Efficacy, Energy Budgeting, and Carbon Footprints of Weed Management in Blackgram (Vigna mungo L.)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect on Weed
3.1.1. Weed Density (No. m−2)
3.1.2. Weed Biomass
3.2. Effect on Crop
3.2.1. Growth Parameters
3.2.2. Yield and Yield Attributes
3.2.3. Quality Parameters
3.3. Energy Utilization Pattern
3.4. Energy Input−Output Relationship and Energy Indices
3.5. Carbon Budgeting
3.6. Economics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gharde, Y.; Singh, P.K.; Dubey, R.P.; Gupta, P.K. Assessment of yield and economic losses in agriculture due to weeds in India. Crop. Prot. 2018, 107, 12–18. [Google Scholar] [CrossRef]
- Strydhorst, S.M.; King, J.R.; Lopetinsky, K.J.; Harker, K.N. Weed Interference, Pulse Species, and Plant Density Effects on Rotational Benefits. Weed Sci. 2008, 56, 249–258. [Google Scholar] [CrossRef]
- Kaur, R.; Shivay, Y.; Singh, G.; Virk, H.K.; Sen, S.; Rajni. Increasing area under pulses and soil quality enhancement in pulse-based cropping systems–Retrospect and prospects. Indian J. Agric. Sci. 2018, 88, 10–21. [Google Scholar]
- Dhanushkodi, V.; Amuthaselvi, G.; Easwaran, S. Black gram (Vigna mungo) seed production: An approach towards food security and income generation. Int. J. Farm Sci. 2018, 8, 55–58. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Shivhare, A.K. Pulses in India: Retrospect and Prospects; Directorate of Pulses Development, Department of Agriculture, Cooperation and Farmer Welfare, Ministry of Agriculture and Farmers Welfare, Government of India, Vindhyachal Bhawan: Bhopal, MP, India, Publication No: DPD 2016, 1, 221; 2016. [Google Scholar]
- Rana, S.; Singh, G.; Rana, M.; Sharma, N.; Kumar, S.; Singh, G.; Badiyala, D. Impact of imazethapyr and its ready-mix combination with imazamoxto control weeds in blackgram. Indian J. Weed Sci. 2019, 51, 151–157. [Google Scholar] [CrossRef]
- Choudhary, V.; Kumar, P.S.; Bhagawati, R. Integrated weed management in blackgram (Vigna mungo) under mid hills of Arunachal Pradesh. Indian J. Agron. 2012, 57, 382–385. [Google Scholar]
- Shaktawat, R. Integrated weed management in blackgram. Indian J. Weed Sci. 2020, 52, 290–291. [Google Scholar]
- Sanbagavalli, S.; Chinnusamy, C.; Marimuthu, S.; Sivamurugan, A.P. Weed management strategies in Blackgram (Phaseolus mungo L.): A review. Int. J. Agric. Sci. 2016, 8, 3481–3486. [Google Scholar]
- Lal, S.; Dubey, R.; Das, G.; Suryavanshi, T. Energy budgeting of weed management in soybean. Indian J. Weed Sci. 2016, 48, 394–399. [Google Scholar] [CrossRef]
- Nagarjun, P.; Dhanapal, G.; Sanjay, M.; Yogananda, S.; Muthuraju, R. Energy budgeting andeconomics of weed management in dry direct-seededrice. Indian J. Weed Sci. 2019, 51, 1–5. [Google Scholar] [CrossRef]
- Pal, A.; Nandy, A.; Dey, S.; Singh, P.K. Optimizing Energy Use Efficiency for Agricultural Sustainability. In Energy and Environmental Security in Developing Countries; Asif, M., Ed.; Springer International Publishing: Cham, Switherland, 2021; pp. 609–632. [Google Scholar] [CrossRef]
- Ghosh, D.; Brahmachari, K.; Das, A.; Hassan, M.M.; Mukherjee, P.K.; Sarkar, S.; Dinda, N.K.; Pramanick, B.; Moulick, D.; Maitra, S.; et al. Assessment of Energy Budgeting and Its Indicator for Sustainable Nutrient and Weed Management in a Rice-Maize-Green Gram Cropping System. Agronomy 2021, 11, 166. [Google Scholar] [CrossRef]
- Jat, S.L.; Parihar, C.M.; Singh, A.K.; Kumar, B.; Choudhary, M.; Nayak, H.S.; Parihar, M.D.; Parihar, N.; Meena, B.R. Energy auditing and carbon footprint under long-term conservation agriculture-based intensive maize systems with diverse inorganic nitrogen management options. Sci. Total Environ. 2019, 664, 659–668. [Google Scholar] [CrossRef]
- Jaiswal, B.; Agrawal, M. Carbon Footprints of Agriculture Sector. In Carbon Footprints: Case Studies from the Building, Household, and Agricultural Sectors; Muthu, S.S., Ed.; Springer: Singapore, 2020; pp. 81–99. [Google Scholar] [CrossRef]
- Choudhary, M.; Rana, K.S.; Bana, R.S.; Ghasal, P.C.; Choudhary, G.L.; Jakhar, P.; Verma, R.K. Energy budgeting and carbon footprint of pearl millet–mustard cropping system under conventional and conservation agriculture in rainfed semi-arid agro-ecosystem. Energy 2017, 141, 1052–1058. [Google Scholar] [CrossRef]
- Rehmani, M.I.A.; Ding, C.; Li, G.; Ata-Ul-Karim, S.T.; Hadifa, A.; Bashir, M.A.; Hashem, M.; Alamri, S.; Al-Zubair, F.; Ding, Y. Vulnerability of rice production to temperature extremes during rice reproductive stage in Yangtze River Valley, China. J. King Saud Univ.-Sci. 2021, 33, 101599. [Google Scholar] [CrossRef]
- Rehmani, M.I.A.; Wei, G.; Hussain, N.; Ding, C.; Li, G.; Liu, Z.; Wang, S.; Ding, Y. Yield and quality responses of two indica rice hybrids to post-anthesis asymmetric day and night open-field warming in lower reaches of Yangtze River delta. Field Crop. Res. 2014, 156, 231–241. [Google Scholar] [CrossRef]
- Ali, M.; Behera, U. Effect of tillage and weed-management options on productivity, energy-use efficiency and economics of soybean (Glycine max). Indian J. Agron. 2014, 59, 481–484. [Google Scholar]
- Araniti, F.; Landi, M.; Laudicina, V.A.; Abenavoli, M.R. Secondary Metabolites and Eco-Friendly Techniques for Agricultural Weed/Pest Management. Plants 2021, 10, 1418. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Liang, C.; Hamel, C.; Cutforth, H.; Wang, H. Strategies for reducing the carbon footprint of field crops for semiarid areas. A review. Agron. Sustain. Dev. 2011, 31, 643–656. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Maheswarappa, H.P.; Srinivasan, V.; Lal, R. Carbon Footprint and Sustainability of Agricultural Production Systems in India. J. Crop Improv. 2011, 25, 303–322. [Google Scholar] [CrossRef]
- Sah, D.; Devakumar, A.S. The carbon footprint of agricultural crop cultivation in India. Carbon Manag. 2018, 9, 213–225. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R.; Ferrari, M. Environmental policy stringency, technical progress and pollution haven hypothesis. Sustainability 2020, 12, 3880. [Google Scholar] [CrossRef]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land 2020, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, J.; Rehmani, M.; Sagheer, S.; Kaleem, N.; Muneer, J. Herbicidal Potential of Some Dry Land Plants Against Lathyrus aphaca (L.), Winter Season Weed. Planta Daninha 2020, 38, e020171297. [Google Scholar] [CrossRef]
- Iqbal, J.; Ditommaso, A.; Rehmani, M.I.A.; Jabran, K.; Hussain, S.; Nasim, W.; Fahad, S.; Shehzad, M.A.; Ali, A. Purple nutsedge (Cyperus rotundus) control through interference by summer crops. Int. J. Agric. Biol. 2019, 21, 1083–1088. [Google Scholar]
- Rao, A.; Rao, G.S.; Ratnama, M. Bio-efficacy of sand mix application of pre-emergence herbicides alone and in sequence with imazethapyr on weed control in relay crop of black gram. Pak. J. Weed Sci. Res. 2010, 16, 279–285. [Google Scholar]
- Singh, V.P.; Singh, T.P.; Singh, S.; Kumar, A.; Satyawali, K.; Banga, A.; Bisht, N.; Singh, R. Weed management in blackgram with pre-mix herbicides. Indian J. Weed Sci. 2016, 52, 340–345. [Google Scholar] [CrossRef]
- Singh, K.; Kumari, A.; Rinwa, R.S.; Singh, S. Effect of Different Temperature Regimes on Persistence of Imazethapyr and Trifluralin. Indian J. Weed Sci. 2010, 42, 88–94. [Google Scholar]
- Underwood, M.G.; Soltan, N.; Hooker, D.C.; Robinson, D.E.; Vink, J.P.; Swanton, C.J.; Sikkema, P.H. Weed control, environmental impact, and net-profit of two-pass Weed Management strategies in dicamba-resistant soybean (Glycine max) using conventional tillage. Am. J. Plant Sci. 2017, 8, 3414–3428. [Google Scholar] [CrossRef] [Green Version]
- Alipour, A.; Veisi, H.; Darijani, F.; Mirbagheri, B.; Behbahani, A. Study and determination of energy consumption to produce conventional rice in the Guilan province. Res. Agric. Eng. 2012, 58, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Singh, J. On Farm Energy Use Pattern in Different Cropping Systems in Haryana, India. Master’s Thesis, International Institute of Management, University of Flensburg, Flensburg, Germany, 2002. [Google Scholar]
- Ozkan, B.; Kurklu, A.; Akcaoz, H. An input–output energy analysis in greenhouse vegetable production: A case study for Antalya region of Turkey. Biomass Bioenergy 2004, 26, 89–95. [Google Scholar] [CrossRef]
- Elsoragaby, S.; Yahya, A.; Mahadi, M.R.; Nawi, N.M.; Mairghany, M. Energy utilization in major crop cultivation. Energy 2019, 173, 1285–1303. [Google Scholar] [CrossRef]
- Devasenapathy, P.; Senthilkumar, G.; Shanmugam, P. Energy management in crop production. Indian J. Agron. 2009, 54, 80–90. [Google Scholar]
- Mittal, J.P.; Dhawan, K.C. Research Manual on Energy Requirements in Agricultural Sector; ICAR: New Delhi, India, 1988. [Google Scholar]
- Gopalan, C.; Rama Sastri, B.; Balasubramanian, B. Nutritive Value of Indian Foods; National Institute of Nutrition, Indian Council of Medical Research: Hyderabad, India, 2006. [Google Scholar]
- Suri, S.K.; Dwivedi, M.; Puniya, R.; Sharma, A.; Kumar, R.; Kumar, J.; Rai, A.; Singh, V. Production potential and economic feasibility of blackgram (Vigna mungo L.)+ sesame (Sesamum indicum L.) intercropping under rainfed ecosystems of Jammu. Legume Res.-Int. J. 2020, 43, 370–377. [Google Scholar] [CrossRef]
- Singh, M.; Pal, S.; Thakur, R.; Verma, U. Energy input-output relationship of cropping systems. Indian J. Agric. Sci. 1997, 67, 262–264. [Google Scholar]
- Kumar, A.; Rana, K.S.; Choudhary, A.K.; Bana, R.S.; Sharma, V.K.; Prasad, S.; Gupta, G.; Choudhary, M.; Pradhan, A.; Rajpoot, S.K.; et al. Energy budgeting and carbon footprints of zero-tilled pigeonpea–wheat cropping system under sole or dual crop basis residue mulching and Zn-fertilization in a semi-arid agro-ecology. Energy 2021, 231, 120862. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Zhang, X.; Tian, G. Carbon Footprint Analysis for Mechanization of Maize Production Based on Life Cycle Assessment: A Case Study in Jilin Province, China. Sustainability 2015, 7, 15772–15784. [Google Scholar] [CrossRef] [Green Version]
- Lal, B.; Gautam, P.; Nayak, A.K.; Panda, B.B.; Bihari, P.; Tripathi, R.; Shahid, M.; Guru, P.K.; Chatterjee, D.; Kumar, U.; et al. Energy and carbon budgeting of tillage for environmentally clean and resilient soil health of rice-maize cropping system. J. Clean. Prod. 2019, 226, 815–830. [Google Scholar] [CrossRef]
- Choodonwai, A. Carbon and Water Footprint Analysis of Super Absorbent Polymer. Master’s Thesis, Kasetsart University, Bangkok, Thailand, 2018. [Google Scholar]
- Liu, J.; Chen, S.; Wang, H.; Chen, X. Calculation of Carbon Footprints for Water Diversion and Desalination Projects. Energy Procedia 2015, 75, 2483–2494. [Google Scholar] [CrossRef] [Green Version]
- Rangaswamy, R. A Textbook of Agricultural Statistics, 2nd ed.; New Age International Publishers: Delhi, India, 1995. [Google Scholar]
- Chandel, S.R.S. A Handbook of Agricultural Distribution; Achal Singh Chandel Publishers: Kanpur, India, 2016. [Google Scholar]
- Kundu, R.; Brahmachari, K.; Bera, P.; Kundu, C.; Roychoudhary, S. Bioefficacy of imazethapyr on the predominant weeds in soybean. J. Crop Weed 2011, 7, 173–178. [Google Scholar]
- Singh, R.; Verma, S.; Singh, R. Weed management in groundnut with imazethapyr+ surfactant. Indian J. Weed Sci. 2014, 46, 302–304. [Google Scholar]
- Tamang, D.; Nath, R.; Sengupta, K. Effect of herbicide application on weed management in green gram [Vigna radiata (L.) Wilczek]. Adv. Crop Sci. Technol. 2015, 3, 163. [Google Scholar]
- Panda, S.; Lal, S.; Kewat, M.; Sharma, J.; Saini, M.K. Weed control in soybean with propaquizafop alone and in mixture with imazethapyr. Indian J. Weed Sci. 2015, 47, 31–33. [Google Scholar]
- Mishra, P.; Singh, H.; Babu, S.; Pal, S. Bio-efficacy of some early post-emergence herbicides in soybean (Glycine max L.). Ann. Agric. Res. 2013, 34, 81–87. [Google Scholar]
- Mishra, P.; Samaiya, R.; Khandait, V. Herbicidal effect of Propaquizafop, imazethapyr and pendimethalin on seed quality parameters of black gram (Vigna mungo L.). J. Pharmacogn. Phytochem. 2019, SP2, 117–119. [Google Scholar]
- Tilgam, M.; Shyam, M. Effect of imezathyper and its combination with imezamox on nodulation and economic yield of blackgram. J. Pharmacogn. Phytochem. 2019, SP5, 103–106. [Google Scholar]
- Reddy, N.R.M.; Subramanyam, D.; Sumathi, V.; Umamahesh, V.; Sagar, G.K. Performance of ready-mix herbicides for weed control in blackgram. Indian J. Weed Sci. 2021, 53, 104–106. [Google Scholar] [CrossRef]
- Malhi, G.S.; Rana, M.C.; Rana, S.S.; Kaushik, P. Effect of individual or combined application of herbicide imazethapyr on nutrient uptake by Blackgram (Vigna mungo L.). J. Exp. Biol. Agric. Sci. 2020, 8, 441–446. [Google Scholar] [CrossRef]
S.no. | Inputs | Units | Unit Energy Equivalent (MJ unit−1) | References |
---|---|---|---|---|
1. | Machinery (tractor) | H | 64.8 | [16,34,35,36,37] |
2. | Diesel | L | 56.31 | [38] |
3. | Seeds | kg | 13.96 | [39,40] |
4. | Human power | Man-hour | 1.96 | [16,38] |
5. | Nitrogen | kg | 60.6 | [16,37,41] |
6. | Phosphorus | kg | 11.1 | [16,37,41] |
7. | Potassium | kg | 20.9 | [16,37,41] |
8. | Herbicides | kg | 0.288 | [10,42] |
9. | Insecticide | L | 118.5 | [42,43] |
10. | Electricity | KWh | 11.93 | [10,38] |
11. | Water | m3 | 1.02 | [10] |
Output | ||||
1. | Grains | kg | 13.96 | [39,40] |
2. | Straw | kg | 12.5 | [37,41] |
Inputs | Units | Carbon Emission Coefficient | Reference |
---|---|---|---|
Seeds | kg | 0.32 | [44] |
Human labor | Man-day | 0.23 | [45] |
Machinery | H | 0.89 | [45] |
Diesel | L | 0.94 | [22,45] |
Water application | m3 | 0.17 | [46] |
Nitrogen | kg | 1.3 | [22,47] |
Phosphorus | kg | 0.2 | [16,45] |
Potassium | kg | 0.15 | [16,45] |
Insecticide | kg a.i. | 5.1 | [22] |
Herbicide | kg a.i. | 6.3 | [22] |
Straw | kg | 0.44 | [16,22] |
Echinochloa colona | Dactyloctenium aegyptium | Cyperus iria | Other Weeds | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weed Management Treatments | Count (No. m−2) | Count (No. m−2) | Count (No. m−2) | Count (No. m−2) | ||||||||
30 DAS | 60 DAS | Harvest | 30 DAS | 60 DAS | Harvest | 30 DAS | 60 DAS | Harvest | 30 DAS | 60 DAS | Harvest | |
T1 | 8.9 c (80.0) | 9.7 cd (96.0) | 9.5 de (90.7) | 7.3 c (53.3) | 8.6 c (74.7) | 8.3 c (69.3) | 4.6 bc (21.3) | 5.2 c (26.7) | 4.1 b (16.0) | 3.5 a (16.0) | 1.8 a (5.3) | 2.8 b (16.0) |
T2 | 7.3 c (53.3) | 8.9 c (80.0) | 8.0 c (64.0) | 6.5 bc (42.7) | 8.0 c (64.0) | 6.5 b (42.7) | 4.1 bc (16.0) | 4.6 b (21.3) | 1.8 a (5.3) | 2.4 a (10.7) | 0.7 a (0.0) | 0.7 a (0.0) |
T3 | 14.0 e (197.3) | 13.4 e (181.3) | 12.2 e (149.3) | 10.3 d (106.7) | 9.8 c (96.0) | 8.7 c (74.7) | 5.7 c (32.0) | 4.6 b (21.3) | 2.9 a (10.7) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) |
T4 | 13.4 e (181.3) | 12.4 e (154.7) | 11.1 e (122.7) | 9.8 d (96.0) | 8.9 c (80.0) | 8.3 c (69.3) | 5.2 c (26.7) | 4.6 b (21.3) | 2.9 a (10.7) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) |
T5 | 6.1 bc (37.3) | 7.3 b (53.3) | 6.5 b (42.7) | 5.2 b (26.7) | 6.5 bc (42.7) | 5.2 c (26.7) | 0.7 a (0.0) | 1.8 a (5.3) | 1.8 a (5.3) | 3.5 a (16.0) | 1.8 a (5.3) | 0.7 a (0.0) |
T6 | 4.6 b (21.3) | 5.6 b (32.0) | 5.0 b (26.7) | 3.5 b (16.0) | 5.2 b (26.7) | 4.6 a (21.3) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 1.8 a (5.3) | 0.7 a (0.0) | 0.7 a (0.0) |
T7 | 11.3 d (128.0) | 10.8 de (117.3) | 10.1 de (101.3) | 9.5 d (90.7) | 8.7 c (74.7) | 8.0 bc (64.0) | 4.6 bc (21.3) | 4.6 b (21.3) | 1.8 a (5.3) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) |
T8 | 10.8 d (117.3) | 10.4 d (106.7) | 9.3 d (85.3) | 8.6 c (74.7) | 8.0 c (64.0) | 7.3 b (53.3) | 4.6 bc (21.3) | 4.1 b (16.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) |
T9 | 8.6 c (74.6) | 10.0 c (101.3) | 8.3 c (69.3) | 8.0 c (64.0) | 9.5 c (90.7) | 8.9 c (80.0) | 4.6 bc (21.3) | 5.2 c (26.7) | 4.0 b (16.0) | 1.8 a (5.3) | 1.8 a (5.3) | 4.6 b (21.3) |
T10 | 6.9 c (48.0) | 8.3 c (69.3) | 7.2 c (53.3) | 6.1 bc (37.3) | 6.9 bc (48.0) | 5.6 a (32.0) | 2.9 b (10.6) | 2.9 b (10.7) | 1.8 a (5.3) | 1.8 a (5.3) | 0.7 a (0.0) | 0.7 a (0.0) |
T11 | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 2.9 a (10.7) | 4.1 a (16.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) |
T12 | 14.8 e (218.7) | 18.6 f (346.7) | 16.8 f (282.7) | 11.1 d (122.7) | 14.2 d (202.7) | 13.0 d (170.7) | 7.5 d (58.7) | 10.5 d (112.0) | 6.9 c (48.0) | 0.7 a (0.0) | 0.7 a (0.0) | 2.8 b (16.0) |
Echinochloacolona | Dactyloctenium aegyptium | Cyperus iria | Other Weeds | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Weed Management Treatments | Dry Matter (g m−2) | Dry Matter (g m−2) | Dry Matter (g m−2) | Dry Matter (g m−2) | ||||||||
30 DAS | 60 DAS | Harvest | 30 DAS | 60 DAS | Harvest | 30 DAS | 60 DAS | Harvest | 30 DAS | 60 DAS | Harvest | |
T1 | 4.2 c (17.3) | 5.6 d (31.1) | 6.5 c (42.2) | 2.2 cd (4.4) | 4.5 cd (20.2) | 5.6 c (31.6) | 2.0 b (3.5) | 2.9 c (8.2) | 2.8 b (7.4) | 1.2 a (1.1) | 1.0 a (0.8) | 1.1 a (1.2) |
T2 | 3.6 c (12.8) | 5.1 c (25.5) | 5.4 c (28.7) | 2.1 c (3.7) | 4.0 c (15.3) | 4.6 b (20.6) | 1.8 b (2.8) | 2.6 b (6.6) | 1.4 a (2.4) | 0.8 a (0.1) | 0.7 a (0.0) | 0.7 a (0.0) |
T3 | 7.3 ef (53.6) | 8.1 e (65.1) | 8.9 e (79.6) | 3.5 e (11.9) | 5.5 d (29.5) | 6.2 c (37.9) | 2.5 c (5.8) | 2.7 b (6.9) | 2.2 a (5.1) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) |
T4 | 7.0 e (48.5) | 7.5 e (56.3) | 8.1 de (66.1) | 3.3 e (10.4) | 5.1 d (25.6) | 6.0 c (35.7) | 2.3 c (4.9) | 2.7 b (7.0) | 2.1 a (5.1) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) |
T5 | 3.0 b (8.7) | 4.1 b (16.0) | 4.6 bc (20.5) | 1.6 b (1.2) | 3.3 b (10.6) | 3.6 a (12.9) | 0.7 a (0.0) | 1.2 a (1.5) | 1.4 a (2.4) | 1.1 a (0.9) | 1.1 a (0.8) | 0.7 a (0.0) |
T6 | 2.4 b (5.2) | 3.2 b (9.9) | 3.5 b (12.7) | 1.3 b (1.4) | 3.1 b (9.2) | 3.3 a (10.6) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.8 a (0.2) | 0.7 a (0.0) | 0.7 a (0.0) |
T7 | 6.0 d (36.2) | 6.5 d (42.0) | 7.6 d (56.8) | 3.3 e (10.2) | 5.0 d (24.3) | 5.8 c (33.2) | 2.1 b (4.0) | 2.7 b (7.0) | 1.4 a (2.6) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) |
T8 | 5.7 d (32.1) | 6.4 d (40.3) | 6.9 d (47.1) | 3.2 e (9.6) | 4.7 cd (21.4) | 5.2 c (26.5) | 2.1 b (3.9) | 2.4 b (5.2) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) |
T9 | 4.4 c (18.9) | 5.7 d (31.7) | 5.8 c (33.7) | 2.4 d (5.1) | 4.6 cd (20.9) | 6.1 c (36.9) | 2.0 b (3.7) | 2.9 c (8.3) | 2.8 b (7.5) | 0.8 a (0.2) | 2.2 a (9.2) | 1.9 b (3.3) |
T10 | 3.3 b (10.6) | 4.6 c (20.6) | 5.2 c (28.1) | 1.9 c (3.2) | 3.4 b (10.9) | 3.7 b (13.5) | 1.5 b (1.9) | 1.8 b (3.3) | 1.4 a (2.5) | 0.8 a (0.1) | 0.7 a (0.0) | 0.7 a (0.0) |
T11 | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 1.5 a (1.9) | 2.3 a (4.9) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) | 0.7 a (0.0) |
T12 | 8.1 f (64.8) | 11.7 f (136.7) | 12.4 f (153) | 4.3 f (18.0) | 8.4 e (69.6) | 10.7 d (116.1) | 3.3 d (10.8) | 6.2 d (38.5) | 4.8 c (23.2) | 0.7 a (0.0) | 0.7 a (0.0) | 1.2 a (1.5) |
Weed Management Treatments | Emergence Count (No. m−2) | No. of Leaves Plant−1 (60 DAS) | Days to 50% Flowering | Days to Maturity | Root Nodules | |||
---|---|---|---|---|---|---|---|---|
Nodule Count Plant−1 | Dry Weight (mg) | |||||||
Pre-Flowering | Post-Flowering | Pre-Flowering | Post-Flowering | |||||
T1 | 87.7 a | 18.3 e | 44 a | 77 a | 19.6 d | 11.7 c | 146.7 d | 95.4 c |
T2 | 82.1 a | 18.8 e | 44 a | 76 a | 20.8 e | 12.6 c | 163.3 e | 103.4 d |
T3 | 81.6 a | 11.6 b | 44 a | 76 a | 14.8 b | 8.7 ab | 118.1 b | 74.9 b |
T4 | 87.1 a | 12.9 bc | 44 a | 77 a | 15.2 b | 9.3 b | 129.5 c | 79.3 b |
T5 | 83.8 a | 21.4 f | 45 a | 76 a | 24.4 g | 16.7 e | 171.0 e | 137.5 f |
T6 | 80.5 a | 21.8 f | 45 a | 78 a | 27.2 h | 18.5 f | 205.0 f | 150.0 g |
T7 | 88.2 a | 14.2 c | 45 a | 77 a | 16.8 c | 9.6 b | 148.7 d | 88.0 c |
T8 | 89.4 a | 15.8 d | 45 a | 77 a | 17.1 c | 10.2 b | 163.3 e | 92.3 c |
T9 | 81.0 a | 18.8 e | 45 a | 77 a | 18.2 d | 11.5 c | 164.5 e | 94.5 c |
T10 | 86.0 a | 19.4 e | 46 a | 77 a | 22.6 f | 14.1 d | 166.1 e | 121.2 e |
T11 | 86.0 a | 23.9 g | 47 a | 77 a | 30.0 i | 21.4 g | 217.5 f | 171.7 h |
T12 | 80.5 a | 9.0 a | 42 a | 76 a | 11.7 a | 7.7 a | 103.5 a | 61.8 a |
Treatment | Plant Population (No. m−2) | No. of Branches Plant−1 | Pods Per Plant (No. Plant−1) | Seeds Per Pod (No. Pod−1) | 1000- Seed Weight (g) | Nitrogen Content in Seeds (%) | Protein Content in Seeds (%) | Seed Yield (kg ha−1) | Straw Yield (kg ha−1) |
---|---|---|---|---|---|---|---|---|---|
T1 | 30.0 a | 4.6 d | 18.1 d | 6.3 d | 39.5 c | 3.6 b | 22.5 bc | 1174.6 de | 2193.7 d |
T2 | 31.1 a | 5.2 e | 19.5 d | 6.5 e | 40.2 c | 3.6 bc | 22.7 c | 1269.8 e | 2247.6 d |
T3 | 31.1 a | 3.3 b | 13.1 a | 5.3 b | 37.9 b | 3.3 ab | 20.8 ab | 761.9 b | 1346.0 b |
T4 | 30.5 a | 3.4 b | 14.0 b | 5.7 c | 38.4 b | 3.4 ab | 21.1 ab | 952.4 c | 1765.1 c |
T5 | 29.4 a | 5.7 f | 26.4 g | 6.9 f | 41.4 d | 3.8 c | 23.5 cd | 1396.8 f | 2631.7 ef |
T6 | 30.0 a | 6.2 g | 29.3 h | 7.4 g | 42.9 e | 3.8 c | 23.9 d | 1492.1 f | 2755.6 f |
T7 | 31.6 a | 3.5 b | 14.1 b | 5.8 c | 38.5 b | 3.4 ab | 21.5 b | 984.1 c | 1904.8 cd |
T8 | 31.6 a | 3.8 c | 14.2 b | 5.9 c | 38.9 b | 3.5 b | 21.9 bc | 1047.6 cd | 2076.2 d |
T9 | 31.1 a | 4.1 c | 16.0 c | 6.1 d | 39.7 cd | 3.6 bc | 22.4 bc | 1142.9 d | 2066.7 d |
T10 | 30.1 a | 5.5 f | 21.5 e | 6.6 e | 40.4 cd | 3.7 bc | 23.3 cd | 1301.6 e | 2507.9 e |
T11 | 28.9 a | 5.6 f | 23.3 f | 6.7 ef | 40.6 d | 3.7 bc | 23.4 cd | 1333.3 e | 2536.5 e |
T12 | 27.8 a | 2.9 a | 11.7 a | 4.6 a | 34.6 a | 3.2 a | 20.1 a | 476.2 a | 1098.4 a |
Treatments | Total Energy Used in Herbicide (MJ ha−1) | Labour Used in Hand Weeding/Spraying (MD ha−1) | Energy Used in Hand Weeding/Spraying (MJ ha−1) | Knapsack Sprayer Used (h ha−1) | Energy Used by Knapsack Sprayer (MJ ha−1) | Water Used (m3 ha−1) | Energy Used by Water (MJ ha−1) | Total Energy (MJ ha−1) |
---|---|---|---|---|---|---|---|---|
T1 | 20.16 | 16 | 31.36 | 16 | 2.72 | 0.6 | 0.612 | 54.85 |
T2 | 23.04 | 16 | 31.36 | 16 | 2.72 | 0.6 | 0.612 | 57.73 |
T3 | 20.16 | 16 | 31.36 | 16 | 2.72 | 0.6 | 0.612 | 54.85 |
T4 | 23.04 | 16 | 31.36 | 16 | 2.72 | 0.6 | 0.612 | 57.73 |
T5 | 20.16 | 16 | 31.36 | 16 | 2.72 | 0.6 | 0.612 | 54.85 |
T6 | 23.04 | 16 | 31.36 | 16 | 2.72 | 0.6 | 0.612 | 57.73 |
T7 | 20.16 | 16 | 31.36 | 16 | 2.72 | 0.6 | 0.612 | 54.85 |
T8 | 23.04 | 16 | 31.36 | 16 | 2.72 | 0.6 | 0.612 | 57.73 |
T9 | 288.00 | 16 | 31.36 | 16 | 2.72 | 0.6 | 0.612 | 322.69 |
T10 | 288.00 | 16 | 31.36 | 16 | 2.72 | 0.6 | 0.612 | 322.69 |
T11 | - | 400 | 784.00 | - | - | - | - | 784.00 |
T12 | - | - | - | - | - | - | - | - |
Treatment | Seed Yield (kg ha−1) | Output Energy by Seed (MJ ha−1) | Straw Yield (kg ha−1) | Output Energy by Straw (MJ ha−1) | Total Output Energy (MJ ha−1) | Total Input Energy (MJ ha−1) | Net Energy (MJ ha−1) |
---|---|---|---|---|---|---|---|
T1 | 1174.6 | 16,397.42 | 2193.7 | 27,421.2 | 43,818.67 | 6679.773 | 37,138.89 |
T2 | 1269.8 | 17,726.41 | 2247.6 | 28,095.0 | 45,821.41 | 6682.653 | 39,138.76 |
T3 | 761.9 | 10,636.12 | 1346.0 | 16,825.0 | 27,461.12 | 6679.773 | 20,781.35 |
T4 | 952.4 | 13,295.50 | 1765.1 | 22,063.8 | 35,359.25 | 6682.653 | 28,676.60 |
T5 | 1396.8 | 19,499.33 | 2631.7 | 32,896.2 | 52,395.58 | 6679.773 | 45,715.81 |
T6 | 1492.1 | 20,829.72 | 2755.6 | 34,445.0 | 55,274.72 | 6682.653 | 48,592.06 |
T7 | 984.1 | 13,738.04 | 1904.8 | 23,810.0 | 37,548.04 | 6679.773 | 30,868.26 |
T8 | 1047.6 | 14,624.50 | 2076.2 | 25,952.5 | 40,577.00 | 6682.653 | 33,894.34 |
T9 | 1142.9 | 15,954.88 | 2066.7 | 25,833.8 | 41,788.63 | 6947.613 | 34,841.02 |
T10 | 1301.6 | 18,170.34 | 2507.9 | 31,348.8 | 49,519.09 | 6947.613 | 42,571.47 |
T11 | 1333.3 | 18,612.81 | 2536.5 | 31,706.2 | 50,319.12 | 7409.023 | 42,910.10 |
T12 | 476.0 | 6644.96 | 1098.0 | 13,725.0 | 20,369.96 | 6625.020 | 13,744.94 |
Treatment | Energy Use Efficiency | Energy Productivity (kg MJ−1) | Energy Intensiveness (MJ INR−1) | Energy Profitability | Specific Energy (MJ kg−1) | Energy Intensity in Physical Term (MJ kg−1) | Energy Intensity in Economic Term (MJ INR−1) |
---|---|---|---|---|---|---|---|
T1 | 6.56 | 0.18 | 0.25 | 5.56 | 5.69 | 1.98 | 1.64 |
T2 | 6.86 | 0.19 | 0.25 | 5.86 | 5.26 | 1.90 | 1.71 |
T3 | 4.11 | 0.11 | 0.25 | 3.11 | 8.77 | 3.17 | 1.03 |
T4 | 5.29 | 0.14 | 0.25 | 4.29 | 7.02 | 2.46 | 1.32 |
T5 | 7.84 | 0.21 | 0.25 | 6.84 | 4.78 | 1.66 | 1.92 |
T6 | 8.27 | 0.22 | 0.24 | 7.27 | 4.48 | 1.57 | 2.01 |
T7 | 5.62 | 0.15 | 0.25 | 4.62 | 6.79 | 2.31 | 1.38 |
T8 | 6.07 | 0.16 | 0.24 | 5.07 | 6.38 | 2.14 | 1.47 |
T9 | 6.01 | 0.16 | 0.26 | 5.01 | 6.08 | 2.16 | 1.56 |
T10 | 7.13 | 0.19 | 0.25 | 6.13 | 5.34 | 1.82 | 1.80 |
T11 | 6.79 | 0.18 | 0.23 | 5.79 | 5.56 | 1.91 | 1.54 |
T12 | 3.07 | 0.07 | 0.27 | 2.07 | 13.92 | 4.21 | 0.82 |
Treatment | Herbicide (a.i.)/ Labor (Man Days) | C Inputs of Weed Management (kg CE ha−1) | Common C Inputs of Other Inputs (kg CE ha−1) | Total C Input (kg CE ha−1) | Carbon Output by Grains (kg CE ha−1) | Carbon Output by Straw (kg CE ha−1) | Total Carbon Output (kg CE ha−1) | Carbon Efficiency | Carbon Sustainability Index (CSI) | Carbon Footprint (kg CE kg−1 Yield) |
---|---|---|---|---|---|---|---|---|---|---|
T1 | 0.7 | 4.41 | 168.18 | 172.59 | 375.872 | 965.23 | 1341.10 | 7.77 | 6.77 | 0.15 |
T2 | 0.8 | 5.04 | 168.18 | 173.22 | 406.336 | 988.94 | 1395.28 | 8.05 | 7.05 | 0.14 |
T3 | 0.7 | 4.41 | 168.18 | 172.59 | 243.808 | 592.24 | 836.05 | 4.84 | 3.84 | 0.23 |
T4 | 0.8 | 5.04 | 168.18 | 173.22 | 304.768 | 776.64 | 1081.41 | 6.24 | 5.24 | 0.18 |
T5 | 0.1 | 0.63 | 168.18 | 168.81 | 446.976 | 1157.95 | 1604.92 | 9.51 | 8.51 | 0.12 |
T6 | 0.1 | 0.72 | 168.18 | 168.90 | 477.472 | 1212.46 | 1689.94 | 10.01 | 9.01 | 0.11 |
T7 | 0.1 | 0.63 | 168.18 | 168.81 | 314.912 | 838.11 | 1153.02 | 6.83 | 5.83 | 0.17 |
T8 | 0.1 | 0.72 | 168.18 | 168.90 | 335.232 | 913.53 | 1248.76 | 7.39 | 6.39 | 0.16 |
T9 | 3.3 | 21.00 | 168.18 | 189.18 | 365.728 | 909.35 | 1275.08 | 6.74 | 5.74 | 0.17 |
T10 | 3.1 | 19.69 | 168.18 | 187.87 | 416.512 | 1103.48 | 1519.99 | 8.09 | 7.09 | 0.14 |
T11 | 50.0 | 11.50 | 168.18 | 179.68 | 426.656 | 1116.06 | 1542.72 | 8.59 | 7.59 | 0.13 |
T12 | - | - | 168.18 | 168.18 | 152.320 | 483.12 | 635.44 | 3.78 | 2.78 | 0.35 |
Treatment | Gross Returns (INR ha−1) | Cost of Cultivation (INR ha−1) | Gross Return Due to Weed Control (INR ha−1) | Cost of Weed Control (INR ha−1) | Net Returns (INR ha−1) | MBCR |
---|---|---|---|---|---|---|
T1 | 159,532 | 26,655 | 93,947 | 1679 | 92,268 | 55.0 |
T2 | 172,514 | 26,846 | 106,929 | 1869 | 105,060 | 56.2 |
T3 | 103,499 | 26,655 | 37,914 | 1679 | 36,235 | 21.6 |
T4 | 129,662 | 26,846 | 64,077 | 1869 | 62,208 | 33.3 |
T5 | 190,321 | 27,234 | 124,736 | 2258 | 122,478 | 54.2 |
T6 | 203,104 | 27,511 | 137,519 | 2544 | 134,975 | 53.1 |
T7 | 134,267 | 27,234 | 68,682 | 2258 | 66,424 | 29.4 |
T8 | 143,099 | 27,511 | 77,514 | 2544 | 74,970 | 29.5 |
T9 | 155,859 | 26,821 | 90,274 | 1845 | 88,429 | 47.9 |
T10 | 177,639 | 27,484 | 112,054 | 2508 | 109,546 | 43.7 |
T11 | 181,656 | 32,631 | 116,071 | 8500 | 107,571 | 12.7 |
T12 | 65,585 | 24,977 | 0 | 0 | 0 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malhi, G.S.; Rana, M.C.; Kumar, S.; Rehmani, M.I.A.; Hashem, A.; Abd_Allah, E.F. Efficacy, Energy Budgeting, and Carbon Footprints of Weed Management in Blackgram (Vigna mungo L.). Sustainability 2021, 13, 13239. https://doi.org/10.3390/su132313239
Malhi GS, Rana MC, Kumar S, Rehmani MIA, Hashem A, Abd_Allah EF. Efficacy, Energy Budgeting, and Carbon Footprints of Weed Management in Blackgram (Vigna mungo L.). Sustainability. 2021; 13(23):13239. https://doi.org/10.3390/su132313239
Chicago/Turabian StyleMalhi, Gurdeep Singh, M. C. Rana, Suresh Kumar, Muhammad Ishaq Asif Rehmani, Abeer Hashem, and Elsayed Fathi Abd_Allah. 2021. "Efficacy, Energy Budgeting, and Carbon Footprints of Weed Management in Blackgram (Vigna mungo L.)" Sustainability 13, no. 23: 13239. https://doi.org/10.3390/su132313239
APA StyleMalhi, G. S., Rana, M. C., Kumar, S., Rehmani, M. I. A., Hashem, A., & Abd_Allah, E. F. (2021). Efficacy, Energy Budgeting, and Carbon Footprints of Weed Management in Blackgram (Vigna mungo L.). Sustainability, 13(23), 13239. https://doi.org/10.3390/su132313239