Effect of Zero and Minimum Tillage on Cotton Productivity and Soil Characteristics under Different Nitrogen Application Rates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments
2.3. Soil Sampling and Analysis
2.4. Aggregate Stability
2.5. Measurements of Soil Moisture Content
2.6. Measurements of Yield and Yield Components
2.7. Fiber Quality
2.8. Statistical Analysis
3. Results
3.1. Boll Number and Weight (g)
3.2. Seed Cotton Yield
3.3. Total Soil N and Soil Organic Matter
3.4. Quality Characteristics
3.5. Aggregate Stability and Soil Moisture Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Usman, K.; Khan, N.; Khan, M.U.; Saleem, F.Y.; Rashid, A. Impact of tillage and nitrogen on cotton yield and quality in a wheat-cotton system, Pakistan. Arch. Agron. Soil Sci. 2013, 60, 519–530. [Google Scholar] [CrossRef]
- Nehra, O.; Yadav, A. Evaluation of zero-till sown wheat (Triticum aestivum L.) in sequence with basmati rice (Oryza sativa L.) under shallow ground water table conditions. Haryana J. Agron. 2011, 27, 52–53. [Google Scholar]
- Shahryari, Z.; Fazaelipoor, M.H.; Setoodeh, P.; Nair, R.B.; Taherzadeh, M.; Ghasemi, Y. Utilization of wheat straw for fungal phytase production. Int. J. Recycl. Org. Waste Agric. 2018, 7, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Ravindra, K.; Singh, T.; Mor, S. Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. J. Clean. Prod. 2019, 208, 261–273. [Google Scholar] [CrossRef]
- Oanh, N.T.K.; Permadi, D.A.; Dong, N.P.; Nguyet, D.A. Emission of Toxic Air Pollutants and Greenhouse Gases from Crop Residue Open Burning in Southeast Asia. In Remote Sensing for Archaeology and Cultural Landscapes; Springer: Berlin/Heidelberg, Germany, 2018; pp. 47–66. [Google Scholar]
- Fernández-García, V.; Marcos, E.; Fernández-Guisuraga, J.M.; Taboada, A.; Suárez-Seoane, S.; Calvo, L. Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire. Int. J. Wildland Fire 2019, 28, 354. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, R.K. Selection of sustainable solutions for crop residue burning: An environmental issue in northwestern states of India. Environ. Dev. Sustain. 2021, 23, 3696–3730. [Google Scholar] [CrossRef]
- Carr, P.M.; Gramig, G.G.; Liebig, M.A. Impacts of Organic Zero Tillage Systems on Crops, Weeds, and Soil Quality. Sustainabity 2013, 5, 3172–3201. [Google Scholar] [CrossRef] [Green Version]
- Gürsoy, S.; Sessiz, A.; Malhi, S. Short-term effects of tillage and residue management following cotton on grain yield and quality of wheat. Field Crop. Res. 2010, 119, 260–268. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Zhang, X.; Xin, X.; Zhu, A.; Zhang, J.; Yang, W. Effects of tillage and residue managements on organic C accumulation and soil aggregation in a sandy loam soil of the North China Plain. Catena 2017, 156, 176–183. [Google Scholar] [CrossRef]
- Halde, C.; Entz, M.H. Plant species and mulch application rate affected decomposition of cover crop mulches used in organic rotational no-till systems. Can. J. Plant Sci. 2016, 96, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Halde, C.; Gulden, R.H.; Entz, M.H. Selecting Cover Crop Mulches for Organic Rotational No-Till Systems in Manitoba, Canada. Agron. J. 2014, 106, 1193–1204. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Chang, S.X.; Cui, S.; Jagadamma, S.; Zhang, Q.; Cai, Y. Residue retention promotes soil carbon accumulation in minimum tillage systems: Implications for conservation agriculture. Sci. Total Environ. 2020, 740, 140147. [Google Scholar] [CrossRef]
- Rahmati, M.; Eskandari, I.; Kouselou, M.; Feiziasl, V.; Mahdavinia, G.R.; Aliasgharzad, N.; McKenzie, B.M. Changes in soil organic carbon fractions and residence time five years after implementing conventional and conservation tillage practices. Soil Tillage Res. 2020, 200, 104632. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; Aslam, Z.; Zulifqar, U.; Rauf, A.; Hano, C.; et al. Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage. Plants 2021, 10, 2001. [Google Scholar] [CrossRef]
- Hazarika, S.; Parkinson, R.; Bol, R.; Dixon, L.; Russell, P.; Donovan, S.; Allen, D. Effect of tillage system and straw management on organic matter dynamics. Agron. Sustain. Dev. 2009, 29, 525–533. [Google Scholar] [CrossRef]
- He, J.; Kuhn, N.; Zhang, X.M.; Li, H.W. Effects of 10 years of conservation tillage on soil properties and productivity in the farming-pastoral ecotone of Inner Mongolia, China. Soil Use Manag. 2009, 25, 201–209. [Google Scholar] [CrossRef]
- Song, K.; Yang, J.; Xue, Y.; Lv, W.; Zheng, X.; Pan, J. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system. Sci. Rep. 2016, 6, 36602. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, T.; Tian, S.; Hu, H.; Li, G.; Ning, T. Soil organic carbon increment sources and crop yields under long-term con-servation tillage practices in wheat-maize systems. Land Degrad. Dev. 2020, 31, 1138–1150. [Google Scholar] [CrossRef]
- Mahmood, T.; Wang, X.; Ahmar, S.; Abdullah, M.; Iqbal, M.S.; Rana, R.M.; Yasir, M.; Khalid, S.; Javed, T.; Mora-Poblete, F.; et al. Genetic potential and inheritance pattern of phenological growth and drought tolerance in cotton (Gossypium Hirsutum L.). Front. Plant Sci. 2021, 12, 705392. [Google Scholar] [CrossRef]
- Khan, N.; Khalid, U.; Fazal, Y.; Abdus, S.; Hayatullah, K.; Saleem, D.; Sadia, G. No-Till with Optimum N Fertilization Produces High Cotton Lint Yield and Improves N Efficiency in Wheat-Cotton Cropping System. Philipp. Agric. Sci. 2014, 97, 257–265. [Google Scholar]
- Nyakatawa, E.; Reddy, K.; Lemunyon, J. Predicting soil erosion in conservation tillage cotton production systems using the revised universal soil loss equation (RUSLE). Soil Tillage Res. 2001, 57, 213–224. [Google Scholar] [CrossRef]
- Boquet, D.J.; Hutchinson, R.L.; Breitenbeck, G.A. Long-Term Tillage, Cover Crop, and Nitrogen Rate Effects on Cotton: Yield and Fiber Properties. Agron. J. 2004, 96, 1436–1442. [Google Scholar] [CrossRef]
- Nafi, E.; Webber, H.; Danso, I.; Naab, J.B.; Frei, M.; Gaiser, T. Interactive effects of conservation tillage, residue management, and nitrogen fertilizer application on soil properties under maize-cotton rotation system on highly weathered soils of West Africa. Soil Tillage Res. 2020, 196, 104473. [Google Scholar] [CrossRef]
- Frame, W.H.; Herbert, D.A.; Mehl, H.; Cahoon, C.; Reiter, M.S.; Flessner, M. Virginia Cotton Production Guide; Publication AREC-124NP; Office of Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2016; pp. 5–7. [Google Scholar]
- Dalton, T.J.; Yahaya, I.; Naab, J. Perceptions and performance of conservation agriculture practices in northwestern Ghana. Agric. Ecosyst. Environ. 2014, 187, 65–71. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to soil of NWFP, FATA and northern areas. Lahore: National Institute of research in soils and geomatics; pp 76. Commun. Soil Sci. Plant Anal. 2009, 16, 322–338. [Google Scholar]
- Nelson, D.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Soil Science Society of America: Madison, WI, USA, 1983; pp. 539–579. [Google Scholar]
- Bremner, J.; Mulvaney, C. Nitrogen-total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Soltanpour, P.N. Use of ammonium bicarbonate DTPA soil test to evaluate elemental availability and toxicity. Commun. Soil Sci. Plant Anal. 1985, 16, 323–338. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis. Physical and Mineralogical Properties. Part I, 2nd ed.; Klute, A., Ed.; ASA-SSSA: Madison, WI, USA, 1986; Volume 9, pp. 425–442. [Google Scholar]
- Guo, X.; Ma, J.; Guo, Y.; Sun, M.; Zhou, J.; Yuan, Y.; Zhang, T.; Sun, X.; Song, X. The relationship between fiber initiation and lint percentage in cotton. Pak. J. Bot. 2014, 46, 2227–2238. [Google Scholar]
- Steel, R.; Torrie, J. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw-Hill Book Company: New York, NY, USA, 1980; p. 481. [Google Scholar]
- Nouri, A.; Lee, J.; Yin, X.; Tyler, D.D.; Saxton, A.M. Thirty-four years of no-tillage and cover crops improve soil quality and increase cotton yield in Alfisols, Southeastern USA. Geoderma 2019, 337, 998–1008. [Google Scholar] [CrossRef]
- DeLaune, P.; Mubvumba, P.; Ale, S.; Kimura, E. Impact of no-till, cover crop, and irrigation on Cotton yield. Agric. Water Manag. 2020, 232, 106038. [Google Scholar] [CrossRef]
- Nouri, A.; Lee, J.; Yoder, D.C.; Jagadamma, S.; Walker, F.R.; Yin, X.; Arelli, P. Management duration controls the synergistic effect of tillage, cover crop, and nitrogen rate on cotton yield and yield stability. Agric. Ecosyst. Environ. 2020, 301, 107007. [Google Scholar] [CrossRef]
- Lewis, K.L.; Burke, J.A.; Keeling, W.S.; McCallister, D.M.; DeLaune, P.B.; Keeling, J.W. Soil Benefits and Yield Limitations of Cover Crop Use in Texas High Plains Cotton. Agron. J. 2018, 110, 1616–1623. [Google Scholar] [CrossRef]
- Ajayi, A. The effects of tillage methods and intercropping on soil water characteristics, growth and grain yield of maize (Zea mays L.) and groundnut (Arachis hypogaea L.) on an alfisol in South West, Nigeria. Afr. J. Agric. Res. 2015, 10, 2866–2874. [Google Scholar] [CrossRef] [Green Version]
- Usman, K.; Khalid, U.; Malik, M.W.I.; Hamza, A.; Saad, M.; Riaz, M.; Ghulam, S. Response of Bt cotton (Gossypium hirsutum L.) to irrigation and potassium fertilization under two tillage systems in a silty clay soil. Arch. Agron. Soil Sci. 2020, 67, 1–16. [Google Scholar] [CrossRef]
- Xie, T.; Shan, L. Water stress and appropriate N management achieves profitable yields and less N loss on sandy soils. Arid. Land Res. Manag. 2021, 35, 358–373. [Google Scholar] [CrossRef]
- Conaty, W.C.; Johnston, D.B.; Thompson, A.J.; Liu, S.; Stiller, W.N.; Constable, G.A. Use of a managed stress environment in breeding cotton for a variable rainfall environment. Field Crop. Res. 2018, 221, 265–276. [Google Scholar] [CrossRef]
- Samuel, A.D.; Bungau, S.; Tit, D.M.; Melinte, C.E.; Purza, L.; Badea, G.E. Effects of Long Term Application of Organic and Mineral Fertilizers on Soil Enzymes. Rev. Chim. 2018, 69, 2608–2612. [Google Scholar] [CrossRef]
- Miransari, M. Soil microbes and plant fertilization. Appl. Microbiol. Biotechnol. 2011, 92, 875–885. [Google Scholar] [CrossRef]
- Blaise, D. Effect of tillage systems on weed control, yield and fibre quality of upland (Gossypium hirsutum L.) and Asiatic tree cotton (G. arboreum L.). Soil Tillage Res. 2006, 91, 207–216. [Google Scholar] [CrossRef]
- Watts, D.B.; Runion, G.B.; Balkcom, K.S. Nitrogen fertilizer sources and tillage effects on cotton growth, yield, and fiber quality in a coastal plain soil. Field Crop. Res. 2017, 201, 184–191. [Google Scholar] [CrossRef]
- Wang, X.; Qi, J.-Y.; Zhang, X.-Z.; Li, S.-S.; Virk, A.L.; Zhao, X.; Xiao, X.-P.; Zhang, H.-L. Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system. Soil Tillage Res. 2019, 194, 104339. [Google Scholar] [CrossRef]
- Khan, N.; Usman, K.; Yazdan, F.; Din, S.U.; Gull, S.; Khan, S. Impact of tillage and intra-row spacing on cotton yield and quality in wheat–cotton system. Arch. Agron. Soil Sci. 2015, 61, 581–597. [Google Scholar] [CrossRef]
- Khan, N.U.; Khan, F.; Kashan, M.; Ullah, Q.; Rauf, A. Nitrogen Use Impact on Nitrogen Use Efficiency and Lint Yield in Zero Tillage Cotton. Pak. J. Agric. Res. 2018, 31, 45–54. [Google Scholar] [CrossRef]
- Afzal, M.N.; Tariq, M.; Ahmad, M.; Mubeen, K.; Khan, M.A.; Afzal, M.U.; Ahmad, S. Dry Matter, Lint Mass and Fiber Properties of Cotton in Response to Nitrogen Application and Planting Densities. Pak. J. Agric. Res. 2019, 32, 229. [Google Scholar] [CrossRef]
- McDonald, M.D.; Lewis, K.L.; Ritchie, G.L. Short Term Cotton Lint Yield Improvement with Cover Crop and No-Tillage Implementation. Agronomy 2020, 10, 994. [Google Scholar] [CrossRef]
- Ngwira, A.R.; Thierfelder, C.; Lambert, D.M. Conservation agriculture systems for Malawian smallholder farmers: Long-term effects on crop productivity, profitability and soil quality. Renew. Agric. Food Syst. 2013, 28, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, M.F.; Fernandes, M.M.H.; Fernandes, C.; da Silva, A.M.R.; Ferraudo, A.S.; Coelho, A.P. Contribution of tillage systems and crop succession to soil structuring. Soil Tillage Res. 2021, 209, 104924. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q.P. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Guo, Y.; Fan, R.; Zhang, X.; Zhang, Y.; Wu, D.; McLaughlin, N.; Zhang, S.; Chen, X.; Jia, S.; Liang, A. Tillage-induced effects on SOC through changes in aggregate stability and soil pore structure. Sci. Total Environ. 2020, 703, 134617. [Google Scholar] [CrossRef]
- Fonte, S.J.; Quintero, D.C.; Velásquez, E.; Lavelle, P. Interactive effects of plants and earthworms on the physical stabilization of soil organic matter in aggregates. Plant Soil 2012, 359, 205–214. [Google Scholar] [CrossRef]
- Acar, M.; Çelik, İ.; Günal, H. Effects of long-term tillage systems on soil water content and wheat yield under Mediterranean conditions. J. New Theory 2017, 17, 98–108. [Google Scholar]
- Li, J.; Wang, Y.-K.; Guo, Z.; Li, J.-B.; Tian, C.; Hua, D.-W.; Shi, C.-D.; Wang, H.-Y.; Han, J.-C.; Xu, Y. Effects of Conservation Tillage on Soil Physicochemical Properties and Crop Yield in an Arid Loess Plateau, China. Sci. Rep. 2020, 10, 4716. [Google Scholar] [CrossRef]
- Wilkes, T.I.; Warner, D.J.; Edmonds-Brown, V.; Davies, K.G.; Denholm, I. Zero Tillage Systems Conserve Arbuscular Mycorrhizal Fungi, Enhancing Soil Glomalin and Water Stable Aggregates with Implications for Soil Stability. Soil Syst. 2021, 5, 4. [Google Scholar] [CrossRef]
- Gao, Q.; Ma, L.; Fang, Y.; Zhang, A.; Li, G.; Wang, J.; Wu, D.; Wu, W.; Du, Z. Conservation tillage for 17 years alters the molecular composition of organic matter in soil profile. Sci. Total Environ. 2021, 762, 143116. [Google Scholar] [CrossRef]
- Abbas, H.G.; Mahmood, A.; Ali, Q. Zero tillage: A potential technology to improve cotton yield. Genetika 2016, 48, 761–776. [Google Scholar] [CrossRef]
- Hossain, M.M.; Begum, M.; Hashem, A.; Rahman, M.; Ahmed, S.; Hassan, M.M.; Javed, T.; Shabbir, R.; Hadifa, A.; Sabagh, A.E.; et al. Strip tillage and crop residue retention decrease the size but increase the diversity of the weed seed bank under intensive rice-based crop rotations in Bangladesh. Agronomy 2021, 11, 1164. [Google Scholar] [CrossRef]
- Gao, L.; Wang, B.; Li, S.; Han, Y.; Zhang, X.; Gong, D.; Ma, M.; Liang, G.; Wu, H.; Wu, X.; et al. Effects of different long-term tillage systems on the composition of organic matter by 13C CP/TOSS NMR in physical fractions in the Loess Plateau of China. Soil Tillage Res. 2019, 194, 104321. [Google Scholar] [CrossRef]
- Blaise, D.; Ravindran, C. Influence of tillage and residue management on growth and yield of cotton grown on a vertisol over 5 years in a semi-arid region of India. Soil Tillage Res. 2003, 70, 163–173. [Google Scholar] [CrossRef]
- Awad, M.; El-Desoky, M.A.; Ghallab, A.; Kubes, J.; Mawly, S.E.A.; Danish, S.; Ratnasakera, D.; Islam, M.S.; Skalicky, M.; Brestic, M.; et al. Ornamental plant efficiency for heavy metals phytoextraction from contaminated soils amended with organic materials. Molecules 2021, 26, 3360. [Google Scholar] [CrossRef]
- Dou, F.; Hons, F.M. Tillage and nitrogen effects on soil organic matter fractions in wheat-based systems. Soil Sci. Soc. Am. J. 2006, 70, 1896–1905. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, D.; Bandyopadhyay, K.; Aggarwal, P.; Rana, D.S. A global analysis of the impact of zero-tillage on soil physical condition, organic carbon content, and plant root response. Land Degrad. Dev. 2019, 31, 557–567. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, A.; Yang, W.; Zhang, J. Accumulation of organic components and its association with macroaggregation in a sandy loam soil following conservation tillage. Plant Soil 2017, 416, 1–15. [Google Scholar] [CrossRef]
- Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A.G. Modern seed technology: Seed coating delivery systems for enhancing seed and crop performance. Agriculture 2020, 10, 526. [Google Scholar] [CrossRef]
- Afzal, I.; Saleem, S.; Skalicky, M.; Javed, T.; Bakhtavar, M.A.; Kamran, M.; Shahid, M.; Sohail Saddiq, M.; Afzal, A.; Shafqat, N.; et al. Magnetic field treatments improves sunflower yield by inducing physiological and biochemical modulations in seeds. Molecules 2021, 26, 2022. [Google Scholar] [CrossRef]
- Javed, T.; Afzal, I. Impact of seed pelleting on germination potential, seedling growth and storage of tomato seed. Acta Hortic. 2020, 417–424. [Google Scholar] [CrossRef]
- Javed, T.; Afzal, I.; Mauro, R.P. Seed coating in direct seeded rice: An innovative and sustainable approach to enhance grain yield and weed management under submerged conditions. Sustainability 2021, 13, 2190. [Google Scholar] [CrossRef]
- Shabbir, R.; Javed, T.; Afzal, I.; Sabagh, A.E.; Ali, A.; Vicente, O.; Chen, P. Modern biotechnologies: Innovative and sustainable approaches for the improvement of sugarcane tolerance to environmental stresses. Agronomy 2021, 11, 1042. [Google Scholar] [CrossRef]
- Javed, T.; Shabbir, R.; Ali, A.; Afzal, I.; Zaheer, U.; Gao, S.J. Transcription factors in plant stress responses: Challenges and potential for sugarcane improvement. Plants 2020, 9, 491. [Google Scholar] [CrossRef] [PubMed]
Month | Precipitation | ||||
---|---|---|---|---|---|
2011–2012 | 2012–2013 | 2013–2014 | 2014–2015 | 2015–2016 | |
April | 34 | 45 | 10 | 13 | 159 |
May | 30 | 32 | 30 | 36 | 25 |
June | 80 | 63 | 99 | 77 | 64 |
July | 222 | 249 | 200 | 255 | 245 |
August | 229 | 211 | 203 | 214 | 251 |
September | 111 | 112 | 115 | 337 | 116 |
October | 8 | 70 | 22 | 39 | 162 |
November | 5 | 12 | 15 | 5 | 25 |
December | 40 | - | 17 | - | 18 |
January | 30 | 22 | 25 | 25 | 26 |
February | 12 | 66 | 30 | 77 | 92 |
March | 220 | 245 | 110 | 266 | 257 |
Total | 1020 | 1127 | 876 | 1344 | 1440 |
Treatment | Boll Number (plant−1) | Boll Weight (g) | Seed Cotton Yield (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
Year (Y) | ZTsas | MTsi | Mean | ZTsas | MTsi | Mean | ZTsas | MTsi | Mean |
2011–2012 | 22.7 g | 24.2 f | 23.5 d | 2.39 g | 2.41 g | 2.40 e | 1616 h | 1717 g | 1667 e |
2012–2013 | 26.9 d | 27.9 c | 27.4 b | 2.88 cd | 2.84 e | 2.86 c | 2240 d | 2303 cd | 2271 c |
2013–2014 | 24.8 f | 25.6 e | 25.2 c | 2.62 f | 2.63 f | 2.63 d | 1801 f | 1919 e | 1860 d |
2014–2015 | 28.8 b | 26.8 d | 27.8 b | 2.91 b | 2.87 d | 2.89 b | 2547 b | 2382 c | 2464 b |
2015–2016 | 31.8 a | 27.3 cd | 29.6 a | 2.96 a | 2.90 bc | 2.93 a | 3085 a | 2579 b | 2832 a |
LSD (0.05) | 0.77 | 0.54 | 0.02 | 0.01 | 83.29 | 58.90 | |||
Tillage management (T) | 26.98 a | 26.35 b | 2.75 a | 2.73 b | 2258 a | 2180 b | |||
LSD (0.05) | 0.34 | 0.01 | 37.25 | ||||||
Nitrogen (kg ha−1) (N) | |||||||||
50 | 19.9 e | 19.8 e | 19.9 d | 2.64 f | 2.59 g | 2.62 c | 1804 | 1743 | 1773 d |
100 | 24.4 d | 24.1 d | 24.2 c | 2.77 d | 2.75 e | 2.76 b | 2290 | 2143 | 2217 c |
150 | 34.8 a | 34.2 a | 34.5 a | 2.82 a | 2.78 cd | 2.80 a | 2607 | 2593 | 2600 a |
200 | 28.9 b | 27.3 c | 28.1 b | 2.78 bc | 2.80 b | 2.79 a | 2330 | 2241 | 2285 b |
LSD (0.05) | 0.69 | 0.49 | 0.02 | 0.01 | Ns | 52.68 | |||
Interactions (p-values) | |||||||||
Y × N | 0.0000 | 0.0000 | 0.0000 | ||||||
Y × T × N | 0.6775 | 0.0022 | 0.6285 |
Treatment | Total Soil N (g kg−1) | Soil Organic Matter (g kg−1) | ||||
---|---|---|---|---|---|---|
Year (Y) | ZTsas | MTsi | Mean | ZTsas | MTsi | Mean |
2011–2012 | 0.18 f | 0.18 f | 0.18 e | 3.60 e | 4.18 d | 3.89 d |
2012–2013 | 0.20 e | 0.19 ef | 0.20 d | 3.72 e | 4.30 d | 4.00 d |
2013–2014 | 0.31 c | 0.26 d | 0.29 c | 4.38 d | 4.38 d | 4.38 c |
2014–2015 | 0.38 b | 0.26 d | 0.32 b | 5.84 b | 5.39 c | 5.61 b |
2015–2016 | 0.46 a | 0.28 d | 0.37 a | 8.41 a | 5.71 b | 7.06 a |
LSD (0.05) | 0.02 | 0.014 | 0.26 | 0.18 | ||
Tillage management (T) | 0.31 a | 0.24 b | 5.19 a | 4.79 a | ||
LSD (0.05) | 0.03 | 0.12 | ||||
Nitrogen (kg ha−1) (N) | ||||||
50 | 0.25 | 0.19 | 0.22 c | 4.35 | 3.92 | 4.13 d |
100 | 0.29 | 0.23 | 0.26 b | 5.01 | 4.70 | 4.85 c |
150 | 0.33 | 0.25 | 0.29 a | 5.43 | 4.95 | 5.18 b |
200 | 0.34 | 0.27 | 0.31 a | 5.98 | 5.60 | 5.79 a |
LSD (0.05) | Ns | 0.01 | Ns | 0.16 | ||
Interactions (p-values) | ||||||
Y × N | 0.6137 | 0.4416 | ||||
Y × T × N | 0.9960 | 0.0003 |
Treatment | 100-Seed Weight (g) | Ginning Out-Turn (%) | Fiber Length (mm) | Fiber Strength (g tex−1) | Micronaire | |
---|---|---|---|---|---|---|
Year (Y) | ||||||
2011–2012 | 7.23 e | 39.2 | 28.5 c | 26.5 b | 4.4 | |
2012–2013 | 7.74 d | 39.2 | 28.5 c | 26.5 b | 4.4 | |
2013–2014 | 8.24 c | 39.2 | 28.5 c | 26.6 b | 4.4 | |
2014–2015 | 8.43 b | 38.9 | 28.6 b | 28.5 a | 4.4 | |
2015–2016 | 8.70 a | 38.9 | 28.7 a | 28.5 a | 4.4 | |
LSD (0.05) | 0.13 | Ns | 0.06 | 0.06 | Ns | |
Tillage management (T) | ZTsas | 8.11 a | 39.1 | 28.6 a | 27.4 a | 4.4 b |
MTsi | 8.03 b | 39.1 | 28.5 b | 27.3 b | 4.5 a | |
LSD (0.05) | 0.08 | Ns | 0.04 | 0.04 | 0.04 | |
Nitrogen (kg ha−1) (N) | ||||||
50 | 7.60 c | 38.2 b | 28.5 b | 27.2 b | 3.9 d | |
100 | 8.16 b | 39.2 a | 28.6 a | 27.4 a | 4.2 c | |
150 | 8.40 a | 39.3 a | 28.6 a | 27.4 a | 4.7 b | |
200 | 8.11 b | 39.5 a | 28.6 a | 27.4 a | 4.9 a | |
LSD (0.05) | 0.12 | 0.51 | 0.05 | 0.05 | 0.05 | |
Interactions (p-values) | ||||||
Y × T | 0.4956 | 0.9967 | 1.0000 | 1.0000 | 0.9738 | |
Y × N | 0.1054 | 1.0000 | 1.0000 | 1.0000 | 0.9862 | |
T × N | 0.1367 | 0.7991 | 0.1549 | 0.1523 | 0.0346 | |
Y × T × N | 0.9905 | 0.9894 | 1.0000 | 1.0000 | 1.0000 |
Treatments | Water Stable Aggregates (%) | Mean Weight Diameter (mm) |
---|---|---|
Tillage management | ||
ZTsas | 61.28 a | 0.45 a |
MTsi | 56.78 b | 0.34 b |
LSD (0.05) | 0.61 | 0.011 |
Nitrogen (kg ha−1) | ||
50 | 58.77 | 0.33 c |
100 | 59.12 | 0.39 b |
150 | 59.12 | 0.43 a |
200 | 59.12 | 0.44 a |
LSD (0.05) | Ns | 0.016 |
Tillage × nitrogen | Ns | Ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.U.; Khan, A.A.; Goheer, M.A.; Shafique, I.; Hussain, S.; Hussain, S.; Javed, T.; Naz, M.; Shabbir, R.; Raza, A.; et al. Effect of Zero and Minimum Tillage on Cotton Productivity and Soil Characteristics under Different Nitrogen Application Rates. Sustainability 2021, 13, 13753. https://doi.org/10.3390/su132413753
Khan NU, Khan AA, Goheer MA, Shafique I, Hussain S, Hussain S, Javed T, Naz M, Shabbir R, Raza A, et al. Effect of Zero and Minimum Tillage on Cotton Productivity and Soil Characteristics under Different Nitrogen Application Rates. Sustainability. 2021; 13(24):13753. https://doi.org/10.3390/su132413753
Chicago/Turabian StyleKhan, Niamat Ullah, Aftab Ahmad Khan, Muhammad Arif Goheer, Izwa Shafique, Sadam Hussain, Saddam Hussain, Talha Javed, Maliha Naz, Rubab Shabbir, Ali Raza, and et al. 2021. "Effect of Zero and Minimum Tillage on Cotton Productivity and Soil Characteristics under Different Nitrogen Application Rates" Sustainability 13, no. 24: 13753. https://doi.org/10.3390/su132413753
APA StyleKhan, N. U., Khan, A. A., Goheer, M. A., Shafique, I., Hussain, S., Hussain, S., Javed, T., Naz, M., Shabbir, R., Raza, A., Zulfiqar, F., Mora-Poblete, F., Ahmar, S., Ali, Q., Ali, H. M., & Siddiqui, M. H. (2021). Effect of Zero and Minimum Tillage on Cotton Productivity and Soil Characteristics under Different Nitrogen Application Rates. Sustainability, 13(24), 13753. https://doi.org/10.3390/su132413753