Quantification of Food Losses and Waste in Peru: A Mass Flow Analysis along the Food Supply Chain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Scope
2.2. Data
2.3. Estimation of FLW
3. Results and Discussion
3.1. How Much Food Is Lost and Wasted in Peru, and How Is It Distributed in FSC?
3.2. What Food Groups Are Lost and Wasted Most in Peru?
3.3. How Much FLW Is Generated at the Consumer Level, and What Is the Per Capita Amount of FLW in Peru?
3.4. Limitations and Insights for Future Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Irani, Z.; Sharif, A.M.; Lee, H.B.; Aktas, E.; Topaloglu, Z.; Van’t Wout, T.; Huda, S. Managing food security through food waste and loss: Small data to big data. Comput. Oper. Res. 2018, 98, 367–383. [Google Scholar] [CrossRef]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbade, E.B. Estimating the nutritional loss and the feeding potential derived from food losses worldwide. World Dev. 2020, 134, 105038. [Google Scholar] [CrossRef]
- Galli, F.; Cavicchi, A.; Brunori, G. Food waste reduction and food poverty alleviation: A system dynamics conceptual model. Agric. Hum. Values 2019, 36, 289–300. [Google Scholar] [CrossRef]
- Chen, C.X.; Chaudhary, A.; Mathys, A. Nutritional and environmental losses embedded in global food waste. Resour. Conserv. Recycl. 2020, 160, 104912. [Google Scholar] [CrossRef]
- Read, Q.D.; Brown, S.; Cuellar, A.D.; Finn, S.M.; Gephart, J.A.; Marston, L.T.; Muth, M.K. Assessing the environmental impacts of halving food loss and waste along the food supply chain. Sci. Total Environ. 2020, 712, 136255. [Google Scholar] [CrossRef] [PubMed]
- Koester, U.; Loy, J.P.; Ren, Y.J. Food Loss and Waste: Some Guidance. EuroChoices 2020, 19, 17–21. [Google Scholar] [CrossRef]
- Xue, L.; Liu, G.; Parfitt, J.; Liu, X.J.; Van Herpen, E.; Stenmarck, A.; Cheng, S. Missing Food, Missing Data? A Critical Review of Global Food Losses and Food Waste Data. Environ. Sci. Technol. 2017, 51, 6618–6633. [Google Scholar] [CrossRef] [PubMed]
- Skoet, J.; Fabi, C.; Cattaneo, A. Measuring Food Loss and Waste: An FAO Perspective. EuroChoices 2020, 19, 22–23. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. The State of Food and Agriculture 2019. Moving forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019; Available online: https://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 5 September 2020).
- Gomez, G.; Fisberg, R.M.; Previdelli, A.N.; Sales, C.H.; Kovalskys, I.; Fisberg, M.; Grp, E.S. Diet Quality and Diet Diversity in Eight Latin American Countries: Results from the Latin American Study of Nutrition and Health (ELANS). Nutrients 2019, 11, 1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovalskys, I.; Rigotti, A.; Koletzko, B.; Fisberg, M.; Gomez, G.; Herrera-Cuenca, M.; Grp, E.S. Latin American consumption of major food groups: Results from the ELANS study. PLoS ONE 2019, 14, e0225101. [Google Scholar] [CrossRef] [Green Version]
- Gustavsson, J.; Cederberg, C.; Sonesson, U. Global Food Losses and Food Waste Extent, Causes and Prevention. SAVE FOOD: An Initiative on Food Loss and Waste Reduction; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Delgado, L.; Schuster, M.; Torero, M. Reality of Food Losses: A New Measurement Methodology. MPRA Paper 80378. 2017. Available online: https://mpra.ub.uni-muenchen.de/80378/ (accessed on 5 September 2020).
- Velasco, C.; Ordinola, M.; Devaux, A. An approach to measuring food losses in the potato chain in Ecuador and Peru. Rev. Latinoam. Papa 2019, 23, 46–65. [Google Scholar] [CrossRef]
- Chaboud, G. Assessing food losses and waste with a methodological framework: Insights from a case study. Resour. Conserv. Recycl. 2017, 125, 188–197. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Gimenez, A.; Ares, G. Household food waste in an emerging country and the reasons why: Consumer’s own accounts and how it differs for target groups. Resour. Conserv. Recycl. 2019, 145, 332–338. [Google Scholar] [CrossRef]
- Lebersorger, S.; Schneider, F. Food loss rates at the food retail, influencing factors and reasons as a basis for waste prevention measures. Waste Manag. 2014, 34, 1911–1919. [Google Scholar] [CrossRef]
- Ellison, B.; Muth, M.K.; Golan, E. Opportunities and Challenges in Conducting Economic Research on Food Loss and Waste. Appl. Econ. Perspect. Policy 2019, 41, 1–19. [Google Scholar] [CrossRef]
- Corrado, S.; Sala, S. Food waste accounting along food supply chains: State of the art and outlook. Waste Manag. 2018, 79, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Dal’ Magro, G.P.; Talamini, E. Estimating the magnitude of the food loss and waste generated in Brazil. Waste Manag. Res. 2019, 37, 706–716. [Google Scholar] [CrossRef]
- United Nations. World Economic Situation and Prospects 2020; United Nations: New York, NY, USA, 2020; Available online: https://www.un.org/development/desa/dpad/wp-content/uploads/sites/45/WESP2020_FullReport.pdf (accessed on 25 November 2020).
- Peru. Ley N° 30988: Ley que Promueve la Reducción y Prevención de Pérdidas y Desperdicios de Alimentos. 2019. Available online: https://busquedas.elperuano.pe/normaslegales/ley-que-promueve-la-reduccion-y-prevencion-de-perdidas-y-des-ley-n-30988-1791312-3/ (accessed on 5 September 2020).
- Navarro, E.F.; Faure, G.; Cortijo, E.; De Nys, E.; Bogue, J.; Gomez, C.; Le Gal, P.Y. The impacts of differentiated markets on the relationship between dairy processors and smallholder farmers in the Peruvian Andes. Agric. Syst. 2015, 132, 145–156. [Google Scholar] [CrossRef]
- Mercado, W. Institutional economy of the quinoa productive chain in Junin, Peru. Sci. Agropecu. 2018, 9, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Avadi, A.; Freon, P. A set of sustainability performance indicators for seafood: Direct human consumption products from Peruvian anchoveta fisheries and freshwater aquaculture. Ecol. Indic. 2015, 48, 518–532. [Google Scholar] [CrossRef]
- Freon, P.; Sueiro, J.C.; Iriarte, F.; Evar, O.F.M.; Landa, Y.; Mittaine, J.F.; Bouchon, M. Harvesting for food versus feed: A review of Peruvian fisheries in a global context. Rev. Fish Biol. Fish. 2014, 24, 381–398. [Google Scholar] [CrossRef]
- Aguirre, J.; Campana, Y.; Guerrero, E.; Ugarte, D. Roads and agriculture: Impacts of connectivity in Peru. Int. J. Transp. Econ. 2018, 45, 605–629. [Google Scholar] [CrossRef]
- Tobin, D.; Glenna, L. Value Chain Development and the Agrarian Question: Actor Perspectives on Native Potato Production in the Highlands of Peru. Rural Sociol. 2019, 84, 541–568. [Google Scholar] [CrossRef]
- Chaboud, G.; Daviron, B. Food losses and waste: Navigating the inconsistencies. Glob. Food Sec. 2017, 12, 1–7. [Google Scholar] [CrossRef]
- Oelofse, S.H.; Nahman, A. Estimating the magnitude of food waste generated in South Africa. Waste Manag. Res. 2013, 31, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.H.; Rechberger, H. Practical Handbook of Material Flow Analysis; Lewis Publishers: Boca Raton, FL, USA, 2004; pp. 1–30. [Google Scholar]
- Adelodun, B.; Choi, K.S. Impact of food wastage on water resources and GHG emissions in Korea: A trend-based prediction modeling study. J. Clean. Prod. 2020, 271, 122562. [Google Scholar] [CrossRef]
- FAOSTAT. New Food Balance Sheets. Food and Agriculture Organization of the United Nations, 2020. Available online: https://www.fao.org/faostat/en/#data/FBS (accessed on 9 November 2020).
- Kummu, M.; de Moel, H.; Porkka, M.; Siebert, S.; Varis, O.; Ward, P.J. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 2012, 438, 477–489. [Google Scholar] [CrossRef]
- Reutter, B.; Lant, P.A.; Lane, J.L. The challenge of characterising food waste at a national level-An Australian example. Environ. Sci. Policy 2017, 78, 157–166. [Google Scholar] [CrossRef]
- BAP—Banco de Alimentos Perú. Transparencia—Banco de Alimentos Perú; BAP: Lima, Peru, 2018; Available online: https://bancodealimentosperu.org/transparencia (accessed on 25 November 2020).
- Martincus, C.V.; Carballo, J.; Cusolito, A. Roads, exports and employment: Evidence from a developing country. J. Econ. Dev. 2017, 125, 21–39. [Google Scholar] [CrossRef]
- Arribas-Harten, C.; Battistini-Urteaga, T.; Rodriguez-Teves, M.G.; Bernabe-Ortiz, A. Association between obesity and fruit and vegetable consumption: A population-based study in Peru. Rev. Chil. Nutr. 2015, 42, 241–247. [Google Scholar] [CrossRef]
- MINAGRI—Ministerio de Agricultura y Riego, Perú. Sistema de Información de Ccultivos; MINAGRI: Lima, Perú, 2020. Available online: https://sissic.minagri.gob.pe/sissic (accessed on 25 November 2020).
- INEI—National Institute of Statistics and Informatics. Perú: Consumo Per Cápita de los Principales Alimentos 2008–2009. (Peru: Per Capita Consumption of Main Staple Foods 2008–2009). 2012. Available online: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1028/ (accessed on 11 August 2020).
- Morales, L.E.; Higuchi, A. Is fish worth more than meat?—How consumers’ beliefs about health and nutrition affect their willingness to pay more for fish than meat. Food Qual. Prefer. 2018, 65, 101–109. [Google Scholar] [CrossRef]
- Loaiza, I.; De Troch, M.; De Boeck, G. Marine species as safe source of LC-PUFA and micronutrients: Insights in new promising marine food in Peru. Food Chem. 2020, 321, 126724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambikapathi, R.; Rothstein, J.; Yori, P.; Olortegui, M.; Lee, G.; Kosek, M.; Caulfield, L. Food purchase patterns indicative of household food access insecurity, children’s dietary diversity and intake, and nutritional status using a newly developed and validated tool in the Peruvian Amazon. Food Secur. 2018, 10, 999–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- INEI—National Institute of Statistics and Informatics. Rate of Informality among Men and Women According to Geographic Location. 2018. Available online: https://www.inei.gob.pe/buscador/?tbusqueda=informalidad (accessed on 25 November 2020).
- USDA—United States Department of Agriculture. Peru: Food Processing Ingredients. 2019. Available online: http://agriexchange.apeda.gov.in/MarketReport/Reports/Food_Processing_Ingredients_Lima_Peru_4-22-2019.pdf (accessed on 25 November 2020).
- Lemaire, A.; Limbourg, S. How can food loss and waste management achieve sustainable development goals? J. Clean. Prod. 2019, 234, 1221–1234. [Google Scholar] [CrossRef]
- Peters, D.A. Food Loss and Food Waste, Causes and Solutions. Environ. Pract. 2019, 21, 174–175. [Google Scholar] [CrossRef]
- Thiele, G.; Devaux, A.; Reinoso, I.; Pico, H.; Montesdeoca, F.; Pumisacho, M.; Horton, D. Multi-stakeholder platforms for linking small farmers to value chains: Evidence from the Andes. Int. J. Agric. Sustain. 2011, 9, 423–433. [Google Scholar] [CrossRef]
- Girard, M.; Rebai, N. Circuits courts de commercialisation et transition territoriale dans les Andes. Une réflexion depuis le Pérou et l’Équateur. Cybergeo 2020, 930. [Google Scholar] [CrossRef] [Green Version]
- Zema, D.A.; Calabro, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Valorisation of citrus processing waste: A review. J. Waste Manag. 2018, 80, 252–273. [Google Scholar] [CrossRef]
- Jedermann, R.; Nicometo, M.; Uysal, I.; Lang, W. Reducing food losses by intelligent food logistics. Philos. Trans. A Math. Phys. Eng. Sci. 2014, 372. [Google Scholar] [CrossRef]
- Buisman, M.E.; Haijema, R.; Bloemhof-Ruwaard, J.M. Discounting and dynamic shelf life to reduce fresh food waste at retailers. Int. J. Prod. Econ. 2019, 209, 274–284. [Google Scholar] [CrossRef]
- Abbade, E.B. Land and water footprints associated with rice and maize losses in Brazil. Land Use Policy 2020, 99, 105106. [Google Scholar] [CrossRef]
- Chauhan, Y. Food Waste Management with Technological Platforms: Evidence from Indian Food Supply Chains. Sustainability 2020, 12, 8162. [Google Scholar] [CrossRef]
- Bedoya-Perales, N.S.; Pumi, G.; Talamini, E.; Padula, A.D. The quinoa boom in Peru: Will land competition threaten sustainability in one of the cradles of agriculture? Land Use Policy 2018, 79, 475–480. [Google Scholar] [CrossRef]
- Schuster, M.; Maertens, M. Do private standards benefit workers in horticultural export chains in Peru? J. Clean. Prod. 2016, 112, 2392–2406. [Google Scholar] [CrossRef]
(a) Calculated average food loss and waste in different CGs for Peru (2007). | ||||||||||||||
CGs | Production average of FLW for the year (1000 tonnes and %) | |||||||||||||
Agricultural production | Postharvest handling and storage | Processing and packaging | Distribution | Pre-consumer FLW | Consumption | Total FLW per commodity group | ||||||||
Cereals | 196.86 | 7.11 | 131.2 | 6.73 | 300.42 | 9.98 | 262.76 | 18.86 | 891.24 | 9.77 | 656.90 | 40.39 | 1548.14 | 14.40 |
Roots and tubers | 702.1 | 25.34 | 702.1 | 36.04 | 610.32 | 20.27 | 152.49 | 10.94 | 2167.01 | 23.75 | 203.32 | 12.50 | 2370.33 | 22.05 |
Pulses (only) | 26.22 | 0.95 | 12.9 | 0.66 | 53.04 | 1.76 | 11.98 | 0.86 | 104.14 | 1.14 | 11.98 | 0.74 | 116.12 | 1.08 |
Fruits and vegetables | 1320.8 | 47.67 | 660.4 | 33.90 | 1339 | 44.46 | 715.2 | 51.33 | 4035.4 | 44.23 | 596.00 | 36.64 | 4631.40 | 43.08 |
Meat | 59.625 | 2.15 | 12.375 | 0.64 | 57.15 | 1.90 | 57.05 | 4.09 | 186.2 | 2.04 | 68.46 | 4.21 | 254.66 | 2.37 |
Fish and seafood | 413.136 | 14.91 | 340.5 | 17.48 | 618.21 | 20.53 | 70.1 | 5.03 | 1441.946 | 15.80 | 28.04 | 1.72 | 1469.99 | 13.67 |
Milk | 51.73 | 1.87 | 88.68 | 4.55 | 33.28 | 1.11 | 123.76 | 8.88 | 297.45 | 3.26 | 61.88 | 3.80 | 359.33 | 3.34 |
FLW total | 2770.47 | 100.00 | 1948.16 | 100.00 | 3011.42 | 100.00 | 1393.34 | 100.00 | 9123.386 | 100.00 | 1626.58 | 100.00 | 10,749.97 | 100.00 |
(b) Calculated average food loss and waste in different CGs for Peru (2017). | ||||||||||||||
CGs | Production average of FLW for the year (1000 tonnes and %) | |||||||||||||
Agricultural production | Postharvest handling and storage | Processing and packaging | Distribution | Pre-consumer FLW | Consumption | Total FLW per commodity group | ||||||||
Cereals | 303.78 | 8.52 | 209.16 | 8.36 | 522.00 | 13.09 | 455.24 | 23.58 | 1490.18 | 12.43 | 1138.10 | 46.99 | 2628.28 | 18.24 |
Roots and tubers | 910.70 | 25.55 | 910.70 | 36.39 | 787.20 | 19.75 | 196.14 | 10.16 | 2804.74 | 23.40 | 261.52 | 10.80 | 3066.26 | 21.28 |
Pulses (only) | 75.66 | 2.12 | 38.31 | 1.53 | 139.44 | 3.50 | 33.14 | 1.72 | 286.55 | 2.39 | 33.14 | 1.37 | 319.69 | 2.22 |
Fruits and vegetables | 1860.00 | 52.18 | 930.00 | 37.16 | 1891.20 | 47.44 | 915.96 | 47.44 | 5597.16 | 46.70 | 763.30 | 31.51 | 6360.46 | 44.15 |
Meat | 100.44 | 2.82 | 20.85 | 0.83 | 98.55 | 2.47 | 98.40 | 5.10 | 318.23 | 2.66 | 118.08 | 4.88 | 436.31 | 3.03 |
Fish and seafood | 242.65 | 6.81 | 271.30 | 10.84 | 506.16 | 12.70 | 79.60 | 4.12 | 1099.71 | 9.18 | 31.84 | 1.31 | 1131.55 | 7.85 |
Milk | 71.23 | 2.00 | 122.10 | 4.88 | 41.88 | 2.03 | 152.32 | 7.89 | 387.53 | 3.23 | 76.16 | 3.14 | 463.69 | 3.22 |
FLW total | 3564.45 | 100.00 | 2502.42 | 100.00 | 3986.43 | 100.00 | 1930.80 | 100.00 | 11,984.09 | 100.00 | 2422.14 | 100.00 | 14,406.23 | 100.00 |
(c) Calculated average food loss and waste in different CGs for Peru (2007–2017). | ||||||||||||||
CGs | Production average of FLW for the year (1000 tonnes and %) | |||||||||||||
Agricultural production | Postharvest handling and storage | Processing and packaging | Distribution | Pre-consumer FLW | Consumption | Total FLW per commodity group | ||||||||
Cereals | 261.51 | 8.03 | 175.02 | 7.69 | 395.06 | 11.15 | 344.19 | 20.43 | 1175.78 | 10.93 | 860.46 | 42.65 | 2036.24 | 15.93 |
Roots and tubers | 832.10 | 25.55 | 832.10 | 36.56 | 724.34 | 20.44 | 180.77 | 10.73 | 2569.31 | 23.87 | 241.03 | 11.95 | 2810.34 | 21.99 |
Pulses (only) | 42.89 | 1.32 | 21.62 | 0.95 | 84.28 | 2.38 | 19.41 | 1.15 | 168.21 | 1.56 | 19.41 | 0.96 | 187.62 | 1.47 |
Fruits and vegetables | 1625.40 | 49.90 | 812.70 | 35.71 | 1653.27 | 46.64 | 838.00 | 49.75 | 4929.38 | 45.80 | 698.34 | 34.61 | 5627.71 | 44.04 |
Meat | 81.47 | 2.50 | 16.91 | 0.74 | 78.87 | 2.23 | 78.69 | 4.67 | 255.94 | 2.38 | 94.42 | 4.68 | 350.36 | 2.74 |
Fish and seafood | 351.12 | 10.78 | 310.16 | 13.63 | 568.95 | 16.05 | 77.29 | 4.59 | 1307.52 | 12.15 | 30.92 | 1.53 | 1338.43 | 10.47 |
Milk | 62.59 | 1.92 | 107.29 | 4.71 | 39.68 | 2.29 | 145.98 | 8.67 | 355.54 | 3.30 | 72.99 | 3.62 | 428.53 | 3.35 |
FLW total | 3257.08 | 100.00 | 2275.80 | 100.00 | 3544.47 | 100.00 | 1684.33 | 100.00 | 10,761.67 | 100.00 | 2017.57 | 100.00 | 12,779.24 | 100.00 |
Steps in the Food Supply Chain | Food Loss and Waste (1000 Tonnes) | Food Loss and Waste (kg/Inhabitant) | FLW Edible Proportion d (1000 Tonnes) | FLW Edible Proportion (kg/Inhabitant) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total (2007) | Total (2017) | Total (2007–2017 Average) | 2007 a | 2017 b | 2007–2017 c | Total (2007) | Total (2017) | Total (2007–2017 Average) | 2007 a | 2017 b | 2007–2017 c | |
Agricultural production | 2770.47 | 3564.45 | 3257.08 | 97.78 | 125.81 | 108.72 | 2133.26 | 2744.63 | 2507.95 | 75.29 | 85.33 | 83.71 |
Postharvest handling | 1948.16 | 2502.42 | 2275.80 | 68.76 | 88.32 | 75.96 | 1500.08 | 1926.86 | 1752.37 | 52.94 | 59.90 | 58.49 |
Processing and packaging | 3011.42 | 3986.43 | 3544.47 | 106.29 | 140.70 | 118.31 | 2258.57 | 2989.82 | 2658.35 | 79.71 | 92.95 | 88.73 |
Distribution | 1393.34 | 1930.80 | 1684.33 | 49.18 | 68.15 | 56.22 | 1072.87 | 1486.72 | 1296.93 | 37.87 | 46.22 | 43.29 |
Consumption at household level | 1626.58 | 2422.14 | 2017.57 | 57.41 | 85.49 | 67.34 | 1252.47 | 1865.05 | 1553.53 | 44.21 | 57.98 | 51.85 |
FLW total | 10,749.97 | 14,406.23 | 12,779.24 | 379.41 | 508.46 | 426.56 | 8217.25 | 11,013.08 | 9769.12 | 290.02 | 342.39 | 326.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bedoya-Perales, N.S.; Dal’ Magro, G.P. Quantification of Food Losses and Waste in Peru: A Mass Flow Analysis along the Food Supply Chain. Sustainability 2021, 13, 2807. https://doi.org/10.3390/su13052807
Bedoya-Perales NS, Dal’ Magro GP. Quantification of Food Losses and Waste in Peru: A Mass Flow Analysis along the Food Supply Chain. Sustainability. 2021; 13(5):2807. https://doi.org/10.3390/su13052807
Chicago/Turabian StyleBedoya-Perales, Noelia S., and Glenio Piran Dal’ Magro. 2021. "Quantification of Food Losses and Waste in Peru: A Mass Flow Analysis along the Food Supply Chain" Sustainability 13, no. 5: 2807. https://doi.org/10.3390/su13052807
APA StyleBedoya-Perales, N. S., & Dal’ Magro, G. P. (2021). Quantification of Food Losses and Waste in Peru: A Mass Flow Analysis along the Food Supply Chain. Sustainability, 13(5), 2807. https://doi.org/10.3390/su13052807