Soil Structure Stability under Different Land Uses in Association with Polyacrylamide Effects
Abstract
:1. Introduction
1.1. Soil Structure Stability and Its Importance
1.2. Ethiopian Highland Soils: Land Use and Soil Degradation
1.3. Polyacrylamide (PAM) as a Soil Stabilizing Agent
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Preparation of PAM-Treated Soil Aggregates
2.3. Determination of Soil Structural Stability Indices
2.4. Statistical Analysis
3. Results
3.1. Land Use and Soil Properties
3.2. Water Retention and Structure Stability of Untreated and PAM-Treated Soils
3.2.1. Water Retention of Untreated and PAM-Treated Soils
3.2.2. Structure Stability of Untreated and PAM-Treated Soils
4. Discussion
4.1. Land Use and Soil Type (Elevation) Effects
4.2. Soil Organic Carbon and Polyacrylamide Effect on Soil Structure Stability Indices
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chandrasekhar, P.; Kreiselmeier, J.; Schwen, A.; Weninger, T.; Julich, S.; Feger, K.H.; Schwärzel, K. Why we should include soil structural dynamics of agricultural soils in hydrological models. Water 2018, 10, 1862. [Google Scholar] [CrossRef] [Green Version]
- Mamedov, A.I.; Bar–Yosef, B.; Levkovich, I.; Fine, P.; Silber, A.; Levy, G.J. Physicochemical mechanisms underlying soil and organic amendment effects on runoff P losses. Land Degrad. Dev. 2020, 31, 2395–2404. [Google Scholar] [CrossRef]
- Mangalassery, S.; Sjögersten, S.; Sparkes, D.L.; Sturrock, C.J.; Mooney, S.J. The effect of soil aggregate size on pore structure and its consequence on emission of greenhouse gases. Soil Tillage Res. 2013, 132, 39–46. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Negassa, W.C.; Guber, A.K.; Rivers, M.L. Protection of soil carbon within macro-aggregates depends on intra-aggregate pore characteristics. Sci. Rep. 2015, 5, 16261. [Google Scholar] [CrossRef] [Green Version]
- Juarez, S.; Nunan, N.; Duday, A.C.; Pouteau, V.; Schmidt, S.; Hapca, S.; Chenu, C. Effects of different soil structures on the decomposition of native and added organic carbon. Eur. J. Soil Biol. 2013, 58, 81–90. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek Martin, H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Kögel-Knabner, I.; et al. Microaggregates in soils. J. Plant. Nutr. Soil Sci. 2017, 181, 104–136. [Google Scholar] [CrossRef] [Green Version]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Kassa, H.; Dondeyne, S.; Poesen, J.; Frankl, A.; Nyssen, J. Impact of deforestation on soil fertility, soil carbon and nitrogen stocks: The case of Gacheb catchment in the White Nile basin, Ethiopia. Agric. Ecosyst. Environ. 2017, 247, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Kodešová, R.; Jirku, V.; Kodeš, V.; Mühlhanselová, M.; Nikodem, A.; Žigová, A. Soil structure and soil hydraulic properties of Haplic Luvisol used as arable land and grassland. Soil Tillage Res. 2011, 111, 154–161. [Google Scholar] [CrossRef]
- de Oliveira, J.A.T.; Cássaro, F.A.M.; Pires, L.F. Estimating soil porosity and pore size distribution changes due to wetting-drying cycles by morphometric image analysis. Soil Tillage Res. 2021, 25, 104814. [Google Scholar] [CrossRef]
- Schweizer, S.A.; Fischer, H.; Haring, V.; Stahr, K. Soil structure breakdown following land use change from forest to maize in Northwest Vietnam. Soil Tillage Res. 2017, 166, 10–17. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lutzow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Jacobs, A.; Rauber, R.; Ludwig, B. Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after 40 years. Soil Tillage Res. 2009, 102, 158–164. [Google Scholar] [CrossRef]
- Ogle, S.M.; Alsaker, C.; Baldock, J.; Bernoux, M.; Breidt, F.J.; McConkey, B.; Regina, K.; Vazquez-Amabile, G.G. Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Sci. Rep. 2019, 9, 11665. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.L.; Schjønning, P.; Watts, C.W.; Christensen, B.T.; Obour, P.B.; Munkholm, L.J. Soil degradation and recovery—Changes in organic matter fractions and structural stability. Geoderma 2020, 364, 114181. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Vanden Bygaart, A.; Macdonald, J.; Cerkowniak, D.; McConkey, B.; Desjardins, R.; Angers, D. Revisiting no-till’s impact on soil organic carbon storage in Canada. Soil Tillage Res. 2020, 198, 104529. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Nyssen, J.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Schutt, B.; Adgo, E.; Tegegne, F. Soil erosion and conservation in Ethiopia: A review. Prog. Phys. Geogr. 2015, 39, 750–774. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, M.A.; Bravo, F.; Ruiz–Peinado, R.; Pando, V.; Bravo–Oviedo, A. Impact of changes in land use, species and elevation on soil organic carbon and total nitrogen in Ethiopian Central Highlands. Geoderma 2016, 261, 70–79. [Google Scholar] [CrossRef]
- Lemann, T.; Roth, V.; Zeleke, G.; Subhatu, A.; Kassawmar, T.; Hurni, H. Spatial and temporal variability in hydrological responses of the Upper Blue Nile basin, Ethiopia. Water 2019, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Tesfahunegn, G.B. Soil quality indicators response to land use and soil management systems in Northern Ethiopia’s catchment. Land Degrad. Dev. 2016, 27, 438–448. [Google Scholar] [CrossRef]
- Delelegn, Y.T.; Purahong, W.; Blazevic, A.; Yitaferu, B.; Wubet, T.; Goransson, H.; Godbold, D.L. Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia. Sci. Rep. 2017, 7, 13602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dignac, M.F.; Derrien, D.; Barré, P.; Barot, S.; Cecillon, L.; Chenu, C.; Chevallier, T.; Freschet, G.T.; Garnier, P.; Roumet, C.; et al. Increasing soil carbon storage: Mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 2017, 37, 14. [Google Scholar] [CrossRef] [Green Version]
- Tebebu, T.Y.; Bayabil, H.K.; Stoof, C.R.; Giri, S.K.; Gessess, A.A.; Tilahun, S.A.; Steenhuis, T.S. Characterization of degraded soils in the humid Ethiopian highlands. Land Degrad. Dev. 2017, 28, 1891–1901. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, V.; Darboux, F.; Alexis, M.; Cottenot, L.; Gaillard, H.; Quenea, K.; Mutema, M. Soil tillage impact on the relative contribution of dissolved, particulate and gaseous (CO2) carbon losses during rainstorms. Soil Tillage Res. 2019, 187, 31–40. [Google Scholar] [CrossRef]
- Shabtai, I.A.; Shenker, M.; Edeto, W.L.; Warburg, A.; Ben–Hur, M. Effects of land use on structure and hydraulic properties of Vertisols containing a sodic horizon in northern Ethiopia. Soil Tillage Res. 2014, 136, 19–27. [Google Scholar] [CrossRef]
- Bayabil, H.K.; Stoof, C.R.; Lehmann, J.C.; Yitaferu, B.; Steenhuis, T.S. Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: The Anjeni watershed. Geoderma 2015, 243–244, 115–123. [Google Scholar] [CrossRef]
- Bekele, A.; Kibret, K.; Bedadi, B.; Yli–Halla, M.; Balemi, T. Effects of lime, vermicompost, and chemical P fertilizer on selected properties of acid soils of Ebantu District, Western Highlands of Ethiopia. Appl. Environ. Soil Sci. 2018, 2018, 8178305. [Google Scholar] [CrossRef]
- Mamedov, A.I.; Huang, C.; Aliev, F.A.; Levy, G.J. Aggregate stability and water retention near saturation characteristics as affected by soil texture, aggregate size and polyacrylamide application. Land Degrad. Dev. 2017, 28, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Caesar-Tonthat, T.; Busscher, W.; Novak, J.; Gaskin, J.; Kim, Y. Effects of polyacrylamide and organic matter on microbes associated to soil aggregation of Norfolk loamy sand. Appl. Soil Ecol. 2008, 40, 240–249. [Google Scholar] [CrossRef]
- Awad, Y.M.; Lee, S.S.; Kim, K.H.; Ok, Y.S.; Kuzyakov, Y. Carbon and nitrogen mineralization and enzyme activities in soil aggregate-size classes: Effects of biochar, oyster shells, and polymers. Chemosphere 2018, 198, 40–48. [Google Scholar] [CrossRef]
- Lee, S.S.; Shah, H.S.; Awad, Y.M.; Kumar, S.; Ok, Y.S. Synergy effects of biochar and polyacrylamide on plants growth and soil erosion control. Environ. Earth Sci. 2015, 74, 2463–2473. [Google Scholar] [CrossRef]
- Ma, B.; Ma, B.L.; McLaughlin, N.B.; Mi, J.; Yang, Y.; Liu, J. Exploring soil amendment strategies with polyacrylamide to improve soil health and oat productivity in a dryland farming ecosystem: One-time versus repeated annual application. Land Degrad. Dev. 2020, 31, 1176–1192. [Google Scholar] [CrossRef]
- Sojka, R.E.; Orts, W.J.; Entry, J.A. Soil physics and hydrology: Conditioners. In Encyclopedia of Soils in the Environment; Elsevier: Oxford, UK, 2005; pp. 301–306. [Google Scholar]
- Mamedov, A.I.; Fujimaki, H.; Tsunekawa, A.; Tsubo, M.; Levy, G. Structure stability of acidic Luvisols: Effects of tillage type and exogenous additives. Soil Tillage Res. 2021, 206, 104832. [Google Scholar] [CrossRef]
- Tian, X.; Fan, H.; Wang, J.; Ippolito, J.; Li, Y.; Feng, S.; An, M.; Zhang, F.; Wang, K. Effect of polymer materials on soil structure and organic carbon under drip irrigation. Geoderma 2019, 340, 94–103. [Google Scholar] [CrossRef]
- Tian, X.; Wang, K.; Liu, Y.; Fan, H.; Wang, J.; An, M. Effects of polymer materials on soil physicochemical properties and bacterial community structure under drip irrigation. Appl. Soil Ecol. 2020, 150, 103456. [Google Scholar] [CrossRef]
- Abebe, G.; Tsunekawa, A.; Haregeweyn, N.; Takeshi, T.; Wondie, M.; Adgo, E.; Masunaga, T.; Tsubo, M.; Ebabu, K.; Berihun, M.L.; et al. Effects of land use and topographic position on soil organic carbon and total nitrogen stocks in different agro–ecosystems of the Upper Blue Nile Basin. Sustainability 2020, 12, 2425. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World reference base for soil resources 2014, update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resource Reports No. 106; FAO: Rome, Italy, 2015; p. 239. [Google Scholar]
- Klute, A. Methods of Soil Analysis, 2nd ed.; Agronomy Monograph 9; ASA and SSSA: Madison, WI, USA, 1986. [Google Scholar]
- Mamedov, A.I.; Wagner, L.E.; Huang, C.; Norton, L.D.; Levy, G.J. Polyacrylamide effects on aggregate and structure stability of soils with different clay mineralogy. Soil Sci. Soc. Am. J. 2010, 74, 1720–1732. [Google Scholar] [CrossRef] [Green Version]
- Mamedov, A.I.; Levy, G.J. High energy moisture characteristics: Linking between some soil physical processes and structure stability. In Quantifying and Modeling Soil Structure Dynamics: Advances in Agricultural Systems Modeling. Trans-disciplinary Research, Synthesis, Modeling and Applications; SSSA: Madison, WI, USA, 2015; Volume 3, pp. 41–74. [Google Scholar] [CrossRef]
- Saffari, N.; Hajabbasi, M.A.; Shirani, H.; Mosaddeghi, M.R.; Mamedov, A.I. Biochar type and pyrolysis temperature effects on soil quality indicators and structural stability. J. Environ. Manag. 2020, 221, 110190. [Google Scholar] [CrossRef]
- Pierson, F.B.; Mulla, D.J. An Improved method for measuring aggregate stability of a weakly aggregated loessial soil. Soil Sci. Soc. Am. J. 1989, 53, 1825–1831. [Google Scholar] [CrossRef]
- Levy, G.J.; Mamedov, A.I. High-Energy-Moisture-Characteristic aggregate stability as a predictor for seal formation. Soil Sci. Soc. Am. J. 2002, 66, 1603–1609. [Google Scholar] [CrossRef]
- SAS Institute. SAS User’s Guide; Version 9.2; SAS Institute: Cary, NC, USA, 2008. [Google Scholar]
- Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Sultan, D.; Fenta, A.A.; et al. Exploring the variability of soil properties as influenced by land use and management practices: A case study in the Upper Blue Nile basin, Ethiopia. Soil Tillage Res. 2020, 200, 104614. [Google Scholar] [CrossRef]
- Welemariam, M.; Kebede, F.; Bedadi, B.; Birhane, E. Effect of community-based soil and water conservation practices on soil glomalin, aggregate size distribution, aggregate stability and aggregate-associated organic carbon in northern highlands of Ethiopia. Agric. Food Secur. 2018, 7, 42. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Verrecchia, E.P. Calcium–mediated stabilization of soil organic carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Tisdall, J.M.; Oades, J.M. Organic matter and water stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Singh, M.; Sarkar, B.; Biswas, B.; Churchman, J.; Bolan, N.S. Adsorption–desorption behavior of dissolved organic carbon by soil clay fractions of varying mineralogy. Geoderma 2016, 280, 47–56. [Google Scholar] [CrossRef]
- Gui, J.; Holden, N.M. The relationship between soil microbial activity and microbial biomass, soil structure and grassland management. Soil Tillage Res. 2015, 146, 32–38. [Google Scholar] [CrossRef]
- Levy, G.J.; Warrington, D.N. Polyacrylamide addition to soils: Impacts on soil structure and stability. In 533 Functional Polymers in Food Science: From Technology to Biology, Volume 2: Food Processing; John Wiley and Sons: Hoboken, NJ, USA, 2015; pp. 9–32. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; McLaughlin, R.A.; Shainberg, I.; Levy, G.J. Hydraulic characteristics of depositional seals as affected by exchangeable cations, clay mineralogy, and polyacrylamide. Soil Sci. Soc. Am. J. 2009, 73, 910–918. [Google Scholar] [CrossRef]
- Shainberg, I.; Goldstein, D.; Mamedov, A.I.; Levy, G.J. Granular and dissolved polyacrylamide effects on hydraulic conductivity of a fine sand and a silt loam. Soil Sci. Soc. Am. J. 2011, 75, 1090–1098. [Google Scholar] [CrossRef]
- Miller, W.P.; Willis, R.L.; Levy, G.J. Aggregate stabilization in kaolinitic soils by low rates of anionic polyacrylamide. Soil Use Manag. 1998, 14, 101–105. [Google Scholar] [CrossRef]
- Mamedov, A.I.; Beckmann, S.; Huang, C.; Levy, G.J. Aggregate stability as affected by polyacrylamide molecular weight, soil texture, and water quality. Soil Sci. Soc. Am. J. 2007, 71, 1909–1918. [Google Scholar] [CrossRef] [Green Version]
- Kebede, B.; Tsunekawa, A.; Haregeweyn, N.; Mamedov, A.I.; Tsubo, M.; Fenta, A.A.; Meshesha, D.T.; Masunaga, T.; Adgo, E.; Abebe, G.; et al. Effectiveness of polyacrylamide in reducing runoff and soil loss under consecutive rainfall storms. Sustainability 2020, 12, 1597. [Google Scholar] [CrossRef] [Green Version]
- Mamedov, A.I.; Tsunekawa, A.; Tsubo, M.; Fujimaki, H.; Ekberli, I.; Şeker, C.; Öztürk, H.S.; Cerdà, A.; Levy, G.J. Structure stability of cultivated soils from semi-arid region: Comparing the effects of land use and anionic polyacrylamide application. Agronomy 2020, 10, 2010. [Google Scholar] [CrossRef]
- Porebska, D.; Slawinski, C.; Lamorski, K.; Walczak, R.T. Relationship between van Genuchten’s parameters of the retention curve equation and physical properties of soil solid phase. Int. Agrophys. 2006, 20, 153–159. [Google Scholar]
- de Melo, D.V.M.; de Almeida, B.G.; de Souza, E.R.; Silva, L.S.; Jacomine, P.K.T. Structural quality of polyacrylamide-treated cohesive soils in the coastal tablelands of Pernambuco. Rev. Brasil. Ciênc. Solo 2014, 38, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Inbar, A.; Ben–Hur, M.; Sternberg, M.; Lado, M. Using polyacrylamide to mitigate post fire soil erosion. Geoderma 2014, 239, 107–114. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.P.; Novara, A.; Finger, D.C.; Avelar, D.; Kalantari, Z.; Cerda, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610, 997–1009. [Google Scholar] [CrossRef] [Green Version]
Soil Watershed Elevation | Land Use | pH | EC | Particle Size Class, % | SOC | ||
---|---|---|---|---|---|---|---|
1:2.5 | dS/m | Sand | Silt | Clay | % | ||
Acrisol Guder High | Crop | 5.18 ± 0.09 f | 0.18 ± 0.01 ij | 42 | 40 | 18 ± 0.9 f | 1.83 ± 0.09 f |
Bush | 5.73 ± 0.11 d | 0.21 ± 0.02 hi | 56 | 32 | 12 ± 1.0 g | 5.67 ± 0.27 b | |
Grass | 5.68 ± 0.10 d | 0.25 ± 0.01 g | 38 | 42 | 20 ± 0.7 ef | 5.42 ± 0.30 b | |
Forest | 6.16 ± 0.12 c | 0.23 ± 0.01 gh | 72 | 18 | 10 ± 0.8 g | 8.03 ± 0.38 a | |
Luvisol Abagerima Medium | Crop | 5.21 ± 0.10 f | 0.20 ± 0.01 hi | 52 | 26 | 22 ± 1.1 de | 1.39 ± 0.07 g |
Bush | 5.43 ± 0.11 e | 0.53 ± 0.04 e | 32 | 40 | 28 ± 1.2 c | 2.32 ± 0.13 e | |
Grass | 5.38 ± 0.10 e | 0.64 ± 0.03 d | 34 | 42 | 24 ± 1.4 d | 2.61 ± 0.12 d | |
Forest | 6.43 ± 0.13 b | 0.94 ± 0.06 a | 60 | 16 | 24 ± 1.3 d | 8.07 ± 0.40 a | |
Vertisol Dibatie Low | Crop | 6.05 ± 0.12 c | 0.16 ± 0.01 j | 16 | 18 | 66 ± 3.3 a | 1.69 ± 0.09 fg |
Bush | 6.59 ± 0.12 a | 0.77 ± 0.02 c | 16 | 28 | 56 ± 3.4 b | 2.28 ± 0.13 e | |
Grass | 6.15 ± 0.14 c | 0.29 ± 0.05 f | 12 | 20 | 68 ± 2.8 a | 2.50 ± 0.11 de | |
Forest | 6.67 ± 0.11 a | 0.87 ± 0.05 b | 18 | 24 | 58 ± 2.9 b | 5.11 ± 0.26 c | |
Soil Watershed Elevation | Land use | Exchangeable cations, cmolc/kg | CEC | CaCO3 | |||
Ca | Mg | Na | K | cmolc/kg | % | ||
Acrisol Guder High | Crop | 9.4 ± 0.47 g | 3.6 ± 0.14 fg | 4.9 | 1.5 | 26.4 | 0.28 ± 0.01 g |
Bush | 16.1 ± 0.51 b | 3.3 ± 0.15 hi | 5.1 | 1.6 | 29.6 | 0.48 ± 0.01 g | |
Grass | 10.2 ± 0.81 f | 3.7 ± 0.10 ef | 4.7 | 1.6 | 37.5 | 0.32 ± 0.02 g | |
Forest | 14.0 ± 0.70 d | 3.2 ± 0.13 i | 4.5 | 1.3 | 39.6 | 1.28 ± 0.05 f | |
Luvisol Abagerima Medium | Crop | 10.1 ± 0.50 f | 3.8 ± 0.15 d | 3.3 | 1.4 | 25.1 | 4.01 ± 0.16 c |
Bush | 11.3 ± 0.59 e | 3.8 ± 0.18 de | 3.4 | 1.5 | 34.0 | 2.72 ± 0.22 e | |
Grass | 11.8 ± 0.56 e | 4.3 ± 0.16 b | 4.1 | 2.2 | 35.4 | 5.60 ± 0.11 a | |
Forest | 17.8 ± 0.89 a | 3.5 ± 0.14 fg | 3.9 | 3.0 | 33.6 | 5.80 ± 0.23 a | |
Vertisol Dibatie Low | Crop | 9.9 ± 0.52 fg | 3.5 ± 0.14 gh | 6.3 | 1.9 | 26.5 | 3.52 ± 0.12 d |
Bush | 13.5 ± 0.67 d | 4.5 ± 0.16 a | 2.9 | 2.5 | 32.4 | 4.56 ± 0.15 b | |
Grass | 13.4 ± 0.64 d | 4.0 ± 0.18 c | 2.4 | 2.0 | 29.5 | 3.44 ± 0.18 d | |
Forest | 14.7 ± 0.73 c | 4.2 ± 0.17 b | 3.4 | 1.8 | 36.0 | 4.42 ± 0.20 b |
Variables | SI | pH | EC | Sand | Silt | Clay | Ca | Mg | Na | K | CEC | CaCO3 | CCR | SOC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(a) between the indicators of soil properties for all watersheds | |||||||||||||||
SI | 1 | ||||||||||||||
pH | 0.38 * | 1 | |||||||||||||
EC | 0.54 * | 0.57 * | 1 | ||||||||||||
Sand | 0.51 * | −0.3 * | −0.18 | 1 | |||||||||||
Silt | −0.3 * | −0.6 * | −0.11 | 0.05 | 1 | ||||||||||
Clay | −0.3 * | 0.56 * | 0.23 | −0.9 ** | −0.41 * | 1 | |||||||||
Ca | 0.70 * | 0.70 ** | 0.57 ** | 0.29 | −0.47 * | −0.02 | 1 | ||||||||
Mg | −0.28 | 0.23 | 0.55 ** | −0.6 * | 0.24 | 0.51 * | 0.03 | 1 | |||||||
Na | −0.04 | −0.20 | −0.5 * | 0.27 | 0.08 | −0.25 | −0.20 | −0.6 * | 1 | ||||||
K | 0.45 * | 0.53 * | 0.73 ** | −0.22 | −0.26 | 0.34 * | 0.52 ** | 0.43 ** | −0.24 | 1 | |||||
CEC | 0.56 * | 0.40 * | 0.42 ** | 0.21 | 0.12 | −0.19 | 0.38 * | 0.15 | 0.06 | 0.12 | 1 | ||||
CaCO3 | 0.24 | 0.38 * | 0.73 ** | −0.30 | −0.36 * | 0.45 * | 0.30 * | 0.59 * | −0.4 ** | 0.72 ** | 0.03 | 1 | |||
CCR | −0.4 * | 0.44 * | −0.06 | 0.84 ** | −0.44 * | 0.97 ** | −0.13 | 0.38 * | −0.16 | 0.27 | −0.4 * | 0.39 * | 1 | ||
SOC | 0.84 ** | 0.46 * | 0.27 | 0.63 ** | −0.33 * | −0.41 * | 0.72 ** | −0.5 * | 0.14 | 0.15 | 0.63 * | −0.11 | −0.49 * | 1 | |
(b) between soil properties and SOC or SI for each watershed: Guder (G), Abagerima (A), and Dibatie (D) | |||||||||||||||
Variable | SI | pH | EC | Sand | Silt | Clay | Ca | Mg | Na | K | CEC | CaCO3 | CCR | ESP | |
G G | SOC | 0.91 ** | 0.99 ** | 0.69 ** | 0.66 * | −0.76 ** | −0.65 * | 0.68 * | −0.61 * | −0.4 * | −0.4 * | 0.81 ** | 0.80 ** | −0.96 ** | −0.85 ** |
SI | 1 | 0.91 ** | 0.53 * | 0.79 ** | −0.85 ** | −0.65 * | 0.43 * | −0.65 * | −0.6 * | −0.7 ** | 0.80 ** | 0.93 ** | −0.90 ** | −0.70 ** | |
A A | SOC | 0.97 ** | 0.99 ** | 0.88 ** | 0.64 * | −0.70 ** | −0.11 | 0.99 ** | −0.55 * | 0.49 * | 0.91 ** | 0.37 * | 0.62 * | ‒0.56 ** | −0.92 ** |
SI | 1 | 0.94 ** | 0.96 ** | 0.43 * | −0.52 * | 0.10 | 0.96 ** | −0.47 * | 0.55 * | 0.92 ** | 0.52 * | 0.60 * | −0.67 * | −0.86 ** | |
D D | SOC | 0.95 ** | 0.70 ** | 0.72 ** | 0.53 * | 0.32 * | −0.39 * | 0.74 ** | 0.41 * | −0.3 * | −0.4 * | 0.82 ** | 0.52 * | −0.72 ** | −0.40 * |
SI | 1 | 0.63 * | 0.72 ** | 0.33 | 0.35 * | −0.48 * | 0.78 ** | 0.45 * | −0.5 * | −0.4 * | 0.73 ** | 0.47 * | −0.71 ** | −0.56 * |
Factors | Treatments | θs | θr | α | n | VDP | MS | SI |
---|---|---|---|---|---|---|---|---|
kg kg−1 | kg kg−1 | hPa−1 | kg kg−1 | hPa | hPa−1 | |||
Soil | Acrisol (Guder) | 1.04 a | 0.39 a | 0.083 b | 8.52 a | 0.405 b | 11.92 a | 0.034 c |
Luvisol (Abagerima) | 0.96 b | 0.36 b | 0.088 a | 8.23 b | 0.453 a | 11.22 b | 0.042 a | |
Vertisol (Dibatie) | 0.92 c | 0.32 c | 0.089 a | 8.56 a | 0.385 c | 11.15 b | 0.036 b | |
Land use | Crop | 0.83 d | 0.32 c | 0.082 b | 9.73 a | 0.285 d | 12.10 a | 0.025 d |
Bush | 0.91 c | 0.32 c | 0.085 c | 8.04 c | 0.389 c | 11.59 c | 0.034 c | |
Grass | 0.96 b | 0.35 b | 0.087 b | 8.22 b | 0.402 b | 11.28 b | 0.036 b | |
Forest | 1.19 a | 0.43 a | 0.092 a | 7.76 d | 0.581 a | 10.75 d | 0.055 a | |
PAM mg L‒1 | 0 | 0.96 b | 0.33 c | 0.079 c | 9.67 a | 0.359 c | 12.62 a | 0.029 c |
25 | 0.98 a | 0.36 b | 0.088 b | 8.43 b | 0.412 b | 11.21 b | 0.038 b | |
200 | 0.99 a | 0.38 a | 0.094 a | 7.22 c | 0.472 b | 10.46 c | 0.046 a |
Treatment | Parameters | p < F | R2 | Treatment | Parameters | p < F | R2 |
---|---|---|---|---|---|---|---|
All | SOC | 0.001 | 0.43 | PAM 0 | SOC | 0.001 | 0.71 |
CaCO3 | 0.001 | 0.62 | CaCO3 | 0.001 | 0.83 | ||
EC (or CEC) | 0.078 | 0.64 | pH | 0.001 | 0.86 | ||
EC | 0.008 | 0.89 | |||||
CCR | 0.002 | 0.92 | |||||
PAM 25 | SOC | 0.001 | 0.62 | PAM 200 | EC | 0.001 | 0.56 |
mg L−1 | EC | 0.001 | 0.79 | mg L−1 | Silt | 0.001 | 0.88 |
CEC | 0.028 | 0.80 | SOC | 0.001 | 0.90 | ||
CaCO3 | 0.120 | 0.82 | pH | 0.001 | 0.93 | ||
Clay | 0.001 | 0.95 | |||||
Ca + Mg | 0.074 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamedov, A.I.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Fujimaki, H.; Kawai, T.; Kebede, B.; Mulualem, T.; Abebe, G.; Wubet, A.; et al. Soil Structure Stability under Different Land Uses in Association with Polyacrylamide Effects. Sustainability 2021, 13, 1407. https://doi.org/10.3390/su13031407
Mamedov AI, Tsunekawa A, Haregeweyn N, Tsubo M, Fujimaki H, Kawai T, Kebede B, Mulualem T, Abebe G, Wubet A, et al. Soil Structure Stability under Different Land Uses in Association with Polyacrylamide Effects. Sustainability. 2021; 13(3):1407. https://doi.org/10.3390/su13031407
Chicago/Turabian StyleMamedov, Amrakh I., Atsushi Tsunekawa, Nigussie Haregeweyn, Mitsuru Tsubo, Haruyuki Fujimaki, Takayuki Kawai, Birhanu Kebede, Temesgen Mulualem, Getu Abebe, Anteneh Wubet, and et al. 2021. "Soil Structure Stability under Different Land Uses in Association with Polyacrylamide Effects" Sustainability 13, no. 3: 1407. https://doi.org/10.3390/su13031407
APA StyleMamedov, A. I., Tsunekawa, A., Haregeweyn, N., Tsubo, M., Fujimaki, H., Kawai, T., Kebede, B., Mulualem, T., Abebe, G., Wubet, A., & Levy, G. J. (2021). Soil Structure Stability under Different Land Uses in Association with Polyacrylamide Effects. Sustainability, 13(3), 1407. https://doi.org/10.3390/su13031407