The Physical Damage of Climbing Activity on Sandstone Lichen Cover
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tessler, M.; Clark, T.A. The Impact of Bouldering on Rock-Associated Vegetation. Biol. Conserv. 2016, 204, 426–433. [Google Scholar] [CrossRef]
- Lorite, J.; Serrano, F.; Lorenzo, A.; Cañadas, E.M.; Ballesteros, M.; Peñas, J. Rock Climbing Alters Plant Species Composition, Cover, and Richness in Mediterranean Limestone Cliffs. PLoS ONE 2017, 12, e0182414. [Google Scholar] [CrossRef] [PubMed]
- March-Salas, M.; Moreno-Moya, M.; Palomar, G.; Tejero-Ibarra, P.; Haeuser, E.; Pertierra, L.R. An Innovative Vegetation Survey Design in Mediterranean Cliffs Shows Evidence of Higher Tolerance of Specialized Rock Plants to Rock Climbing Activity. Appl. Veg. Sci. 2018, 21, 289–297. [Google Scholar] [CrossRef]
- Schmera, D.; Rusterholz, H.-P.; Baur, A.; Baur, B. Intensity-Dependent Impact of Sport Climbing on Vascular Plants and Land Snails on Limestone Cliffs. Biol. Conserv. 2018, 224, 63–70. [Google Scholar] [CrossRef]
- Strumia, S.; Buonanno, M.; Aronne, G.; Santo, A.; Santangelo, A. Monitoring of Plant Species and Communities on Coastal Cliffs: Is the Use of Unmanned Aerial Vehicles Suitable? Diversity 2020, 12, 149. [Google Scholar] [CrossRef]
- The Outdoor Foundation. Outdoor Participation Report; The Outdoor Foundation: Washington, DC, USA, 2018. [Google Scholar]
- Deutscher Alpenverein e.V. (DAV). Klettern in Deutschland—Zahlen, Daten & Fakten. Available online: https://www.alpenverein.de/der-dav/presse/hintergrund-info/klettern-in-deutschland-zahlen-daten-fakten_aid_31813.html (accessed on 21 August 2020).
- Deutscher Alpenverein e.V. (DAV). Sportklettern Boomt! DAV. Available online: https://www.alpenverein.de/wettkampf/klettern/wettkampf-abc/sportklettern-und-wettkaempfe-beim-dav_aid_10318.html (accessed on 5 December 2021).
- Clark, P.; Hessl, A. The Effects of Rock Climbing on Cliff-Face Vegetation. Appl. Veg. Sci. 2015, 18, 705–715. [Google Scholar] [CrossRef]
- Larson, D.W.; Matthes, U.; Kelly, P.E. Cliff Ecology: Pattern and Process in Cliff Ecosystems; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2000. [Google Scholar]
- McMillan, M.A.; Larson, D.W. Effects of Rock Climbing on the Vegetation of the Niagara Escarpment in Southern Ontario, Canada. Conserv. Biol. 2002, 16, 389–398. [Google Scholar] [CrossRef]
- Kuntz, K.L.; Larson, D.W. Influences of Microhabitat Constraints and Rock-Climbing Disturbance on Cliff-Face Vegetation Communities. Conserv. Biol. 2006, 20, 821–832. [Google Scholar] [CrossRef]
- Boggess, L.M.; Walker, G.L.; Madritch, M.D. Cliff Flora of the Big South Fork National River and Recreation Area. Nat. Areas J. 2017, 37, 200. [Google Scholar] [CrossRef]
- de Castro-Arrazola, I.; March-Salas, M.; Lorite, J. Assessment of the Potential Risk of Rock-Climbing for Cliff Plant Species and Natural Protected Areas of Spain. Front. Ecol. Evol. 2021, 9, 611362. [Google Scholar] [CrossRef]
- Holzschuh, A. Does Rock Climbing Threaten Cliff Biodiversity?—A Critical Review. Biol. Conserv. 2016, 204, 153–162. [Google Scholar] [CrossRef]
- Honegger, R. The Lichen Symbiosis—What Is so Spectacular about It? Lichenol. 1998, 30, 193–212. [Google Scholar] [CrossRef]
- Steinbauer, M.J.; Gohlke, A.; Mahler, C.; Schmiedinger, A.; Beierkuhnlein, C. Quantification of Wall Surface Heterogeneity and Its Influence on Species Diversity at Medieval Castles—Implications for the Environmentally Friendly Preservation of Cultural Heritage. J. Cult. Herit. 2013, 14, 219–228. [Google Scholar] [CrossRef]
- Chen, J.; Blume, H.-P.; Beyer, L. Weathering of Rocks Induced by Lichen Colonization—A Review. CATENA 2000, 39, 121–146. [Google Scholar] [CrossRef]
- Baur, B.; Fröberg, L.; Müller, S.W. Effect of Rock Climbing on the Calcicolous Lichen Community of Limestone Cliffs in the Northern Swiss Jura Mountains. Nova Hedwig. 2007, 85, 429–444. [Google Scholar] [CrossRef]
- Kelly, P.E.; Larson, D.W. Effects of Rock Climbing on Populations of Presettlement Eastern White Cedar (Thuja occidentalis) on Cliffs of the Niagara Escarpment, Canada. Conserv. Biol. 1997, 11, 1125–1132. [Google Scholar] [CrossRef]
- Nuzzo, V.A. Structure of Cliff Vegetation on Exposed Cliffs and the Effect of Rock Climbing. Can. J. Bot. 1996, 74, 607–617. [Google Scholar] [CrossRef]
- Harrison, G.R. The Impact of Rock-Climbing Disturbance on Cliff Communities of the Linville Gorge Wilderness Area; Appalachian State University: Boone, NC, USA, 2020. [Google Scholar]
- Cole, D.N.; Bayfield, N.G. Recreational Trampling of Vegetation: Standard Experimental Procedures. Biol. Conserv. 1993, 63, 209–215. [Google Scholar] [CrossRef]
- Kılıç, A.; Atiş, C.D.; Teymen, A.; Karahan, O.; Özcan, F.; Bilim, C.; Özdemira, M. The Influence of Aggregate Type on the Strength and Abrasion Resistance of High Strength Concrete. Cem. Concr. Compos. 2008, 30, 290–296. [Google Scholar] [CrossRef]
- Adams, M.D.; Zaniewski, K. Effects of Recreational Rock Climbing and Environmental Variation on a Sandstone Cliff-Face Lichen Community. Botany 2012, 90, 253–259. [Google Scholar] [CrossRef]
- Reding, J. Rock Climbing or Lichen Climbing? How Rock Climbing Impacts Bryophyte and Lichen Communities Within the Red River Gorge; The Ohio State University: Columbus, OH, USA, 2019; Available online: https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1562584961670604&disposition=inline (accessed on 5 December 2021).
- Muggeo, V.M.R. Interval Estimation for the Breakpoint in Segmented Regression: A Smoothed Score-Based Approach. Aust. New Zealand J. Stat. 2017, 59, 311–322. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2021. Available online: https://www.R-project.org/ (accessed on 5 December 2021).
- Boggess, L.M.; Georgia, R.H.; Bishop, G. Impacts of Rock Climbing on Cliff Vegetation: A Methods Review and Best Practices. Appl. Veg. Sci. 2021, 24, e12583. [Google Scholar] [CrossRef]
- Hill, R.; Pickering, C. Differences in Resistance of Three Subtropical Vegetation Types to Experimental Trampling. J. Environ. Manag. 2009, 90, 1305–1312. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pereira, J. The Influence of Rock Climbing Chalk on Cliff Plant Communities; Antioch New England Graduate School: Keene, NH, USA, 2005. [Google Scholar]
- Hepenstrick, D.; Bergamini, A.; Holderegger, R. The Distribution of Climbing Chalk on Climbed Boulders and Its Impact on Rock-dwelling Fern and Moss Species. Ecol. Evol. 2020, 10, 11362–11371. [Google Scholar] [CrossRef] [PubMed]
- Noé, F.; Quaine, F.; Martin, L. Influence of Steep Gradient Supporting Walls in Rock Climbing: Biomechanical Analysis. Gait Posture 2001, 13, 86–94. [Google Scholar] [CrossRef]
- Hale, J.; O’Connell, A.; Lewis, R.; Carré, M.J.; Rongong, J.A. An Evaluation of Shoe Tread Parameters Using FEM. Tribol. Int. 2021, 153, 106570. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Yan, F.; Xiang, X.; Tang, Y.; Zhang, L.; Liu, J.; Qiu, L. Determination of Normal Skin Elasticity by Using Real-Time Shear Wave Elastography: Normal Skin Elasticity on Real-Time Shear Wave Elastography. J. Ultrasound Med. 2018, 37, 2507–2516. [Google Scholar] [CrossRef]
- Farris, M.A. The Effects of Rock Climbing on the Vegetation of Three Minnesota Cliff Systems. Can. J. Bot. 1998, 76, 1981–1990. [Google Scholar] [CrossRef]
Lichen Cover Unclimbed | Lichen Cover Climbed | Change in Lichen Cover | ||||
---|---|---|---|---|---|---|
Relative | Total [cm²] | Relative | Total [cm²] | Relative | Total [cm²] | |
FH1 | 84.9% | 339.5 | 70.1% | 280.3 | −14.8% | −59.2 |
FH2 | 94.8% | 379.1 | 82.1% | 328.3 | −12.7% | −50.8 |
HH | 74.3% | 297.3 | 75.4% | 301.4 | 1.0% | 4.1 |
CHF | 94.6% | 378.4 | 85.3% | 341.1 | −9.3% | −37.3 |
FH1 | FH2 | HH | CHF | |
---|---|---|---|---|
Breakpoint estimate | 50.0 ± 11.7 | 58.1 ± 11.6 | - | 100.0 ± 38.5 |
Slope before breakpoint | −0.195 ± 0.055 | −0.116 ± 0.024 | - | −0.061 ± 0.027 |
Slope after breakpoint | −0.012 ± 0.003 | −0.014 ± 0.002 | - | −0.003 ± 0.003 |
AIC null model | 87.4 | 83.9 | 54.2 | 72.9 |
AIC linear model | 71.8 | 59.8 | 56.1 | 60.0 |
AIC segmented model | 50.6 | 43.3 | 54.5 | 45.9 |
p-value segmented model | 0.005 | <0.001 | Non-significant | 0.046 |
R2 linear model | 0.72 | 0.85 | - | 0.66 |
R2 segmented model | 0.95 | 0.96 | - | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schweizer, A.-M.; Höschler, L.; Steinbauer, M.J. The Physical Damage of Climbing Activity on Sandstone Lichen Cover. Sustainability 2021, 13, 13590. https://doi.org/10.3390/su132413590
Schweizer A-M, Höschler L, Steinbauer MJ. The Physical Damage of Climbing Activity on Sandstone Lichen Cover. Sustainability. 2021; 13(24):13590. https://doi.org/10.3390/su132413590
Chicago/Turabian StyleSchweizer, Anne-Maria, Lucas Höschler, and Manuel J. Steinbauer. 2021. "The Physical Damage of Climbing Activity on Sandstone Lichen Cover" Sustainability 13, no. 24: 13590. https://doi.org/10.3390/su132413590
APA StyleSchweizer, A.-M., Höschler, L., & Steinbauer, M. J. (2021). The Physical Damage of Climbing Activity on Sandstone Lichen Cover. Sustainability, 13(24), 13590. https://doi.org/10.3390/su132413590