Weed Communities in Winter Wheat: Responses to Cropping Systems under Different Climatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Data Analysis
3. Results
3.1. Temperature and Moisture Manipulations
3.2. Weed Biomass and Community Responses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheelbeek, P.F.D.; Bird, F.A.; Tuomisto, H.L.; Green, R.; Harris, F.B.; Joy, E.J.; Chalabi, Z.; Allen, E.; Haines, A.; Dangour, A.D. Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc. Natl. Acad. Sci. USA 2018, 115, 6804–6809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tigchelaar, M.; Battisti, D.S.; Naylor, R.L.; Ray, D.K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl. Acad. Sci. USA 2018, 115, 6644–6649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziska, L.H. Climate change and the herbicide paradigm: Visiting the future. Agronomy 2020, 10, 1953. [Google Scholar] [CrossRef]
- Cutforth, H.W.; Mcginn, S.M.; Mcphee, K.E.; Miller, P.R. Adaptation of pulse crops to the changing climate of the northern Great Plains. Agron. J. 2007, 99, 1684–1699. [Google Scholar] [CrossRef] [Green Version]
- Keren, I.N.; Menalled, F.D.; Weaver, D.K.; Robison-Cox, J.F. Interacting agricultural pests and their effect on crop yield: Application of a Bayesian decision theory approach to the joint management of Bromus tectorum and Cephus cinctus. PLoS ONE 2015, 10, e0118111. [Google Scholar] [CrossRef]
- Menalled, F.D.; Peterson, R.K.; Smith, R.G.; Curran, W.S.; Páez, D.J.; Maxwell, B.D. The eco-evolutionary imperative: Revisiting weed management in the midst of an herbicide resistance crisis. Sustainability 2016, 8, 1297. [Google Scholar] [CrossRef] [Green Version]
- Whitlock, C.W.; Maxwell, B.; Silverman, N.; Wade, A.A. Montana Climate Assessment; Montana State University: Bozeman, MT, USA; University of Montana: Missoula, MT, USA, 2017; Available online: https://montanaclimate.org/chapter/title-page (accessed on 13 April 2022).
- Grimberg, B.I.; Ahmed, S.; Ellis, C.; Miller, Z.; Menalled, F. Climate change perceptions and observations of agricultural stakeholders in the Northern Great Plains. Sustainability 2018, 10, 1687. [Google Scholar] [CrossRef] [Green Version]
- Booth, B.D.; Swanton, C.J. Assembly theory applied to weed communities. Weed Sci. 2002, 50, 2–13. [Google Scholar] [CrossRef]
- Adhikari, S.; Menalled, F.D. Impacts of dryland farm management systems on weed and ground beetle (Carabidae) communities in the Northern Great Plains. Sustainability 2018, 10, 2146. [Google Scholar] [CrossRef] [Green Version]
- Larson, C.D.; Menalled, F.D.; Lehnhoff, E.A.; Seipel, T. Plant community responses to integrating livestock into a reduced-till organic cropping system. Ecosphere 2021, 12, e03412. [Google Scholar] [CrossRef]
- Pollnac, F.; Rew, L.; Maxwell, B.; Menalled, F. Spatial patterns, species richness and cover in weed communities of organic and conventional no-tillage spring wheat systems. Weed Res. 2008, 48, 398–407. [Google Scholar] [CrossRef]
- Wilcox, J.; Makowski, D. A meta-analysis of the predicted effects of climate change on wheat yields using simulation studies. Field Crops Res. 2014, 156, 180–190. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seipel, T.; Ishaq, S.L.; Menalled, F.D. Agroecosystem resilience is modified by management system via plant–soil feedbacks. Basic Appl. Ecol. 2019, 39, 1–9. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Soussana, J.-F.; Howden, S.M. Crop and pasture response to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19686–19690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupre, M.E.; Seipel, T.; Bourgault, M.; Boss, D.; Menalled, F.D. Predicted climate conditions, cover crop composition, and cover crop termination method modify weed communities in semiarid agroecosystems. Weed Res. 2022, 62, 38–48. [Google Scholar] [CrossRef]
- Peters, K.; Breitsameter, L.; Gerowitt, B. Impact of climate change on weeds in agriculture: A review. Agron. Sustain. Dev. 2014, 34, 707–721. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, K.; Matloob, A.; Aslam, F.; Florentine, S.K.; Chauhan, B.S. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Front. Plant. Sci. 2017, 8, 95. [Google Scholar] [CrossRef]
- Carr, P.M.; Bell, J.M.; Boss, D.L.; DeLaune, P.; Eberly, J.O.; Edwards, L.; Fryer, H.; Graham, C.; Holman, J.; Islam, M.A.; et al. Annual forage impacts on dryland wheat farming in the Great Plains. Agron. J. 2021, 113, 1–25. [Google Scholar] [CrossRef]
- Thiessen Martens, J.; Entz, M. Integrating green manure and grazing systems: A review. Can. J. Plant Sci. 2011, 91, 811–824. [Google Scholar] [CrossRef]
- Mckenzie, S.; Goosey, H.; O’neill, K.; Menalled, F.D. Integration of sheep grazing for cover crop termination into market gardens: Agronomic consequences of an ecologically-based management strategy. Renew. Agric. Food Sys. 2016, 32, 389–402. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, S.; Menalled, F.D. Supporting beneficial insects for agricultural sustainability: The role of livestock-integrated organic and cover cropping to enhance ground beetle (Carabidae) communities. Agronomy 2022, 10, 1210. [Google Scholar] [CrossRef]
- Ishaq, S.L.; Seipel, T.; Yeoman, C.J.; Menalled, F.D. Dryland cropping systems, weed communities, and disease status modulate the effect of climate conditions on wheat soil bacterial communities. mSphere 2020, 5, e00340-20. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, S.L.; Seipel, T.; Yeoman, C.J.; Menalled, F.D. Soil bacterial communities of wheat vary across the growing season and among dryland farming systems. Geoderma 2020, 358, 113989. [Google Scholar] [CrossRef]
- Ouverson, T.; Eberly, J.; Seipel, T.; Menalled, F.; Ishaq, S.L. Temporal soil bacterial community responses to cropping systems and crop identity in dryland agroecosystems of the Northern Great Plains. Front. Sust. Food Sys. 2021, 5, 75. [Google Scholar] [CrossRef]
- Smith, R.G.; Gross, K.L. Assembly of weed communities along a crop diversity gradient. J. Appl. Ecol. 2007, 44, 1046–1056. [Google Scholar] [CrossRef]
- Lehnhoff, E.; Miller, Z.; Miller, P.; Johnson, S.; Scott, T.; Hatfield, P.; Menalled, F.D. Organic agriculture and the quest for the holy grail in water-limited ecosystems: Managing weeds and reducing tillage intensity. Agriculture 2017, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Prism Climate Group Oregon State University. Available online: http://prism.oregonstate.edu (accessed on 13 April 2022).
- Larson, C.D.; Lehnhoff, E.; Rew, L.J. A Warmer and drier climate in the northern sagebrush biome does not promote cheatgrass invasion or change its response to fire. Oecologia 2017, 185, 763–774. [Google Scholar] [CrossRef] [Green Version]
- Marion, G.M.; Henry, G.H.R.; Freckman, D.W.; Johnstone, J.; Jones, G.; Jones, M.H.; Levesque, E.; Molau, U.; Mølgaard, P.; Parsons, A.N.; et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob. Change Biol. 1997, 3, 20–32. [Google Scholar] [CrossRef]
- Yahdjian, L.; Sala, O.E. A rainout shelter design for intercepting different amounts of rainfall. Oecologia 2002, 133, 95–101. [Google Scholar] [CrossRef]
- Delmhorst Model KS-D1 Owner’s Manual. Available online: http://www.moisturemetersdelmhorst.com/content/delmhorst/manual/KS-D1-Soil-moisture-meter-Manual-rev-04-11.pdf (accessed on 13 April 2022).
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall, CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Soft. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.3.4. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 13 April 2022).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. R Package Version 2.4-5. Available online: https://CRAN.R-project.org/package=vegan (accessed on 13 April 2022).
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J.; Dumas, P.; Matthews, E. Creating a Sustainable Food Future: A Menu of Solutions to Feed nearly 10 Billion People by 2050 (Synthesis Report). Available online: https://www.wri.org/research/creating-sustainable-food-future (accessed on 13 April 2022).
- Snapp, S.S.; Smith, R.G.; Robertson, G.P. Designing cropping systems for ecosystem services. In The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability; Hamilton, S.K., Doll, J.L., Robertson, G.P., Eds.; Oxford University Press: New York, NY, USA, 2015; pp. 378–408. [Google Scholar]
- Peterson, C.A.; Eviner, V.T.; Gaudin, A.C.M. Ways forward for resilience research in agroecosystems. Agric. Syst. 2018, 162, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Tack, J.; Barkley, A.; Nalley, L.L. Effect of warming temperatures on US wheat yields. Proc. Natl. Acad. Sci. USA 2015, 112, 6931–6936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.G.; Mortensen, D.A. A disturbance-based framework for understanding weed community assembly in agroecosystems: Challenges and opportunities for agroecological weed management. In Agroecological Practices for Sustainable Agriculture: Principles, Applications, and Making the Transition; Wezel, A., Ed.; World Scientific Publishing Europe Ltd.: London, UK, 2017; pp. 127–154. [Google Scholar]
- Orloff, N.; Mangold, J.; Miller, Z.; Menalled, F. A meta-analysis of field bindweed (Convolvulus arvensis L.) and Canada thistle (Cirsium arvense L.) management in organic agricultural systems. Agric. Ecosyst. Environ. 2018, 254, 264–272. [Google Scholar] [CrossRef]
- Ball, M.G.; Caldwell, B.A.; Ditommaso, A.; Drinkwater, L.E.; Mohler, C.L.; Smith, R.G.; Ryan, M.R. Weed community structure and soybean yields in a long-term organic cropping systems experiment. Weed Sci. 2019, 67, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Young, F.L.; Ogg, A.G.; Alldredge, J.R. Postharvest tillage reduces downy brome (Bromus tectorum L.) infestations in winter wheat. Weed Technol. 2014, 28, 418–425. [Google Scholar] [CrossRef]
- Bradley, B.A. Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Glob. Change Biol. 2009, 15, 196–208. [Google Scholar] [CrossRef]
- Baker, B.P.; Mohler, C.L. Weed management by upstate New York organic farmers: Strategies, techniques and research priorities. Renew. Agric. Food Sys. 2015, 30, 418–427. [Google Scholar] [CrossRef]
- Kreyling, J.; Arfin Khan, M.A.S.; Sultana, F.; Babel, W.; Beierkuhnlein, C.; Foken, T.; Walter, J.; Jentsch, A. Drought effects in climate change manipulation experiments: Quantifying the influence of ambient weather conditions and rain-out shelter artifacts. Ecosystems 2017, 20, 301–315. [Google Scholar] [CrossRef]
Sum of Squares | Mean Square | Numerator Degrees of Freedom | Denominator Degrees of Freedom | F Value | p Value | |
---|---|---|---|---|---|---|
Cropping system | 1021.6 | 510.79 | 2 | 85.02 | 139.0 | <0.001 |
Temperature and moisture manipulation (T&M) | 5.47 | 2.74 | 2 | 85.02 | 0.7 | 0.478 |
Year | 193.51 | 193.51 | 1 | 85.02 | 52.7 | <0.001 |
Cropping system × T&M | 29.66 | 7.41 | 4 | 85.02 | 2.0 | 0.099 |
Cropping system × Year | 35.98 | 17.99 | 2 | 85.02 | 4.9 | 0.010 |
T&M × Year | 4.68 | 2.34 | 2 | 85.02 | 0.6 | 0.532 |
Cropping system × T&M × Year | 7.31 | 1.83 | 4 | 85.02 | 0.5 | 0.738 |
No-Till Conventional | Grazed/Reduced-Till Organic | Tilled Organic | |||
---|---|---|---|---|---|
Weed Species | Total Dry Biomass (g) | Weed Species | Total Dry Biomass (g) | Weed Species | Total Dry Biomass (g) |
Bromus tectorum | 17.83 | Bromus tectorum | 1429.8 | Thlaspi arvense | 2221.3 |
Lactuca serriola | 16.86 | Sisymbrium altissimum | 1296.0 | Lactuca serriola | 615.3 |
Chenopodium album | 0.02 | Thlaspi arvense | 1092.0 | Asperugo procumbens | 87.7 |
Lactuca serriola | 622.7 | Capsella bursa-pastoris | 27.2 | ||
Asperugo procumbens | 476.1 | Cirsium arvense | 22.4 | ||
Taraxacum officinale | 196.6 | Camelina microcarpa | 10.3 | ||
Capsella bursa-pastoris | 150.7 | Sisymbrium altissimum | 7.4 | ||
Tragopogon dubius | 137.5 | Tragopogon dubius | 3.5 | ||
Melilotus officinalis | 89.0 | Chenopodium album | 1.1 | ||
Cirsium arvense | 71.0 | Taraxacum officinale | 0.9 | ||
Trifolium pratense | 32.9 | Bromus tectorum | 0.6 | ||
Bromus japonicus | 15.8 | ||||
Xanthium strumarium | 7.2 | ||||
Dactylis glomerata | 7.0 | ||||
Descurainia sophia | 6.5 | ||||
Agropyron cristatum | 4.7 | ||||
Galium aparine | 3.8 | ||||
Lotus corniculatus | 3.0 | ||||
Medicago sativa | 0.6 | ||||
Avena fatua | 0.5 |
Degrees of Freedom | Sums of Squares | Mean Squares | F-Value | R2 | p | |
---|---|---|---|---|---|---|
Temperature and moisture manipulation (T&M) | 2 | 0.9 | 0.4 | 1.3 | 0.03 | 0.041 |
Cropping system | 2 | 4.6 | 2.3 | 6.9 | 0.16 | 0.001 |
Cropping system × T&M | 4 | 1.4 | 0.4 | 1.0 | 0.05 | 0.105 |
Residuals | 68 | 22.9 | 0.3 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seipel, T.; Ishaq, S.L.; Larson, C.; Menalled, F.D. Weed Communities in Winter Wheat: Responses to Cropping Systems under Different Climatic Conditions. Sustainability 2022, 14, 6880. https://doi.org/10.3390/su14116880
Seipel T, Ishaq SL, Larson C, Menalled FD. Weed Communities in Winter Wheat: Responses to Cropping Systems under Different Climatic Conditions. Sustainability. 2022; 14(11):6880. https://doi.org/10.3390/su14116880
Chicago/Turabian StyleSeipel, Tim, Suzanne L. Ishaq, Christian Larson, and Fabian D. Menalled. 2022. "Weed Communities in Winter Wheat: Responses to Cropping Systems under Different Climatic Conditions" Sustainability 14, no. 11: 6880. https://doi.org/10.3390/su14116880
APA StyleSeipel, T., Ishaq, S. L., Larson, C., & Menalled, F. D. (2022). Weed Communities in Winter Wheat: Responses to Cropping Systems under Different Climatic Conditions. Sustainability, 14(11), 6880. https://doi.org/10.3390/su14116880