Towards the Anchovy Biorefinery: Biogas Production from Anchovy Processing Waste after Fish Oil Extraction with Biobased Limonene
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucarini, M.; Zuorro, A.; Di Lena, G.; Lavecchia, R.; Durazzo, A.; Benedetti, B.; Lombardi-Boccia, G. Sustainable management of secondary raw materials from the marine food-chain: A case-study perspective. Sustainability 2020, 12, 8997. [Google Scholar] [CrossRef]
- Ido, A.; Kaneta, M. Fish oil and fish meal production from urban fisheries biomass in Japan. Sustainability 2020, 12, 3345. [Google Scholar] [CrossRef]
- Goossens, Y.; Schmidt, T.G.; Kuntscher, M. Evaluation of food waste prevention measures-the use of fish products in the food service sector. Sustainability 2020, 12, 6613. [Google Scholar] [CrossRef]
- The Blue Economy: 10 Years—100 Innovations—100 Million. Available online: https://www.theblueeconomy.org (accessed on 1 February 2021).
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; Food and Agriculture Organization of the United Nations—FAO: New York, NY, USA, 2020; ISBN 9789251326923. [Google Scholar]
- Transforming Our World: The 2030 Agenda For Sustainable Development; United Nations: New York, NY, USA, 2016; pp. 12–14. [CrossRef]
- United Nations. Our ocean, our Future: Call for Action; General Assembly Resolution; United Nations: New York, NY, USA, 2017; A/RES/71/3; p. 6. [Google Scholar]
- Calabrò, P.S.; Gori, M.; Lubello, C. European trends in greenhouse gases emissions from integrated solid waste management. Environ. Technol. 2015, 36, 2125–2137. [Google Scholar] [CrossRef] [PubMed]
- Paone, E.; Tabanelli, T.; Mauriello, F. The rise of lignin biorefinery. Curr. Opin. Green Sustain. Chem. 2020, 24, 1–6. [Google Scholar] [CrossRef]
- Pagliaro, M.; Pizzone, D.M.; Scurria, A.; Lino, C.; Paone, E.; Mauriello, F.; Ciriminna, R. Sustainably Sourced Olive Polyphenols and Omega 3 Marine Lipids: A Synergy Fostering Public Health. ACS Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Maschmeyer, T.; Luque, R.; Selva, M. Upgrading of marine (fish and crustaceans) biowaste for high added-value molecules and bio(nano)-materials. Chem. Soc. Rev. 2020, 49, 4527–4563. [Google Scholar] [CrossRef]
- Xu, C.; Nasrollahzadeh, M.; Selva, M.; Issaabadi, Z.; Luque, R. Waste-to-wealth: Biowaste valorization into valuable bio(nano)materials. Chem. Soc. Rev. 2019, 48, 4791–4822. [Google Scholar] [CrossRef]
- Nawaz, A.; Li, E.; Irshad, S.; Xiong, Z.; Xiong, H.; Shahbaz, H.M.; Siddique, F. Valorization of fisheries by-products: Challenges and technical concerns to food industry. Trends Food Sci. Technol. 2020, 99, 34–43. [Google Scholar] [CrossRef]
- Kim, S.K. Seafood Processing By-Products: Trends and Applications; Seaf. Process; Springer: Berlin/Heidelberg, Germany. [CrossRef]
- Lands, W.E.M. Fish, Omega-3 and Human Health; AOCS press: Champaign, IL, USA, 2005; ISBN 1893997812. [Google Scholar]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Pike, I.H.; Jackson, A. Fish oil: Production and use now and in the future. Lipid Technol. 2010, 22, 59–61. [Google Scholar] [CrossRef]
- Ciriminna, R.; Scurria, A.; Avellone, G.; Pagliaro, M. A Circular Economy Approach to Fish Oil Extraction. ChemistrySelect 2019, 4, 5106–5109. [Google Scholar] [CrossRef]
- McCarty, P.L.; Smith, D.P. Anaerobic wastewater treatment. Environ. Sci. Technol. 1986, 20, 1200–1206. [Google Scholar] [CrossRef]
- Sawatdeenarunat, C.; Nguyen, D.; Surendra, K.C.; Shrestha, S.; Rajendran, K.; Oechsner, H.; Xie, L.; Khanal, S.K. Anaerobic biorefinery: Current status, challenges, and opportunities. Bioresour. Technol. 2016, 215, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Gunaseelan, V.N. Anaerobic digestion of biomass for methane production: A review. Biomass Bioenergy 1997, 13, 83–114. [Google Scholar] [CrossRef]
- Steinhauser, A.; Deublein, D. Biogas from Waste and Renewables Energy; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9783527327119. [Google Scholar]
- Schievano, A.; Adani, F.; Tamone, F.; D’Imporzano, G.; Scaglia, B.; Genevini, P.L. What is the Digestate? In Anaerobic Digestion: Opportunities for Agriculture and Environment; Adani, F., Schievano, A., Boccasile, G., Eds.; University of Milan: Milan, Italy, 2009; Volume 12, pp. 7–18. [Google Scholar]
- Koszel, M.; Lorencowicz, E. Agricultural Use of Biogas Digestate as a Replacement Fertilizers. Agric. Agric. Sci. Procedia 2015, 7, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Makádi, M.; Tomócsik, A.; Orosz, V. Digestate: A New Nutrient Source—Review. In Biogas; Kumar, S., Ed.; InTech: London, UK, 2012; Available online: http://www.intechopen.com/books/biogas/digestate-a-new-nutrient-source-r (accessed on 1 February 2021).
- Eiroa, M.; Costa, J.C.; Alves, M.M.; Kennes, C.; Veiga, M.C. Evaluation of the biomethane potential of solid fish waste. Waste Manag. 2012, 32, 1347–1352. [Google Scholar] [CrossRef] [Green Version]
- Nges, I.A.; Mbatia, B.; Björnsson, L. Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction. J. Environ. Manag. 2012, 110, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Bücker, F.; Marder, M.; Peiter, M.R.; Lehn, D.N.; Esquerdo, V.M.; Antonio de Almeida Pinto, L.; Konrad, O. Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renew. Energy 2020, 147, 798–805. [Google Scholar] [CrossRef]
- Morales-Polo, C.; Cledera-Castro, M.D.M.; Hueso-Kortekaas, K.; Revuelta-Aramburu, M. Anaerobic digestion in wastewater reactors of separated organic fractions from wholesale markets waste. Compositional and batch characterization. Energy and environmental feasibility. Sci. Total Environ. 2020, 726, 138567. [Google Scholar] [CrossRef] [PubMed]
- Ivanovs, K.; Spalvins, K.; Blumberga, D. Approach for modelling anaerobic digestion processes of fish waste. Energy Procedia 2018, 147, 390–396. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, B.; Flotats, X. Effect of limonene on batch anaerobic digestion of citrus peel waste. Biochem. Eng. J. 2016, 109, 9–18. [Google Scholar] [CrossRef]
- Ruiz, B.; Flotats, X. Citrus essential oils and their influence on the anaerobic digestion process: An overview. Waste Manag. 2014, 34, 2063–2079. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Pontoni, L.; Porqueddu, I.; Greco, R.; Pirozzi, F.; Malpei, F. Effect of the concentration of essential oil on orange peel waste biomethanization: Preliminary batch results. Waste Manag. 2016, 48, 440–447. [Google Scholar] [CrossRef]
- Malara, A.; Paone, E.; Frontera, P.; Bonaccorsi, L.; Panzera, G.; Mauriello, F. Sustainable exploitation of coffee silverskin in water remediation. Sustainability 2018, 10, 3547. [Google Scholar] [CrossRef] [Green Version]
- Calabrò, P.S.; Fazzino, F.; Folino, A.; Paone, E.; Komilis, D. Semi-Continuous Anaerobic Digestion of Orange Peel Waste: Effect of Activated Carbon Addition and Alkaline Pretreatment on the Process. Sustainability 2019, 11, 3386. [Google Scholar] [CrossRef] [Green Version]
- Paone, E.; Beneduci, A.; Corrente, G.A.; Malara, A.; Mauriello, F. Hydrogenolysis of aromatic ethers under lignin-first conditions. Mol. Catal. 2020, 497, 111228. [Google Scholar] [CrossRef]
- Gumina, B.; Espro, C.; Galvagno, S.; Pietropaolo, R.; Mauriello, F. Bioethanol Production from Unpretreated Cellulose under Neutral Selfsustainable Hydrolysis/Hydrogenolysis Conditions Promoted by the Heterogeneous Pd/Fe3O4 Catalyst. ACS Omega 2019, 4, 352–357. [Google Scholar] [CrossRef] [PubMed]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association, American Water Works Association, Water Environment Federatio: Washington, DC, USA, 2012; ISBN 9780875530130. [Google Scholar]
- Calabro, P.S.; Panzera, M.F. Biomethane production tests on ensiled orange peel waste. Int. J. Heat Technol. 2017, 35, S130–S136. [Google Scholar] [CrossRef]
- Holliger, C.; Alves, M.; Andrade, D.; Angelidaki, I.; Astals, S.; Baier, U.; Bougrier, C.; Buffière, P.; Carballa, M.; De Wilde, V.; et al. Towards a standardization of biomethane potential tests. Water Sci. Technol. 2016, 74, 2515–2522. [Google Scholar] [CrossRef]
- Donoso-Bravo, A.; Pérez-Elvira, S.I.; Fdz-Polanco, F. Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem. Eng. J. 2010, 160, 607–614. [Google Scholar] [CrossRef]
- Liebetrau, J.; Pfeiffer, D.; Thrän, D. (Eds.) Collection of Measurement Methods for Biogas—Methods to Determine Parameters for Analysis Purposes and Parameters That Describe Processes in the Biogas Sector; Series of the Funding Programme “Biomass Energy Use”; Deutsches Biomasseforschungszentrum Gemeinnützige GmbH: Leipzig, Germany, 2016; Volume 7, ISSN 2364-897X. Available online: https://www.energetische-biomassenutzung.de/fileadmin/user_upload/Downloads/Ver%C3%B6_entlichungen/07_MMS_Biogas_en_web.pdf (accessed on 1 February 2021).
- Mézes, L.; Tamas, J.; Borbely, J. Novel approach of the basis of FOS/TAC method. An. Univ. Oradea Fasc. Prot. Mediu. 2011, 17, 713–718. [Google Scholar]
- Lozano-Bilbao, E.; Lozano, G.; Jiménez, S.; Jurado-Ruzafa, A.; Hardisson, A.; Rubio, C.; Weller, D.G.; Paz, S.; Gutiérrez, Á.J. Ontogenic and seasonal variations of metal content in a small pelagic fish (Trachurus picturatus) in northwestern African waters. Mar. Pollut. Bull. 2020, 156, 111251. [Google Scholar] [CrossRef] [PubMed]
- Naga, S.M.; El-Maghraby, H.F.; Mahmoud, E.M.; Talaat, M.S.; Ibrhim, A.M. Preparation and characterization of highly porous ceramic scaffolds based on thermally treated fish bone. Ceram. Int. 2015, 41, 15010–15016. [Google Scholar] [CrossRef]
- Vivekanand, V.; Mulat, D.G.; Eijsink, V.G.H.; Horn, S.J. Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresour. Technol. 2018, 249, 35–41. [Google Scholar] [CrossRef]
- Jeung, J.H.; Chung, W.J.; Chang, S.W. Evaluation of anaerobic co-digestion to enhance the efficiency of livestock manure anaerobic digestion. Sustainability 2019, 11, 7170. [Google Scholar] [CrossRef] [Green Version]
- Sayara, T.; Sánchez, A. A review on anaerobic digestion of lignocellulosic wastes: Pretreatments and operational conditions. Appl. Sci. 2019, 9, 4655. [Google Scholar] [CrossRef] [Green Version]
- The EU Fish Market—EUMOFA. 2020. Available online: https://www.eumofa.eu (accessed on 1 February 2021).
Substrate | Batch | Substrate [g] | TS Mix | pH Mix |
---|---|---|---|---|
-(blank) | 1 | - | 2.5% | 7.38 |
2 | 7.42 | |||
Cellulose (control) | 3 | 2.1 | 3.1% | 7.50 |
4 | 7.47 | |||
SAS | 5 | 2.7 | 3.3% | 7.39 |
6 | 7.30 | |||
7 | 7.41 |
pH | TS [%] | VS [%TS] | COD [mgO2·gTS−1] | C/N | d-Limonene [mg·gTS−1] | |
---|---|---|---|---|---|---|
Inoculum | 7.50 | 5.0 ± 0.10 | 76.3 ± 0.18 | - | - | - |
Cellulose | - | 95.6 | 100 | 1185 * | - | - |
SAS | 6.30 | 98.0 ± 0.15 | 77.1 ± 0.27 | 918.3 | 4 | 5 |
Substrate | Batch | Biogas [mL·gVS−1] | Average [mL·gVS−1] | BMP [mLCH4·gVS−1] | Average [mLCH4·gVS−1] | Average Methane Content |
---|---|---|---|---|---|---|
Cellulose (control) | 3 | 603.4 | 598.3 | 396.5 | 390.0 | 68% |
4 | 593.3 | 382.6 | 65% | |||
SAS | 5 | 406.4 | 378.5 | 296.1 | 278.0 | 72% |
6 | 381.7 | 281.3 | 73% | |||
7 | 347.4 | 256.4 | 73% |
P [mL·gVS−1] | Rm [mL·gVS−1·d−1] | λ [d] | r2 |
---|---|---|---|
268.7 | 24.8 | 3.145 | 0.997 |
Property | Blank | Cellulose | SAS |
---|---|---|---|
pH | 7.1 ± 0.06 | 7.0 ± 0.01 | 7.3 ± 0.00 |
TS | 2.4 ± 0.03% | 2.5 ± 0.02% | 2.7 ± 0.01% |
VS | 71.2 ± 0.19% | 72.1 ± 0.18% | 69.3 ± 0.57% |
TAN [mg·L−1] | 234 ± 8.8 | 173 ± 8.0 | 697 ± 20.3 |
Cl- [mg·L−1] | 1263 ± 17.5 | 1105 ± 55.0 | 1297 ± 107.3 |
VFA [mgHAC·L−1] | 297.3 ± 14.11 | 290.4 ± 21.04 | 411.1 ± 28.09 |
FOS/TAC [gHAC·gCaCO3−1] | 0.08 ± 0.001 | 0.09 ± 0.010 | 0.09 ± 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paone, E.; Fazzino, F.; Pizzone, D.M.; Scurria, A.; Pagliaro, M.; Ciriminna, R.; Calabrò, P.S. Towards the Anchovy Biorefinery: Biogas Production from Anchovy Processing Waste after Fish Oil Extraction with Biobased Limonene. Sustainability 2021, 13, 2428. https://doi.org/10.3390/su13052428
Paone E, Fazzino F, Pizzone DM, Scurria A, Pagliaro M, Ciriminna R, Calabrò PS. Towards the Anchovy Biorefinery: Biogas Production from Anchovy Processing Waste after Fish Oil Extraction with Biobased Limonene. Sustainability. 2021; 13(5):2428. https://doi.org/10.3390/su13052428
Chicago/Turabian StylePaone, Emilia, Filippo Fazzino, Daniela Maria Pizzone, Antonino Scurria, Mario Pagliaro, Rosaria Ciriminna, and Paolo Salvatore Calabrò. 2021. "Towards the Anchovy Biorefinery: Biogas Production from Anchovy Processing Waste after Fish Oil Extraction with Biobased Limonene" Sustainability 13, no. 5: 2428. https://doi.org/10.3390/su13052428