.0 | |||
Canada | 1.0 | 0.3 | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 3.3 | ||||
NED | 0.8 | 0.8 | 0.3 | 0.3 | 0.8 | 0.3 | 3.0 | |||||
France | 1.3 | 0.5 | 0.3 | 0.3 | 0.3 | 2.5 |
References
- UN-Habitat. Cities and Climate Change: Global Report on Human Settlements, 2011; Earthscan: London, UK; Washington, DC, USA, 2011. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Teller, A.; Nessi, S.; Bulgheroni, C.; Konti, A.; Sinkko, T.; Tonini, D.; Pant, R. Mapping and Assessment of Ecosystems and Their Services: An EU Ecosystem Assessment; Publications Office of the European Union: Luxembourg, Luxembourg, 2020. [Google Scholar] [CrossRef]
- Morel, J.L.; Chenu, C.; Lorenz, K. Ecosystem Services Provided by Soils of Urban, Industrial, Traffic, Mining, and Military Areas (SUITMAs). J. Soils Sediments 2015, 15, 1659–1666. [Google Scholar] [CrossRef]
- Blanchart, A.; Séré, G.; Johan, C.; Gilles, W.; Stas, M.; Consalès, J.N.; Morel, J.L.; Schwartz, C. Towards an Operational Methodology to Optimize Ecosystem Services Provided by Urban Soils. Landsc. Urban Plan. 2018, 176, 1–9. [Google Scholar] [CrossRef]
- Setälä, H.; Bardgett, R.D.; Birkhofer, K.; Brady, M.; Byrne, L.; de Ruiter, P.C.; de Vries, F.T.; Gardi, C.; Hedlund, K.; Hemerik, L.; et al. Urban and Agricultural Soils: Conflicts and Trade-Offs in the Optimization of Ecosystem Services. Urban Ecosyst. 2014, 17, 239–253. [Google Scholar] [CrossRef]
- Tobias, S.; Conen, F.; Duss, A.; Wenzel, L.M.; Buser, C.; Alewell, C. Soil Sealing and Unsealing: State of the Art and Examples. L. Degrad. Dev. 2018, 29, 2015–2024. [Google Scholar] [CrossRef]
- Murata, T.; Kawai, N. Degradation of the Urban Ecosystem Function Due to Soil Sealing: Involvement in the Heat Island Phenomenon and Hydrologic Cycle in the Tokyo Metropolitan Area. Soil Sci. Plant Nutr. 2018, 64, 145–155. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions: Thematic Strategy for Soil Protection COM(2006)231; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil Quality—A Critical Review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Karlen, D.L.; Andrews, S.S.; Weinhold, B.J.; Doran, J.W. Soil Quality: Humankind’s Foundation for Survival. J. Soil Water Conserv. 2003, 58, 171–179. [Google Scholar]
- Wang, Q.; Wang, W.; He, X.; Zhou, W.; Zhai, C.; Wang, P.; Tang, Z.; Wei, C.; Zhang, B.; Xiao, L.; et al. Urbanization-Induced Glomalin Changes and Their Associations with Land-Use Configuration, Forest Characteristics, and Soil Properties in Changchun, Northeast China. J. Soils Sediments 2019, 19, 2433–2444. [Google Scholar] [CrossRef]
- Shrestha, P.; Hurley, S.E.; Carol Adair, E. Soil Media CO2 and N2O Fluxes Dynamics from Sand-Based Roadside Bioretention Systems. Water 2018, 10, 185. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, D.L.; Shuster, W.D.; Garmestani, A.S. Vacant Urban Lot Soils and Their Potential to Support Ecosystem Services. Plant Soil 2017, 413, 45–57. [Google Scholar] [CrossRef]
- Pierre, S.; Groffman, P.M.; Killilea, M.E.; Oldfield, E.E. Soil Microbial Nitrogen Cycling and Nitrous Oxide Emissions from Urban Afforestation in the New York City Afforestation Project. Urban For. Urban Green. 2016, 15, 149–154. [Google Scholar] [CrossRef]
- Frosi, M.H.; Kargar, M.; Jutras, P.; Prasher, S.O.; Clark, O.G. Street Tree Pits as Bioretention Units: Effects of Soil Organic Matter and Area Permeability on the Volume and Quality of Urban Runoff. Water. Air. Soil Pollut. 2019, 230, 1–14. [Google Scholar] [CrossRef]
- Richards, P.J.; Williams, N.S.G.; Fletcher, T.D.; Farrell, C. Can Raingardens Produce Food and Retain Stormwater? Effects of Substrates and Stormwater Application Method on Plant Water Use, Stormwater Retention and Yield. Ecol. Eng. 2017, 100, 165–174. [Google Scholar] [CrossRef]
- Jia, H.; Wang, Z.; Zhen, X.; Clar, M.; Yu, S.L. China’s Sponge City Construction: A Discussion on Technical Approaches. Front. Environ. Sci. Eng. 2017, 11, 18. [Google Scholar] [CrossRef]
- Prudencio, L.; Null, S.E. Stormwater Management and Ecosystem Services: A Review. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Smalls-Mantey, L.; DiGiovanni, K.; Olson, M.; Montalto, F.A. Validation of Two Soil Heat Flux Estimation Techniques against Observations Made in an Engineered Urban Green Space. Urban Clim. 2013, 3, 56–66. [Google Scholar] [CrossRef]
- Lin, B.B.; Meyers, J.; Beaty, R.M.; Barnett, G.B. Urban Green Infrastructure Impacts on Climate Regulation Services in Sydney, Australia. Sustainability 2016, 8, 788. [Google Scholar] [CrossRef] [Green Version]
- Artmann, M.; Sartison, K. The Role of Urban Agriculture as a Nature-Based Solution: A Review for Developing a Systemic Assessment Framework. Sustainability 2018, 10, 1937. [Google Scholar] [CrossRef] [Green Version]
- Grey, V.; Livesley, S.J.; Fletcher, T.D.; Szota, C. Establishing Street Trees in Stormwater Control Measures Can Double Tree Growth When Extended Waterlogging Is Avoided. Landsc. Urban Plan. 2018, 178, 122–129. [Google Scholar] [CrossRef]
- Gadi, V.K.; Tang, Y.-R.; Das, A.; Monga, C.; Garg, A.; Berretta, C.; Sahoo, L. Spatial and Temporal Variation of Hydraulic Conductivity and Vegetation Growth in Green Infrastructures Using Infiltrometer and Visual Technique. Catena 2017, 155, 20–29. [Google Scholar] [CrossRef]
- Lehmann, A.; Stahr, K. Nature and Significance of Anthropogenic Urban Soils. J Soils Sediments 2007, 7, 247–260. [Google Scholar] [CrossRef]
- Seto, K.C.; Parnell, S.; Elmqvist, T. A Global Outlook on Urbanization. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities; Elqvist, T., Fragkias, M., Goodness, J., MGüneralp, B., Marcotullio, P.J., McDonald, R.I., Parnell, S., Schewenius, M., Sendstad, M., Seto, K.C., et al., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2013; p. pp. 755. [Google Scholar]
- Morel, J.L.; Burghardt, W.; Kim, K.H.; Tahoun, S.A.; Zhang, G.L.; Shaw, R.K.; Boularbah, A.; Charzyński, P.; Siebe, C.; Riddle, R.L.; et al. Soils within Cities—Global Approaches to Their Sustainable Management; Levin, M.J., Kim, K.-H.J., Morel, J.L., Burghardt, W., Charzynski, P., Shaw, R.K., IUSS Working Group SUITMA, Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2017. [Google Scholar]
- Deeb, M.; Groffman, P.M.; Joyner, J.L.; Lozefski, G.; Paltseva, A.; Lin, B.; Mania, K.; Cao, D.L.; McLaughlin, J.; Muth, T.; et al. Soil and Microbial Properties of Green Infrastructure Stormwater Management Systems. Ecol. Eng. 2018, 125, 68–75. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to The European Parliament, The Council, The European Economic And Social Committee and The Committee of The Regions Green Infrastructure (Gi)—Enhancing Europe’s Natural Capital. 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52013DC0249 (accessed on 15 March 2021).
- Charzynski, P.; Galbraith, J.M.; Kabala, C.; Kühn, D.; Prokofeva, T.V.; Vasenev, V.I. Classification of Urban Soils. In Soils within Cities; Levine, M.J., Kim, K.-H.J., Morel, J.-L., Burghardt, W., Charzynski, P., Shaw, R.K., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2017; pp. 93–106. [Google Scholar]
- Heymans, A.; Breadsell, J.; Morrison, G.M.; Byrne, J.J.; Eon, C. Ecological Urban Planning and Design: A Systematic Literature Review. Sustainability 2019, 11, 3723. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. J. Clin. Epidemiol. 2010, 62, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Bustami, R.A.; Belusko, M.; Ward, J.; Beecham, S. Vertical Greenery Systems: A Systematic Review of Research Trends. Build. Environ. 2018, 146, 226–237. [Google Scholar] [CrossRef]
- Mavrigiannaki, A.; Ampatzi, E. Latent Heat Storage in Building Elements: A Systematic Review on Properties and Contextual Performance Factors. Renew. Sustain. Energy Rev. 2016, 60, 852–866. [Google Scholar] [CrossRef] [Green Version]
- Mosannenzadeh, F.; Vettorato, D. Defining Smart City. A Conceptual Framework Based on Keyword Analysis. TeMA J. Land Use Mobil. Environ. 2014, 683–694. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. Common International Classification OfEcosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure; Fabis Consulting: Nottingham, UK, 2018. [Google Scholar]
- Wang, H.; Mei, C.; Liu, J.H.; Shao, W.W. A New Strategy for Integrated Urban Water Management in China: Sponge City. Sci. China Technol. Sci. 2018, 61, 317–329. [Google Scholar] [CrossRef]
- Rodríguez-Rojas, M.I.; Huertas-Fernández, F.; Moreno, B.; Martínez, G.; Grindlay, A.L. A Study of the Application of Permeable Pavements as a Sustainable Technique for the Mitigation of Soil Sealing in Cities: A Case Study in the South of Spain. J. Environ. Manage. 2018, 205, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Vineyard, D.; Ingwersen, W.W.; Hawkins, T.R.; Xue, X.; Demeke, B.; Shuster, W. Comparing Green and Grey Infrastructure Using Life Cycle Cost and Environmental Impact: A Rain Garden Case Study in Cincinnati, OH. J. Am. Water Resour. Assoc. 2015, 51, 1342–1360. [Google Scholar] [CrossRef]
- Ristić, R.; Radić, B.; Miljanović, V.; Trivan, G.; Ljujić, M.; Letić, L.; Savić, R. Blue-Green Corridors as a Tool for Mitigation of Natural Hazards and Restoration of Urbanized Areas: A Case Study of Belgrade City. Spatium 2013, 30, 18–22. [Google Scholar] [CrossRef]
- Maragno, D.; Gaglio, M.; Robbi, M.; Appiotti, F.; Fano, E.A.; Gissi, E. Fine-Scale Analysis of Urban Flooding Reduction from Green Infrastructure: An Ecosystem Services Approach for the Management of Water Flows. Ecol. Modell. 2018, 386, 1–10. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Rodríguez, V.V. Remote Sensing and GIS Applied to the Landscape for the Environmental Restoration of Urbanizations by Means of 3D Virtual Reconstruction and Visualization (Salamanca, Spain). ISPRS Int. J. Geo-Inf. 2016, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Bardos, R.P.; Jones, S.; Stephenson, I.; Menger, P.; Beumer, V.; Neonato, F.; Maring, L.; Ferber, U.; Track, T.; Wendler, K. Optimising Value from the Soft Re-Use of Brownfield Sites. Sci. Total Environ. 2016, 563–564, 769–782. [Google Scholar] [CrossRef] [Green Version]
- De Sousa, C. The Greening of Urban Post-Industrial Landscapes: Past Practices and Emerging Trends. Local Environ. 2014, 19, 1049–1067. [Google Scholar] [CrossRef]
- Shetty, N.; Hu, R.; Hoch, J.; Mailloux, B.; Palmer, M.; Menge, D.N.L.; McGuire, K.; McGillis, W.; Culligan, P. Quantifying Urban Bioswale Nitrogen Cycling in the Soil, Gas, and Plant Phases. Water 2018, 10, 1627. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Banzhaf, E. Towards a Better Understanding of Green Infrastructure: A Critical Review. Ecol. Indic. 2018, 85, 758–772. [Google Scholar] [CrossRef]
- Pauleit, S.; Liu, L.; Ahern, J.; Kazmierczak, A. Planning to Promote Ecological Services in the City. In Urban Ecology: Patterns, Processes, and Applications; Niemela, J., Breuste, J.H., Guntenspergen, G., McIntyre, N.E., Elmqvist, T., James, P., Eds.; Oxford University Press: Oxford, UK, 2011; pp. 272–285. [Google Scholar]
- Ajmone-Marsan, F.; Certini, G.; Scalenghe, R. Describing Urban Soils through a Faceted System Ensures More Informed Decision-Making. Land Use Policy 2016, 51, 109–119. [Google Scholar] [CrossRef]
- Xing, Y.; Jones, P.; Donnison, I. Characterisation of Nature-Based Solutions for the Built Environment. Sustainability 2017, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Voghera, A.; Giudice, B. Evaluating and Planning Green Infrastructure: A Strategic Perspective for Sustainability and Resilience. Sustainability 2019, 11, 2726. [Google Scholar] [CrossRef] [Green Version]
- Ayers, E.M.; Kangas, P. Soil Layer Development and Biota in Bioretention. Water 2018, 10, 1587. [Google Scholar] [CrossRef] [Green Version]
- Dierkes, C. Entsiegelung Mit Wasserdurchlässigen Flächenbelägen—Zurück Zum Natürlichen Wasserkreislauf. In IKT-Forum Niederschlagswasser, Vegetation & Infrastruktur; IKT Institut für unterirdische Infrastruktur: Frankfurt, Germany, 2015. [Google Scholar]
- U.S. Environmental Protection Agency. Green Infrastructure Strategic Agenda 2013; 2013. Available online: https://www.epa.gov/sites/production/files/2015-10/documents/2013_gi_final_agenda_101713_0.pdf (accessed on 15 March 2021).
- Brudler, S.; Arnbjerg-Nielsen, K.; Hauschild, M.Z.; Ammitsøe, C.; Hénonin, J.; Rygaard, M. Life Cycle Assessment of Point Source Emissions and Infrastructure Impacts of Four Types of Urban Stormwater Systems. Water Res. 2019, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.S.; Phillips, B.M.; Voorhees, J.P.; Siegler, K.; Tjeerdema, R. Bioswales Reduce Contaminants Associated with Toxicity in Urban Storm Water. Environ. Toxicol. Chem. 2016, 35, 3124–3134. [Google Scholar] [CrossRef] [PubMed]
- Flynn, K.M.; Traver, R.G. Green Infrastructure Life Cycle Assessment: A Bio-Infiltration Case Study. Ecol. Eng. 2013, 55, 9–22. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Green Stormwater Infrastructure with Low Impact Development Concept: A Review of Current Research. Desalin. Water Treat. 2017, 83, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Wang, X.C.; Ren, N.; Li, G.; Ding, J.; Liang, H. Implementation of a Specific Urban Water Management—Sponge City. Sci. Total Environ. 2019, 652, 147–162. [Google Scholar] [CrossRef]
- Ishimatsu, K.; Ito, K.; Mitani, Y.; Tanaka, Y.; Sugahara, T.; Naka, Y. Use of Rain Gardens for Stormwater Management in Urban Design and Planning. Landsc. Ecol. Eng. 2017, 13, 205–212. [Google Scholar] [CrossRef]
- Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The Role of Trees in Urban Stormwater Management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caplan, J.S.; Galanti, R.C.; Olshevski, S.; Eisenman, S.W. Water Relations of Street Trees in Green Infrastructure Tree Trench Systems. Urban For. Urban Green. 2019, 41, 170–178. [Google Scholar] [CrossRef]
- Kazak, J.K.; Chruściński, J.; Szewrański, S. The Development of a Novel Decision Support System for the Location of Green Infrastructure for Stormwater Management. Sustainability 2018, 10, 4388. [Google Scholar] [CrossRef] [Green Version]
- Beery, T. Engaging the Private Homeowner: Linking Climate Change and Green Stormwater Infrastructure. Sustainability 2018, 10, 4791. [Google Scholar] [CrossRef] [Green Version]
- Sansalone, J.; Raje, S.; Kertesz, R.; Maccarone, K.; Seltzer, K.; Siminari, M.; Simms, P.; Wood, B. Retrofitting Impervious Urban Infrastructure with Green Technology for Rainfall-Runoff Restoration, Indirect Reuse and Pollution Load Reduction. Environ. Pollut. 2013, 183, 204–212. [Google Scholar] [CrossRef]
- Gavrić, S.; Larm, T.; Österlund, H.; Marsalek, J.; Wahlsten, A.; Viklander, M. Measurement and Conceptual Modelling of Retention of Metals (Cu, Pb, Zn) in Soils of Three Grass Swales. J. Hydrol. 2019, 574, 1053–1061. [Google Scholar] [CrossRef]
- Morash, J.; Wright, A.; LeBleu, C.; Meder, A.; Kessler, R.; Brantley, E.; Howe, J. Increasing Sustainability of Residential Areas Using Rain Gardens to Improve Pollutant Capture, Biodiversity and Ecosystem Resilience. Sustainability 2019, 11, 3269. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez-Barona, C.; Sabetski, V.; Millward, A.A.; Steenberg, J. De-Icing Salt Contamination Reduces Urban Tree Performance in Structural Soil Cells. Environ. Pollut. 2018, 234, 562–571. [Google Scholar] [CrossRef]
- Faucette, B.; Cardoso, F.; Mulbry, W.; Millner, P. Performance of Compost Filtration Practice for Green Infrastructure Stormwater Applications. Water Environ. Res. 2013, 85, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, D.; Brisson, J.; Fletcher, T.D. The Role of Plants in Bioretention Systems; Does the Science Underpin Current Guidance? Ecol. Eng. 2018, 120, 532–545. [Google Scholar] [CrossRef]
- Nidzgorski, D.A.; Hobbie, S.E. Urban Trees Reduce Nutrient Leaching to Groundwater. Ecol. Appl. 2016, 26, 1566–1580. [Google Scholar] [CrossRef]
- Norton, B.A.; Bending, G.D.; Clark, R.; Corstanje, R.; Dunnett, N.; Evans, K.L.; Grafius, D.R.; Gravestock, E.; Grice, S.M.; Harris, J.A.; et al. Urban Meadows as an Alternative to Short Mown Grassland: Effects of Composition and Height on Biodiversity. Ecol. Appl. 2019, 29, 1095–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, A.S.; Lee, A.; McGuire, K.L. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils. Appl. Environ. Microbiol. 2017, 83, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kövendi-Jakó, A.; Halassy, M.; Csecserits, A.; Hülber, K.; Szitár, K.; Wrbka, T.; Török, K. Three Years of Vegetation Development Worth 30 Years of Secondary Succession in Urban-Industrial Grassland Restoration. Appl. Veg. Sci. 2019, 22, 138–149. [Google Scholar] [CrossRef]
- Lal, R.; Zechmeister-Boltenstern, S.; Dáz-Pinés, E.; Spann, C.; Hofmann, K.; Schnecker, J.; Reinsch, S.; Jungkunst, H.F.; Horvath, T.; Erasmi, S.; et al. Soil and Climate, 1st ed.; Lal, R., Stewart, B.A., Eds.; CRC Press: Boca-Raton, FL, USA, 2018. [Google Scholar]
- Amelung, W.; Bossio, D.; de Vries, W.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J.; et al. Towards a Global-Scale Soil Climate Mitigation Strategy. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Kavehei, E.; Jenkins, G.A.; Adame, M.F.; Lemckert, C. Carbon Sequestration Potential for Mitigating the Carbon Footprint of Green Stormwater Infrastructure. Renew. Sustain. Energy Rev. 2018, 94, 1179–1191. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhao, X.; Yang, J.; Song, J. Cooling and Energy Saving Potentials of Shade Trees and Urban Lawns in a Desert City. Appl. Energy 2016, 161, 437–444. [Google Scholar] [CrossRef]
- Fung, C.K.W.; Jim, C.Y. Microclimatic Resilience of Subtropical Woodlands and Urban-Forest Benefits. Urban For. Urban Green. 2019, 42, 100–112. [Google Scholar] [CrossRef]
- Bartesaghi Koc, C.; Osmond, P.; Peters, A. Evaluating the Cooling Effects of Green Infrastructure: A Systematic Review of Methods, Indicators and Data Sources. Sol. Energy 2018, 166, 486–508. [Google Scholar] [CrossRef]
- Makido, Y.; Hellman, D.; Shandas, V. Nature-Based Designs to Mitigate Urban Heat: The Efficacy of Green Infrastructure Treatments in Portland, Oregon. Atmosphere 2019, 10, 282. [Google Scholar] [CrossRef] [Green Version]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising Green and Bluespace to Mitigate Urban Heat Island Intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.; Kleemann, J.; Fürst, C. A Differentiated Spatial Assessment of Urban Ecosystem Services Based on Land Use Data in Halle, Germany. Land 2018, 7, 101. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A Systematic Quantitative Review of Urban Tree Benefits, Costs, and Assessment Methods across Cities in Different Climatic Zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Barron, S.; Sheppard, S.R.J.; Condon, P.M. Urban Forest Indicators for Planning and Designing Future Forests. Forests 2016, 7, 208. [Google Scholar] [CrossRef]
- Zölch, T.; Rahman, M.A.; Pfleiderer, E.; Wagner, G.; Pauleit, S. Designing Public Squares with Green Infrastructure to Optimize Human Thermal Comfort. Build. Environ. 2019, 149, 640–654. [Google Scholar] [CrossRef]
- Herrán Fernández, Á.; Lacalle, R.G.; del Burgo, M.J.; Martínez Azkuenaga, M.; Vilela Lozano, J. First Results of Technosols Constructed from Municipal Waste in Vitoria-Gasteiz (Spain). Spanish J. Soil Sci. 2016, 6, 64–81. (In Spanish) [Google Scholar] [CrossRef]
- Salvati, L.; Quatrini, V.; Barbati, A.; Tomao, A.; Mavrakis, A.; Serra, P.; Sabbi, A.; Merlini, P.; Corona, P. Soil Occupation Efficiency and Landscape Conservation in Four Mediterranean Urban Regions. Urban For. Urban Green. 2016, 20, 419–427. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.X.; Ren, Y.; Luo, X.S.; Zhu, Y.G. Urban Soil and Human Health: A Review. Eur. J. Soil Sci. 2018, 69, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Rodas, J.M.C.; Gómez, J.M.N.; Castanho, R.A.; Cabezas, J. Land Valuation Sustainable Model of Urban Planning Development: A Case Study in Badajoz, Spain. Sustainability 2018, 10, 1450. [Google Scholar] [CrossRef] [Green Version]
Phase | Inclusion Criteria | Exclusion Criteria | Total n° of Excluded Articles |
---|---|---|---|
Ia. Identification | Keywords: Green Infrastructure, soil, city, urban | Duplicates | 226 |
Ib. Screening: Title and keyword screening | No title; no abstract; unrelated topic or measures with no relevance to soil; missing data; book chapters; conference papers; editorials | 1528 | |
Ib. Screening: Abstract screening | Thematic relevance: soil, permeability, infiltration, ES and synonyms | Abstract out of scope; no access, not found; no keywords; language (not English or German) | 358 |
Ic. Eligibility | Thematic relevance: soil, permeability, infiltration, ES and synonyms | Content out of scope | 64 |
Keyword Categories | Subcategories | n° of Publications | % |
---|---|---|---|
Green Infrastructures and types | Green Infrastructure, Green-Blue Infrastructure | 153 | 23 |
Parks, forests, gardens | 44 | ||
Low-Impact Development (LID), Sustainable Urban Drainage Systems (SUDS) | 43 | ||
Bioswale, raingarden | 17 | ||
Permeable surface | 14 | ||
Green surfaces, green space | 9 | ||
Green roofs and walls | 15 | ||
Catchment, water bodies | 8 | ||
Water | Stormwater and runoff | 60 | 16 |
Nutrient and water storage | * 49 | ||
Water management | 41 | ||
Filtration and transformation | * 35 | ||
Water treatment and quality | 12 | ||
Drainage | 10 | ||
Ecosystem Service related to any water topic | 3 | ||
Sustainability and Systemic boundaries | Climate change, resilience, and adaptation | 52 | 11 |
Changing systems and trends | 31 | ||
Sustainability and sustainable development | 31 | ||
Systemic solutions, complexity and frameworks | 24 | ||
Ecosystems | 10 | ||
Spatial distribution | Urban, urban density, built environment | 51 | 8 |
Regional details | 33 | ||
Spatial distribution, land cover, land use | 17 | ||
Project details | Methods used | 86 | 7 |
Project name/set-up | 11 | ||
Policy and planning | (Urban) planning and design | 40 | 7 |
Management practices | 27 | ||
Policy/governance/strategies/regulations | 26 | ||
Ecosystem Services | Ecosystem Services (in general) | 73 | 6 |
Biodiversity | Ecosystem Service: biodiversity and ecology | 42 | 6 |
Plant traits/vegetation | 24 | ||
Biodiversity pool and habitats | * 12 | ||
Assessment and indices | Optimization, efficiency, evaluation, benefits | 27 | 5 |
Economic variables, Life Cycle Assessments | 21 | ||
Assessment, scenarios, quality, impact | 20 | ||
Sealing and restoration | Soil pollution | 18 | 4 |
Soil and soil sealing | 17 | ||
Restoration, reforestation, revegetation | 14 | ||
Demolition, reclaim, reuse, retrofit | 6 | ||
Carbon and emissions | Micro-climate regulation | 29 | 4 |
Carbon storage | * 11 | ||
Gas exchange, thermal, heat, energy, CO2 | 9 | ||
Social context | Health and well-being, social aspects | 21 | 2 |
Archive and heritage | * 1 | ||
Biomass and materials | Biomass and food production | * 14 | 1 |
Nature-based solutions | Nature-based solutions | 14 | 1 |
Focus topic | Class 1: Rarely | Class 2: Indirectly | Class 3: Directly | Class 4: Mainly |
---|---|---|---|---|
Stormwater management | 12 | 26 | 86 | 3 |
Assessment of Ecosystem Services | 5 | 22 | 9 | 3 |
Soil nutrients | 0 | 1 | 5 | 3 |
Filtration and transformation | 0 | 0 | 1 | 3 |
Biodiversity and habitats | 8 | 7 | 10 | 3 |
Urban Heat Islands | 6 | 5 | 7 | 2 |
Land cover changes | 4 | 2 | 3 | 2 |
Biomass and food | 0 | 2 | 1 | 2 |
Governance and policies | 4 | 5 | 0 | 1 |
Assessment of GI in urban areas | 6 | 15 | 6 | 0 |
Carbon pool | 2 | 0 | 2 | 0 |
Total sum | 47 | 85 | 130 | 22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minixhofer, P.; Stangl, R. Green Infrastructures and the Consideration of Their Soil-Related Ecosystem Services in Urban Areas—A Systematic Literature Review. Sustainability 2021, 13, 3322. https://doi.org/10.3390/su13063322
Minixhofer P, Stangl R. Green Infrastructures and the Consideration of Their Soil-Related Ecosystem Services in Urban Areas—A Systematic Literature Review. Sustainability. 2021; 13(6):3322. https://doi.org/10.3390/su13063322
Chicago/Turabian StyleMinixhofer, Pia, and Rosemarie Stangl. 2021. "Green Infrastructures and the Consideration of Their Soil-Related Ecosystem Services in Urban Areas—A Systematic Literature Review" Sustainability 13, no. 6: 3322. https://doi.org/10.3390/su13063322