Sustainable Smart Cities: Convergence of Artificial Intelligence and Blockchain
Abstract
:1. Introduction
- Blockchain and artificial intelligence is studied for IoT applications.
- Considering the advantages of integrating blockchain and artificial intelligence a secure intelligent blockchain framework is proposed which includes four intelligences. The proposed model consists of intelligence at cloud, fog, edge, and device level.
- The proposed methodology for the combination of blockchain methods and artificial intelligence is provided.
- The qualitative and quantitative analysis of the proposed architecture is presented. Using parameters accuracy, energy consumption, latency, data privacy and security.
- This work presents the summary of research challenges along with their solutions.
2. Related Work
2.1. Blockchain Technology
2.2. Artificial Intelligence Technology
2.3. Current Trending Techniques
3. Proposed Methodology
3.1. Overview of Proposed Framework
3.2. Transactional Flow of Proposed AI-BC Architecture
4. Performance Analysis of AI-BC Framework
4.1. Qualitative Measurement
4.2. Quantitative Measurement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, F. Deployment and integration of smart sensors with IoT devices detecting fire disasters in huge forest environment. Comput. Commun. 2020, 150, 818–827. [Google Scholar] [CrossRef]
- Benke, K.; Benke, G. Artificial intelligence and big data in public health. Int. J. Environ. Res. Public Health 2018, 15, 2796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming analytics: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2923–2960. [Google Scholar] [CrossRef] [Green Version]
- Veselov, G.; Tselykh, A.; Sharma, A.; Huang, R. Applications of Artificial Intelligence in Evolution of Smart Cities and Societies. Informatica 2021, 45. [Google Scholar] [CrossRef]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, big data and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020, 1. [Google Scholar] [CrossRef]
- Dorri, A.; Kanhere, S.S.; Jurdak, R. Towards an optimized blockchain for IoT. In Proceedings of the 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI), Pittsburgh, PA, USA, 18–21 April 2017; pp. 173–178. [Google Scholar]
- Panarello, A.; Tapas, N.; Merlino, G.; Longo, F.; Puliafito, A. Blockchain and iot integration: A systematic survey. Sensors 2018, 18, 2575. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Hilton, B.; Burks, Z.; Reyes, J. Integrating blockchain, smart contract-tokens, and IoT to design a food traceability solution. In Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 1–3 November 2018; pp. 335–340. [Google Scholar]
- Fakhri, D.; Mutijarsa, K. Secure IoT communication using blockchain technology. In Proceedings of the 2018 International Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia, 23–24 October 2018; pp. 1–6. [Google Scholar]
- Mohanta, B.K.; Jena, D.; Satapathy, U.; Patnaik, S. Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology. Internet Things 2020, 11, 100227. [Google Scholar] [CrossRef]
- Lopes, V.; Alexandre, L.A. An overview of blockchain integration with robotics and artificial intelligence. arXiv Prepr. 2018, arXiv:1810.00329. [Google Scholar] [CrossRef] [Green Version]
- AlShamsi, M.; Salloum, S.A.; Alshurideh, M.; Abdallah, S. Artificial intelligence and blockchain for transparency in governance. In Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications; Springer: Cham, Switzerland, 2021; pp. 219–230. [Google Scholar]
- Osuwa, A.A.; Ekhoragbon, E.B.; Fat, L.T. Application of artificial intelligence in Internet of Things. In Proceedings of the 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN), Cyprus, Turkey, 16–17 September 2017; pp. 169–173. [Google Scholar]
- Qiu, C.; Yao, H.; Jiang, C.; Guo, S.; Xu, F. Cloud computing assisted blockchain-enabled Internet of Things. IEEE Trans. Cloud Comput. 2019, 1, 1. [Google Scholar] [CrossRef]
- Yue, L.; Junqin, H.; Shengzhi, Q.; Ruijin, W. Big data model of security sharing based on blockchain. In Proceedings of the 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM), Chengdu, China, 10–11 August 2017; pp. 117–121. [Google Scholar]
- Sharma, A.; Singh, P.K. UAV-based framework for effective data analysis of forest fire detection using 5G networks: An effective approach towards smart cities solutions. Int. J. Commun. Syst. 2021, e4826. [Google Scholar] [CrossRef]
- Yang, J.; Sharma, A.; Kumar, R. IoT-Based Framework for Smart Agriculture. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Q.; Sharma, A.; Sharma, A.; Dhiman, G. Line monitoring and identification based on roadmap towards edge computing. Wirel. Pers. Commun. 2021, 1–24. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, P.K.; Kumar, Y. An integrated fire detection system using IoT and image processing technique for smart cities. Sustain. Cities Soc. 2020, 61, 102332. [Google Scholar] [CrossRef]
- Wang, K.; Dong, J.; Wang, Y.; Yin, H. Securing data with blockchain and AI. IEEE Access 2019, 7, 77981–77989. [Google Scholar] [CrossRef]
- Jin, X.L.; Zhang, M.; Zhou, Z.; Yu, X. Application of a blockchain platform to manage and secure personal genomic data: A case study of LifeCODE. ai in China. J. Med. Internet Res. 2019, 21, e13587. [Google Scholar] [CrossRef]
- Tariq, N.; Asim, M.; Al-Obeidat, F.; Zubair Farooqi, M.; Baker, T.; Hammoudeh, M.; Ghafir, I. The security of big data in fog-enabled IoT applications including blockchain: A survey. Sensors 2019, 19, 1788. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Yu, X.L.; Chen, S.; Xu, X.; Zhu, L. Blockchain based data integrity service framework for IoT data. In Proceedings of the 2017 IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA, 25–30 June 2017; pp. 468–475. [Google Scholar]
- Casado-Vara, R.; de la Prieta, F.; Prieto, J.; Corchado, J.M. Blockchain framework for IoT data quality via edge computing. In Proceedings of the 1st Workshop on Blockchain-Enabled Networked Sensor Systems, Shenzhen, China, 4 November 2018; pp. 19–24. [Google Scholar]
- Chen, J.; Lv, Z.; Song, H. Design of personnel big data management system based on blockchain. Future Gener. Comput. Syst. 2019, 101, 1122–1129. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Cholda, P.; Kumar, R.; Dhiman, G. Risk-aware optimized quickest path computing technique for critical routing services. Comput. Electr. Eng. 2021, 95, 107436. [Google Scholar] [CrossRef]
- Vo, H.T.; Mohania, M.; Verma, D.; Mehedy, L. Blockchain-powered big data analytics platform. In International Conference on Big Data Analytics; Springer: Cham, Switzerland, 2018; pp. 15–32. [Google Scholar]
- Kim, S.; Deka, G.C. (Eds.) Advanced Applications of Blockchain Technology; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Rao, T.A.; Haq, E.U. Security challenges facing IoT layers and its protective measures. Int. J. Comput. Appl. 2018, 179, 31–35. [Google Scholar]
- Ferrag, M.A.; Shu, L.; Yang, X.; Derhab, A.; Maglaras, L. Security and privacy for green IoT-based agriculture: Review, blockchain solutions, and challenges. IEEE Access 2020, 8, 32031–32053. [Google Scholar] [CrossRef]
- Minoli, D.; Occhiogrosso, B. Blockchain mechanisms for IoT security. Internet Things 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Qian, Y.; Jiang, Y.; Chen, J.; Zhang, Y.; Song, J.; Zhou, M.; Pustišek, M. Towards decentralized IoT security enhancement: A blockchain approach. Comput. Electr. Eng. 2018, 72, 266–273. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A survey on IoT security: Application areas, security threats, and solution architectures. IEEE Access 2019, 7, 82721–82743. [Google Scholar] [CrossRef]
- Tsang, Y.P.; Choy, K.L.; Wu, C.H.; Ho, G.T.S.; Lam, H.Y. Blockchain-driven IoT for food traceability with an integrated consensus mechanism. IEEE Access 2019, 7, 129000–129017. [Google Scholar] [CrossRef]
- Pavithran, D.; Shaalan, K.; Al-Karaki, J.N.; Gawanmeh, A. Towards building a blockchain framework for IoT. Clust. Comput. 2020, 23, 2089–2103. [Google Scholar] [CrossRef]
- Cai, H.; Xu, B.; Jiang, L.; Vasilakos, A.V. IoT-based big data storage systems in cloud computing: Perspectives and challenges. IEEE Internet Things J. 2016, 4, 75–87. [Google Scholar] [CrossRef]
- Truong, H.T.T.; Almeida, M.; Karame, G.; Soriente, C. Towards secure and decentralized sharing of IoT data. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 176–183. [Google Scholar]
- Debauche, O.; Mahmoudi, S.; Mahmoudi, S.A.; Manneback, P.; Lebeau, F. A new edge architecture for ai-iot services deployment. Procedia Comput. Sci. 2020, 175, 10–19. [Google Scholar] [CrossRef]
- Mohanty, S.N.; Ramya, K.C.; Rani, S.S.; Gupta, D.; Shankar, K.; Lakshmanaprabu, S.K.; Khanna, A. An efficient Lightweight integrated Blockchain (ELIB) model for IoT security and privacy. Future Gener. Comput. Syst. 2020, 102, 1027–1037. [Google Scholar] [CrossRef]
- Rathore, S.; Park, J.H. A blockchain-based deep learning approach for cyber security in next generation industrial cyber-physical systems. IEEE Trans. Ind. Inform. 2020, 17, 5522–5532. [Google Scholar] [CrossRef]
- Pan, J.; Wang, J.; Hester, A.; Alqerm, I.; Liu, Y.; Zhao, Y. Edge Chain: An edge-IoT framework and prototype based on blockchain and smart contracts. IEEE Internet Things J. 2018, 6, 4719–4732. [Google Scholar] [CrossRef] [Green Version]
- Pang, H.; Zheng, Z.; Zhen, T.; Sharma, A. Smart Farming: An Approach for Disease Detection Implementing IoT and Image Processing. Int. J. Agric. Environ. Inf. Syst. (IJAEIS) 2021, 12(1), 55–67. [Google Scholar] [CrossRef]
- Harris, J.D.; Waggoner, B. Decentralized and collaborative AI on blockchain. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 368–375. [Google Scholar]
- Yu, H.; Yang, Z.; Sinnott, R.O. Decentralized big data auditing for smart city environments leveraging blockchain technology. IEEE Access 2018, 7, 6288–6296. [Google Scholar] [CrossRef]
- Kumari, A.; Gupta, R.; Tanwar, S.; Kumar, N. Blockchain and AI amalgamation for energy cloud management: Challenges, solutions, and future directions. J. Parallel Distrib. Comput. 2020, 143, 148–166. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, P.K.; Yoon, B.; Shojafar, M.; Cho, G.H.; Ra, I.H. Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city. Sustain. Cities Soc. 2020, 63, 102364. [Google Scholar] [CrossRef]
- Dinh, T.N.; Thai, M.T. Ai and blockchain: A disruptive integration. Computer 2018, 51, 48–53. [Google Scholar] [CrossRef]
- Singh, S.K.; Rathore, S.; Park, J.H. Blockiotintelligence: A blockchain-enabled intelligent IoT architecture with artificial intelligence. Future Gener. Comput. Syst. 2020, 110, 721–743. [Google Scholar] [CrossRef]
- Rahman, M.A.; Rashid, M.M.; Hossain, M.S.; Hassanain, E.; Alhamid, M.F.; Guizani, M. Blockchain and IoT-based cognitive edge framework for sharing economy services in a smart city. IEEE Access 2019, 7, 18611–18621. [Google Scholar] [CrossRef]
References | Technology Used | Blockchain Based AI | AI Based Blockchain | Architecture | Challenges towards Research |
---|---|---|---|---|---|
Lopes et al. [11] | AI and Blockchain | Less | Yes | Yes | Less |
AlShamsi et al. [12] | AI and Blockchain | Less | Yes | Yes | Less |
Osuwa et al. [13] | AI and IoT | Less | Yes | Yes | Less |
Qiu et al. [14] | IoT, Blockchain and Cloud computing | Less | Less | Yes | No |
Yue et al. [15] | Blockchain | No | Less | No | Yes |
Sharma et al. [16] | AI and Blockchain | Yes | No | No | Less |
Yang et al. [17] | AI and Blockchain | Yes | Less | Yes | Less |
Liu et al. [18] | Blockchain and IoT | Yes | No | No | Less |
Sharma et al. [19] | Blockchain and IoT | Less | No | No | No |
Wang et al. [20] | IoT, Blockchain and Edge computing | Yes | Less | Yes | No |
Jin et al. [21] | Blockchain | No | No | No | Yes |
Tariq et al. [22] | AI and IoT | Yes | Less | Yes | Yes |
Liu et al. [23] | AI and Blockchain | No | No | Yes | No |
Schemes | Categories | |||||
---|---|---|---|---|---|---|
Methods | Performance Indices | Proposed Approach | Platform | Application | Process | |
Device deployment intelligence [7] | Deep Learning and Blockchain | Accuracy and Privacy | Secure Deep learning based on BC | Ethereum | Solidity | Collaborative Deep Learning and generation of candidate block |
Edge computing [15] | Deep Learning and Blockchain | Latency, Accuracy and Delay | Secure Deep learning based on BC | Ethereum | Solidity and Raspbian | Distributive Deep Learning |
Fog computing [24] | Machine Learning and Blockchain | Computational Resources and Accuracy | Decentralized network based on BC | Ethereum | Linux and Mininet | Analyzer and classifier of traffic flow, Attack detection and mitigation based on BC |
Cloud computing [26] | Reinforcement Learning and Blockchain | Accuracy and Energy Consumption | Management of resource based on BC | Ethereum and Smart contract | Solidity and Windows | Frequency scaling |
Category | Performance Indices | |||||||
---|---|---|---|---|---|---|---|---|
Accuracy (%) | Latency in Milliseconds | Privacy and Security | Energy Consumption | Computational Complexity (%) | ||||
Lowest | Highest | Highest | Lowest | CPU Usage | Memory Usage | |||
Device deployment intelligence [7] | 75 | 57.6 | 58.7 | 1.2 | 0.02 | - | IoT: 3.2–4.5 and for Edge devices: 34.2 | IoT: 12.1–15.6 and for Edge devices: 25 |
Edge computing [15] | 78 | 56.2 | 59.3 | 0.59 | 0.3 | - | IoT: 3.5–4.8 and for Edge devices: 37.2 | IoT: 12.5–15.8 and for Edge devices: 26 |
Fog computing [24] | 92 | 0 | 12 | 0.8 | 0.1 | - | 92 | 94 |
Cloud computing [26] | 70 | - | - | - | - | 55% in comparison with Round Robin approach and 25% in comparison with Mini Brown approach | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.; Podoplelova, E.; Shapovalov, G.; Tselykh, A.; Tselykh, A. Sustainable Smart Cities: Convergence of Artificial Intelligence and Blockchain. Sustainability 2021, 13, 13076. https://doi.org/10.3390/su132313076
Sharma A, Podoplelova E, Shapovalov G, Tselykh A, Tselykh A. Sustainable Smart Cities: Convergence of Artificial Intelligence and Blockchain. Sustainability. 2021; 13(23):13076. https://doi.org/10.3390/su132313076
Chicago/Turabian StyleSharma, Ashutosh, Elizaveta Podoplelova, Gleb Shapovalov, Alexey Tselykh, and Alexander Tselykh. 2021. "Sustainable Smart Cities: Convergence of Artificial Intelligence and Blockchain" Sustainability 13, no. 23: 13076. https://doi.org/10.3390/su132313076
APA StyleSharma, A., Podoplelova, E., Shapovalov, G., Tselykh, A., & Tselykh, A. (2021). Sustainable Smart Cities: Convergence of Artificial Intelligence and Blockchain. Sustainability, 13(23), 13076. https://doi.org/10.3390/su132313076