Analysis and Prediction of Land Resources’ Carrying Capacity in 31 Provinces of China from 2008 to 2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Methods
2.2.1. Data Standardization
2.2.2. Single Factor Evaluation
2.2.3. Coefficient of Variation Weight Method
2.2.4. Comprehensive Carrying Capacity Evaluation
2.2.5. Carrying Capacity Prediction Model Construction
3. Results and Analysis
3.1. Single-Factor Carrying Capacity Analysis
3.1.1. Carrying Capacity of Cultivated Land
3.1.2. Carrying Capacity of Construction Land
3.1.3. Carrying Capacity of Ecological Land
3.2. Comprehensive Carrying Capacity Evaluation
3.3. Spatiotemporal Analysis of the Comprehensive Carrying Capacity
3.4. Prediction and Analysis of Land Carrying Capacity Based on ARIMA Model
3.4.1. Tests the Stationarity of ADF
3.4.2. Parameter Estimation
3.4.3. Model Fit
3.4.4. Accuracy Verification of Model Prediction Result
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, L.; Yong, Y.; Yuan, C. Measurement of Urban Land Green Use Efficiency and Its Spatial Differentiation Characteristics: An Empirical Study Based on 284 Cities. China Land Sci. 2019, 33, 80–87. [Google Scholar]
- Wu, C.; Wei, Y.D.; Huang, X.; Chen, B. Economic Transition, Spatial Development and Urban Land Use Efficiency in the Yangtze River Delta, China—Science Direct. Habitat Int. 2017, 63, 67–78. [Google Scholar] [CrossRef]
- Hobbs, R. Future Landscapes and the Future of Landscape Ecology. Landsc. Urban Plan. 1997, 37, 1–9. [Google Scholar] [CrossRef]
- Guastella, G.; Pareglio, S.; Sckokai, P. A Spatial Econometric Analysis of Land Use Efficiency in Large and Small Municipalities. Land Use Policy 2017, 63, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Chen, D.; Wu, S.; Mo, L.; Tong, G.; Yan, D. Urban Sprawl Decreases the Value of Ecosystem Services and Intensifies the Supply Scarcity of Ecosystem Services in China. Sci. Total. Environ. 2019, 697, 134170. [Google Scholar] [CrossRef]
- Cui, G.; Zhang, X.; Zhang, Z.; Cao, Y.; Liu, X. Comprehensive Land Carrying Capacities of the Cities in the Shandong Peninsula Blue Economic Zone and Their Spatio-Temporal Variations. Sustainability 2019, 11, 439. [Google Scholar] [CrossRef] [Green Version]
- Xue, Q.; Yang, X.; Wu, F. A Three-Stage Hybrid Model for the Regional Assessment, Spatial Pattern Analysis and Source Apportionment of the Land Resources Comprehensive Supporting Capacity in the Yangtze River Delta Urban Agglomeration. Sci. Total. Environ. 2020, 711, 134428. [Google Scholar] [CrossRef]
- Feng, Z.; Sun, T.; Yang, Y.; Yan, H. The Progress of Resources and Environment Carrying Capacity: From Single-Factor Carrying Capacity Research to Comprehensive Research. J. Resour. Ecol. 2018, 9, 125–134. [Google Scholar] [CrossRef]
- Lane, M. The Carrying Capacity Imperative: Assessing Regional Carrying Capacity Methodologies for Sustainable Land-Use Planning. Land Use Policy 2010, 27, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
- Hua, J.; Xiaohua, T.; Liya, Y.; Zhixiong, L.I.U.; Ningtao, W.; Lei, L.I.U. Suitability evaluation of land space development based on land resources: A case study of Yichang City in Hubei Province. Geol. China 2020, 47, 1776–1792. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Territory Spatial Planning and National Governance System in China. Land Use Policy 2021, 102, 105288. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, W.; Luo, Y. Current Situation, Problems and Reflections on Sustainable Development and Utilization of Land Resources in China. In Proceedings of the Advances in Education and Management, Dalian, China, 6–7 August 2011; Zhou, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 99–107. [Google Scholar]
- Peng, J.; Du, Y.; Liu, Y.; Hu, X. How to Assess Urban Development Potential in Mountain Areas? An Approach of Ecological Carrying Capacity in the View of Coupled Human and Natural Systems. Ecol. Indic. 2016, 60, 1017–1030. [Google Scholar] [CrossRef]
- Yang, J.; Ding, H.A. Quantitative Assessment of Sustainable Development Based on Relative Resource Carrying Capacity in Jiangsu Province of China. Int. J. Environ. Res. Public Health 2018, 15, 2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Xu, S. Dynamic Successive Assessment Method of Water Environment Carrying Capacity and Its Application. Ecol. Indic. 2015, 52, 134–146. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wu, J.; Wang, T. Index System of Urban Resource and Environment Carrying Capacity Based on Ecological Civilization. Environ. Impact Assess. Rev. 2018, 68, 90–97. [Google Scholar] [CrossRef]
- Dan-Lin, Y.U.; Mao, H.Y. Regional Carrying Capacity: Case Studies of Bohai Rim Area. J. Geogr. Sci. 2002, 12, 54–62. [Google Scholar] [CrossRef]
- Hong, W.; Li, F.; Li, M.; Zhang, F.; Tong, L.; Huang, Q. Toward a Sustainable Utilization of Land Resources in China: Problems, Policies, and Practices. Ambio 2014, 43, 825–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmonious Coexistence Between Humans and Nature Must Be Promoted SpringerLink. Available online: https://link.springer.com/chapter/10.1007/978-981-16-4534-1_4 (accessed on 27 October 2021).
- Rees, W.E. Revisiting Carrying Capacity: Area-Based Indicators of Sustainability. Popul. Environ. 1996, 17, 195–215. [Google Scholar] [CrossRef]
- Alberti, M. Urban Patterns and Environmental Performance: What Do We Know? 1999. Available online: https://journals.sagepub.com/doi/abs/10.1177/0739456X9901900205 (accessed on 26 October 2021).
- Anderies, J.M.; Mathias, J.-D.; Janssen, M.A. Knowledge Infrastructure and Safe Operating Spaces in Social–Ecological Systems. Proc. Natl. Acad. Sci. USA 2019, 116, 5277–5284. [Google Scholar] [CrossRef] [Green Version]
- Sayre, N.F. The Genesis, History, and Limits of Carrying Capacity. Ann. Assoc. Am. Geogr. 2008, 98, 120–134. [Google Scholar] [CrossRef]
- Barrett, G.W.; Odum, E.R. The Twenty-First Century: The World at Carrying Capacity. BioScience 2000, 50, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Feng, Z.; Yang, Y.; Lin, Y.; Wu, Y. Research on Land Resource Carrying Capacity: Progress and Prospects. J. Resour. Ecol. 2018, 9, 331–340. [Google Scholar] [CrossRef]
- Zhu, N.; Cao, B.; Qin, F. Analysis of Land Carrying Capacity of Livestock and Poultry Breeding in China from the Perspective of Combination of Planting and Raising. IOP Conf. Ser. Earth Environ. Sci. 2020, 585, 012085. [Google Scholar] [CrossRef]
- Sun, M.; Wang, J.; He, K. Analysis on the Urban Land Resources Carrying Capacity during Urbanization—A Case Study of Chinese YRD. Appl. Geogr. 2020, 116, 102170. [Google Scholar] [CrossRef]
- Wei, X.; Shen, L.; Liu, Z.; Luo, L.; Chen, Y. Comparative Analysis on the Evolution of Ecological Carrying Capacity between Provinces during Urbanization Process in China. Ecol. Indic. 2020, 112, 106179. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Zhou, P. Evaluation of Land Carrying Capacity of Island Cities: Based on the Modified Ecological Footprint Model. In Proceedings of the 20th International Symposium on Advancement of Construction Management and Real Estate, Singapore, 28 May 2016; Wu, Y., Zheng, S., Luo, J., Wang, W., Mo, Z., Shan, L., Eds.; Springer: Singapore, 2017; pp. 181–190. [Google Scholar]
- Johnson, S.; Wang, G.; Howard, H.; Anderson, A.B. Identification of Superfluous Roads in Terms of Sustainable Military Land Carrying Capacity and Environment. J. Terramechanics 2011, 48, 97–104. [Google Scholar] [CrossRef]
- Li, Z.-T.; Li, M.; Xia, B.-C. Spatio-Temporal Dynamics of Ecological Security Pattern of the Pearl River Delta Urban Agglomeration Based on LUCC Simulation. Ecol. Indic. 2020, 114, 106319. [Google Scholar] [CrossRef]
- Zhou, W.; Elshkaki, A.; Zhong, S.; Shen, L. Study on Relative Carrying Capacity of Land Resources and Its Zoning in 31 Provinces of China. Sustainability 2021, 13, 1459. [Google Scholar] [CrossRef]
- Sugiyarto, S.; Hariono, B.; Wijaya, R.; Destarianto, P.; Novawan, A. The Impact of Land Use Changes on Carrying Capacity of Sampean Watershed in Bondowoso Regency. IOP Conf. Series Earth Environ. Sci. 2018, 207, 012005. [Google Scholar] [CrossRef]
- Nakajima, E.S.; Ortega, E. Carrying Capacity Using Emergy and a New Calculation of the Ecological Footprint. Ecol. Indic. 2016, 60, 1200–1207. [Google Scholar] [CrossRef]
- Peng, W.; Wang, X.; Li, X.; He, C. Sustainability Evaluation Based on the Emergy Ecological Footprint Method: A Case Study of Qingdao, China, from 2004 to 2014. Ecol. Indic. 2018, 85, 1249–1261. [Google Scholar] [CrossRef]
- Tsou, J.; Gao, Y.; Zhang, Y.; Genyun, S.; Ren, J.; Li, Y. Evaluating Urban Land Carrying Capacity Based on the Ecological Sensitivity Analysis: A Case Study in Hangzhou, China. Remote Sens. 2017, 9, 529. [Google Scholar] [CrossRef] [Green Version]
- Thapa, G.B.; Paudel, G.S. Evaluation of the Livestock Carrying Capacity of Land Resources in the Hills of Nepal Based on Total Digestive Nutrient Analysis. Agric. Ecosyst. Environ. 2000, 78, 223–235. [Google Scholar] [CrossRef]
- Liao, J.; Shao, G.; Wang, C.; Tang, L.; Qiu, Q. Urban Sprawl Scenario Simulations Based on Cellular Automata and Ordered Weighted Averaging Ecological Constraints. Ecol. Indic. 2019, 107, 105572. [Google Scholar] [CrossRef]
- Fu, Q.; Jiang, Q.; Wang, Z. Comprehensive Evaluation of Regional Agricultural Water and Land Resources Carrying Capacity Based on DPSIR Concept Framework and PP Model. In Proceedings of the Computer and Computing Technologies in Agriculture, Beijing, China, 18–20 October 2008; Li, D., Chen, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 391–398. [Google Scholar]
- Meyar-Naimi, H.; Vaez-Zadeh, S. Sustainable Development Based Energy Policy Making Frameworks, a Critical Review. Energy Policy 2012, 43, 351–361. [Google Scholar] [CrossRef]
- China Statistical Yearbook. Annual Data. 2018. Available online: http://www.stats.gov.cn/ (accessed on 22 October 2021).
- Ministry of Natural Resources of the People’s Republic of China. 2019. Available online: http://tddc.mnr.gov.cn/ (accessed on 12 November 2021).
- Xie, X.; Li, X.; He, W. A Land Space Development Zoning Method Based on Resource–Environmental Carrying Capacity: A Case Study of Henan, China. Int. J. Environ. Res. Public Health 2020, 17, 900. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhou, Y.; Li, X.; Xiao, P.; Jiang, J. Assessment of Cultivated Land Productivity and Its Spatial Differentiation in Dongting Lake Region: A Case Study of Yuanjiang City, Hunan Province. Sustainability 2018, 10, 3616. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Liu, S.; Liu, Y. Application of SD Model in Analyzing the Cultivated Land Carrying Capacity: A Case Study in Bijie Prefecture, Guizho Province, China. Procedia Environ. Sci. 2011, 10, 1985–1991. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wang, Y.; Ma, X.; Wang, Y.; Yang, G.; Zhu, L. Evaluation of Resources and Environmental Carrying Capacity of 36 Large Cities in China Based on a Support-Pressure Coupling Mechanism. Sci. Total Environ. 2019, 688, 838–854. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, H.; Yin, C. Evaluation Method of Urban Land Population Carrying Capacity Based on GIS—A Case of Shanghai, China. Comput. Environ. Urban Syst. 2013, 39, 27–38. [Google Scholar] [CrossRef]
- Guanghua, Y.U.; Sun, C. Land Carrying Capacity Spatiotemporal Differentiation in the Bohai Sea Coastal Areas. Acta Ecol. Sin. 2015, 35, 60–70. [Google Scholar]
- Peng, B.; Wang, Y.; Elahi, E.; Guo, W. Evaluation and Prediction of the Ecological Footprint and Ecological Carrying Capacity for Yangtze River Urban Agglomeration Based on the Grey Model. Int. J. Environ. Res. Public Health 2018, 15, 2543. [Google Scholar] [CrossRef] [Green Version]
- Wanishsakpong, W.; Owusu, B.E. Optimal Time Series Model for Forecasting Monthly Temperature in the Southwestern Region of Thailand. Model. Earth Syst. Environ. 2020, 6, 525–532. [Google Scholar] [CrossRef]
- Kleiner, B. Time Series Analysis: Forecasting and Control. Technometrics 1977, 19, 343–344. [Google Scholar] [CrossRef]
- Natsagdorj, E.; Renchin, T.; Maeyer, P.D.; Darkhijav, B. Spatial Distribution of Soil Moisture in Mongolia Using SMAP and MODIS Satellite Data: A Time Series Model (2010–2025). Remote Sens. 2021, 13, 347. [Google Scholar] [CrossRef]
- Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the Autoregressive Artificial Neural Network Models in Forecasting the Monthly Inflow of Dez Dam Reservoir. J. Hydrol. 2013, 476, 433–441. [Google Scholar] [CrossRef]
- Khashei, M.; Bijari, M. A Novel Hybridization of Artificial Neural Networks and ARIMA Models for Time Series Forecasting. Appl. Soft. Comput. 2011, 11, 2664–2675. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Chen, C.; Hu, Y.; Liu, C.; Chen, J. Is the Spatial-Temporal Dependence Model Reliable for the Short-Term Freight Volume Forecast of Inland Ports? A Case Study of the Yangtze River, China. J. Mar. Sci. Eng. 2021, 9, 985. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar] [CrossRef]
- MacKinnon, J.G. Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests. J. Bus. Econ. Stat. 1994, 12, 167–176. [Google Scholar] [CrossRef]
- Chen, P.; Pedersen, T.; Bak-Jensen, B.; Chen, Z. ARIMA-Based Time Series Model of Stochastic Wind Power Generation. IEEE Trans. Power Syst. 2010, 25, 667–676. [Google Scholar] [CrossRef] [Green Version]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Zou, Z.; Wu, X.; Zhao, Z.; Wang, Q.; Bie, Y.; Zhou, M. Prediction of Short Term Electric Load Based on BP Neural Networks Amp; ARIMA Combination. In Proceedings of the 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 14–16 December 2018; pp. 1671–1674. [Google Scholar]
- Assous, H.F.; Al-Rousan, N.; Al-Najjar, D.; Al-Najjar, H. Can International Market Indices Estimate TASI’s Movements? The ARIMA Model. J. Open Innov. Technol. Market. Complex. 2020, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Nanfang, L.I.; Chen, H.; Feifei, H.U.; Yang, B. An Analysis on the Impact of Expressway Construction Supported by 3S Technology on Landscape Patterns: A Case Study of Changsha-Yiyang Highway in Hunan Province. J. Hunan Univ. Technol. 2018, 32, 91–96. [Google Scholar]
- Luo, W.; Ren, Y.; Shen, L.; Zhu, M.; Zhang, P. An Evolution Perspective on the Urban Land Carrying Capacity in the Urbanization Era of China. Sci. Total Environ. 2020, 744, 140827. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Yang, X.; Zhang, X. Application of an Evaluation Method of Resource and Environment Carrying Capacity in the Adjustment of Industrial Structure in Tibet. J. Geogr. Sci. 2020, 30, 319–332. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, J.; Liu, Y.; Zhang, F.; Zhang, M. Response of Ecosystem Services to Land Use and Cover Change: A Case Study in Chengdu City. Resour. Conserv. Recycl. 2017, 132, 291–300. [Google Scholar] [CrossRef]
- Li, K.; Jin, X.; Ma, D.; Jiang, P. Evaluation of Resource and Environmental Carrying Capacity of China’s Rapid-Urbanization Areas—A Case Study of Xinbei District, Changzhou. Land 2019, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Meng, M.; Xiu-Xia, L.I.; Meng, X.J. Evaluation and Forecast of Comprehensive Carrying Capacity of Natural Resources in Siping City. Shanghai Land Resour. 2017, 38, 74–78. [Google Scholar]
- Zhang, X.J.; Zhou, Q.G. Evaluation and Prediction on Land Carrying Capacity Based on Entropy-Weight TOPSIS and Grey Model—Taking Three Gorges Reservoir Area as an Example. Resour. Dev. Market 2017, 33, 666–671. [Google Scholar]
- Ediger, V.S.; Akar, S.; Ugurlu, B. Forecasting Production of Fossil Fuel Sources in Turkey Using a Comparative Regression and ARIMA Model. Energy Policy 2006, 34, 3836–3846. [Google Scholar] [CrossRef]
- Shi, Y.; Shi, S.; Wang, H. Reconsideration of the Methodology for Estimation of Land Population Carrying Capacity in Shanghai Metropolis. Sci. Total Environ. 2018, 652, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Li, J.; Lu, B.; Luo, M.; Li, L. Exploring the Spatial Pattern and Influencing Factors of Land Carrying Capacity in Wuhan. Sustainability 2020, 11, 2786. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P. Estimation of Population Carrying Capacity of Land Resources: A Case Study of Chongqing. In Proceedings of the 24th International Symposium on Advancement of Construction Management and Real Estate, Singapore, 8 June 2021; Springer: Singapore, 2021; pp. 355–364. [Google Scholar]
- Nie, H.; Liu, G.; Liu, X.; Wang, Y. Hybrid of ARIMA and SVMs for Short-Term Load Forecasting. Energy Procedia 2012, 16, 1455–1460. [Google Scholar] [CrossRef] [Green Version]
- Nyoni, T. ARIMA Modeling and Forecasting of Consumer Price Index (CPI) in Germany. Available online: https://mpra.ub.uni-muenchen.de/92442/ (accessed on 16 November 2021).
Index System of the Carrying Capacity | Index | Index Factor | Description | Weight |
---|---|---|---|---|
Comprehensive carrying capacity of land resources | The carrying capacity of cultivated land | population scale | Scale of population gathering | 0.3122 |
Per capita grain output | Scale of land production | |||
Per capita cultivated area | Support of regional land for industrial development | |||
The carrying capacity of construction land | Area of existing construction land | Development of construction land | 0.3033 | |
Per capita construction land area | The degree of land construction and the scale of residential space | |||
The carrying capacity of ecological land | Existing ecological land area | Direct reflection of ecological environment quality | 0.3845 | |
Per capita ecological land area | Quality of the living environment |
Province | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|---|
Beijing | 0.5497 | 0.5579 | 0.5652 | 0.5731 | 0.5766 | 0.5861 | 0.5968 | 0.6084 |
Shanghai | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Anhui | 0.1626 | 0.1493 | 0.1467 | 0.1451 | 0.1445 | 0.1449 | 0.1471 | 0.1928 |
Fujian | 0.2742 | 0.2609 | 0.2556 | 0.2521 | 0.2471 | 0.2459 | 0.2475 | 0.2704 |
Guangdong | 0.3636 | 0.3563 | 0.3493 | 0.3469 | 0.3412 | 0.3397 | 0.3439 | 0.3668 |
Gansu | 0.0840 | 0.0806 | 0.0787 | 0.0776 | 0.0753 | 0.0741 | 0.0737 | 0.0880 |
Guangxi | 0.1909 | 0.1693 | 0.1675 | 0.1664 | 0.1645 | 0.1641 | 0.1652 | 0.1956 |
Guizhou | 0.2601 | 0.2410 | 0.2293 | 0.2206 | 0.214 | 0.2053 | 0.2035 | 0.2166 |
Hainan | 0.1573 | 0.1505 | 0.1477 | 0.1471 | 0.1457 | 0.1458 | 0.1468 | 0.1765 |
Hebei | 0.1642 | 0.1612 | 0.1592 | 0.1580 | 0.1567 | 0.1564 | 0.1570 | 0.1901 |
Henan | 0.2482 | 0.2343 | 0.2283 | 0.2248 | 0.2204 | 0.2187 | 0.2198 | 0.2516 |
Heilongjiang | 0.0405 | 0.0391 | 0.0388 | 0.0386 | 0.0386 | 0.0384 | 0.0374 | 0.0844 |
Hubei | 0.1587 | 0.1514 | 0.1491 | 0.1464 | 0.1440 | 0.1419 | 0.1427 | 0.1857 |
Hunan | 0.1895 | 0.1867 | 0.1843 | 0.1833 | 0.1814 | 0.1813 | 0.1831 | 0.2196 |
Jilin | 0.0766 | 0.0739 | 0.0725 | 0.0716 | 0.0705 | 0.0700 | 0.0699 | 0.1039 |
Jiangsu | 0.2781 | 0.2677 | 0.2632 | 0.2596 | 0.2564 | 0.2554 | 0.2566 | 0.3024 |
Jiangxi | 0.1734 | 0.1661 | 0.1631 | 0.1603 | 0.1578 | 0.1560 | 0.1559 | 0.1959 |
Liaoning | 0.1233 | 0.1182 | 0.1154 | 0.1135 | 0.1118 | 0.1110 | 0.1106 | 0.1437 |
Inner Mongolia | 0.0100 | 0.0092 | 0.0092 | 0.0091 | 0.0091 | 0.0087 | 0.0080 | 0.0487 |
Ningxia | 0.0472 | 0.045 | 0.0444 | 0.0440 | 0.0438 | 0.0436 | 0.0433 | 0.0918 |
Qinghai | 0.0609 | 0.0583 | 0.0572 | 0.0559 | 0.0523 | 0.0535 | 0.0532 | 0.0440 |
Shandong | 0.2800 | 0.2716 | 0.2673 | 0.2639 | 0.2612 | 0.2610 | 0.2629 | 0.3033 |
Shanxi | 0.1349 | 0.1374 | 0.1365 | 0.1350 | 0.1330 | 0.1321 | 0.1331 | 0.1603 |
Shaanxi | 0.1675 | 0.1599 | 0.1571 | 0.1526 | 0.1498 | 0.1476 | 0.1479 | 0.1717 |
Sichuan | 0.2057 | 0.1908 | 0.1875 | 0.1851 | 0.1825 | 0.1808 | 0.1822 | 0.1985 |
Tianjin | 0.4037 | 0.4120 | 0.4235 | 0.4377 | 0.4518 | 0.4652 | 0.4777 | 0.5302 |
Tibet | 0.0468 | 0.0463 | 0.0467 | 0.0483 | 0.0488 | 0.0494 | 0.0501 | 0.0127 |
Yunnan | 0.1675 | 0.1616 | 0.1597 | 0.1581 | 0.1559 | 0.1547 | 0.1552 | 0.1622 |
Zhejiang | 0.2854 | 0.2810 | 0.2746 | 0.2700 | 0.2642 | 0.2608 | 0.2624 | 0.2813 |
Chongqing | 0.2338 | 0.2230 | 0.2209 | 0.2180 | 0.2158 | 0.2145 | 0.2159 | 0.2310 |
Xinjiang | 0.0066 | 0.0064 | 0.0064 | 0.0064 | 0.0064 | 0.0066 | 0.0070 | 0.0246 |
t-Statistic | Prob.* | ||
---|---|---|---|
Augmented Dickey-Fuller test statistic | −4.1244 | 0.0265 | |
Test critical values: | 1% level | −5.1198 | |
5% level | −3.5195 | ||
10% level | −2.8984 |
Model | AIC | R2 |
---|---|---|
ARIAM(1,2,1) | 1.060 | 0.950 |
ARIAM(1,2,2) | 0.490 | 0.951 |
ARIAM(2,2,1) | 0.240 | 0.954 |
Province | The Carrying Capacity of Cultivated Land Model Type | Mean Relative Error | The Carrying Capacity of Construction Land Model Type | Mean Relative Error | The Carrying Capacity of Ecological Land Model Type | Mean Relative Error |
---|---|---|---|---|---|---|
Beijing | ARIAM(2,2,1) | 0.05% | ARIAM(2,1,1) | 0.05% | ARIAM(2,1,2) | 0.03% |
Shanghai | ARIAM(1,2,1) | 0.02% | ARIAM(1,1,1) | 0.19% | ARIAM(1,2,2) | 0.02% |
Anhui | ARIAM(1,1,2) | 0.00% | ARIAM(2,1,2) | 0.11% | ARIAM(2,1,1) | 0.04% |
Fujian | ARIAM(1,2,1) | 0.03% | ARIAM(1,1,1) | 0.07% | ARIAM(1,1,3) | 0.00% |
Guangdong | ARIAM(1,1,2) | 0.02% | ARIAM(1,2,1) | 0.00% | ARIAM(2,1,1) | 0.26% |
Gansu | ARIAM(3,1,1) | 0.05% | ARIAM(1,1,2) | 0.08% | ARIAM(1,2,1) | 0.02% |
Guangxi | ARIAM(1,2,1) | 0.01% | ARIAM(1,1,2) | 0.19% | ARIAM(1,1,2) | 0.02% |
Guizhou | ARIAM(3,1,1) | 0.12% | ARIAM(2,1,2) | 0.16% | ARIAM(1,1,1) | 0.34% |
Hainan | ARIAM(1,2,1) | 0.06% | ARIAM(1,1,3) | 0.20% | ARIAM(1,2,1) | 0.04% |
Hebei | ARIAM(2,1,2) | 0.00% | ARIAM(1,2,1) | 0.11% | ARIAM(1,1,1) | 0.24% |
Henan | ARIAM(1,1,1) | 0.03% | ARIAM(1,1,2) | 0.11% | ARIAM(2,1,1) | 0.02% |
Heilongjiang | ARIAM(3,1,1) | 0.02% | ARIAM(1,1,2) | 0.04% | ARIAM(1,1,1) | 0.00% |
Hubei | ARIAM(1,1,2) | 0.02% | ARIAM(1,1,2) | 0.62% | ARIAM(1,1,1) | 0.00% |
Hunan | ARIAM(2,1,1) | 0.01% | ARIAM(1,2,2) | 0.24% | ARIAM(1,1,2) | 0.00% |
Jilin | ARIAM(1,1,1) | 0.01% | ARIAM(2,1,1) | 0.10% | ARIAM(1,1,2) | 0.00% |
Jiangsu | ARIAM(1,1,2) | 0.00% | ARIAM(1,1,2) | 0.41% | ARIAM(1,2,2) | 0.00% |
Jiangxi | ARIAM(1,1,1) | 0.01% | ARIAM(1,1,2) | 0.35% | ARIAM(1,1,1) | 0.00% |
Liaoning | ARIAM(1,2,1) | 0.02% | ARIAM(2,1,2) | 0.35% | ARIAM(1,1,2) | 0.01% |
Inner Mongolia | ARIAM(1,1,1) | 0.01% | ARIAM(1,1,3) | 0.28% | ARIAM(1,1,1) | 0.00% |
Ningxia | ARIAM(2,1,1) | 0.00% | ARIAM(1,1,2) | 0.51% | ARIAM(1,1,1) | 0.01% |
Qinghai | ARIAM(1,1,2) | 0.04% | ARIAM(1,1,3) | 3.26% | ARIAM(1,1,3) | 0.00% |
Shandong | ARIAM(1,1,2) | 0.00% | ARIAM(1,1,3) | 0.45% | ARIAM(1,1,2) | 0.00% |
Shanxi | ARIAM(1,1,1) | 0.00% | ARIAM(2,1,1) | 0.32% | ARIAM(1,1,3) | 0.00% |
Shaanxi | ARIAM(1,1,2) | 0.00% | ARIAM(1,3,1) | 0.14% | ARIAM(2,2,1) | 0.04% |
Sichuan | ARIAM(1,1,1) | 0.00% | ARIAM(2,1,1) | 0.03% | ARIAM(1,1,2) | 0.01% |
Tianjin | ARIAM(1,1,3) | 0.01% | ARIAM(1,1,2) | 0.33% | ARIAM(1,2,1) | 0.00% |
Tibet | ARIAM(1,1,1) | 0.02% | ARIAM(1,1,1) | 1.24% | ARIAM(2,1,2) | 0.00% |
Yunnan | ARIAM(1,1,2) | 0.00% | ARIAM(1,2,2) | 0.02% | ARIAM(1,1,3) | 0.00% |
Zhejiang | ARIAM(1,1,2) | 0.03% | ARIAM(2,1,2) | 0.03% | ARIAM(1,2,1) | 0.28% |
Chongqing | ARIAM(1,2,1) | 0.00% | ARIAM(3,1,1) | 0.15% | ARIAM(2,2,1) | 0.00% |
Xinjiang | ARIAM(1,1,1) | 0.01% | ARIAM(2,1,2) | 2.68% | ARIAM(1,1,2) | 0.25% |
Province | The Carrying Capacity of Cultivated Land Relative Error | The Carrying Capacity of Construction Land Relative Error | The Carrying Capacity of Ecological Land Relative Error |
---|---|---|---|
Beijing | 0.02% | 0.02% | 0.05% |
Shanghai | 0.13% | 0.06% | 0.25% |
Anhui | 0.69% | 1.23% | 0.06% |
Fujian | 0.00% | 2.37% | 0.03% |
Guangdong | 0.50% | 0.89% | 0.05% |
Gansu | 0.02% | 0.38% | 0.06% |
Guangxi | 1.21% | 0.21% | 0.12% |
Guizhou | 0.15% | 0.68% | 0.05% |
Hainan | 0.08% | 1.57% | 0.04% |
Hebei | 0.18% | 0.21% | 0.52% |
Henan | 0.24% | 0.29% | 0.09% |
Heilongjiang | 0.04% | 1.56% | 0.06% |
Hubei | 0.09% | 5.49% | 0.08% |
Hunan | 0.26% | 2.89% | 0.28% |
Jilin | 0.26% | 2.01% | 0.25% |
Jiangsu | 0.12% | 5.42% | 0.04% |
Jiangxi | 0.00% | 0.69% | 0.03% |
Liaoning | 0.01% | 2.76% | 0.10% |
Inner Mongolia | 0.06% | 1.87% | 0.00% |
Ningxia | 0.04% | 6.01% | 0.08% |
Qinghai | 0.03% | 2.21% | 0.02% |
Shandong | 0.02% | 2.69% | 0.24% |
Shanxi | 0.72% | 2.43% | 0.39% |
Shaanxi | 0.06% | 0.55% | 0.00% |
Sichuan | 0.47% | 0.47% | 0.42% |
Tianjin | 0.33% | 5.01% | 0.06% |
Tibet | 0.04% | 6.74% | 0.07% |
Yunnan | 0.09% | 0.88% | 0.02% |
Zhejiang | 0.68% | 1.36% | 0.48% |
Chongqing | 0.23% | 0.60% | 0.10% |
Xinjiang | 0.08% | 1.32% | 0.06% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.; Lu, B.; Zheng, J. Analysis and Prediction of Land Resources’ Carrying Capacity in 31 Provinces of China from 2008 to 2016. Sustainability 2021, 13, 13383. https://doi.org/10.3390/su132313383
Han C, Lu B, Zheng J. Analysis and Prediction of Land Resources’ Carrying Capacity in 31 Provinces of China from 2008 to 2016. Sustainability. 2021; 13(23):13383. https://doi.org/10.3390/su132313383
Chicago/Turabian StyleHan, Chuqiao, Binbin Lu, and Jianghua Zheng. 2021. "Analysis and Prediction of Land Resources’ Carrying Capacity in 31 Provinces of China from 2008 to 2016" Sustainability 13, no. 23: 13383. https://doi.org/10.3390/su132313383
APA StyleHan, C., Lu, B., & Zheng, J. (2021). Analysis and Prediction of Land Resources’ Carrying Capacity in 31 Provinces of China from 2008 to 2016. Sustainability, 13(23), 13383. https://doi.org/10.3390/su132313383