Modeling Spatial Distribution and Determinant of PM2.5 at Micro-Level Using Geographically Weighted Regression (GWR) to Inform Sustainable Mobility Policies in Campus Based on Evidence from King Abdulaziz University, Jeddah, Saudi Arabia
Abstract
:1. Introduction
2. Literature Review
2.1. Health Consequences of Particulate Matter (PM2.5)
2.2. Campus Response to Challenges of Poor Ambient Air Quality
2.3. PM2.5 Modeling and Geographically Weighted Regression
3. Material and Methods
3.1. Study Area
3.2. Methods
4. Results
4.1. OLS and GWR Regression Results
4.2. Model Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNEP. Pollution Action Note—Data You Need to Know. Available online: https://www.unep.org/interactive/air-pollution-note/ (accessed on 15 August 2021).
- Stauffer, A.; Perroud, S. Clean air policy challenges in Europe: Achieving air standards that prevent disease. Eur. J. Public Health 2020, 30. [Google Scholar] [CrossRef]
- Klompmaker, J.O.; Hoek, G.; Bloemsma, L.D.; Marra, M.; Wijga, A.H.; van den Brink, C.; Brunekreef, B.; Lebret, E.; Gehring, U.; Janssen, N.A.H. Surrounding green, air pollution, traffic noise exposure and non-accidental and cause-specific mortality. Environ. Int. 2020, 134, 105341. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Hou, Q.; Li, N.; Zhai, S. Assessment of human exposure level to PM10 in China. Atmos. Environ. 2013, 70, 376–386. [Google Scholar] [CrossRef]
- Fang, T.; Guo, H.; Verma, V.; Peltier, R.E.; Weber, R.J. PM 2.5 water-soluble elements in the southeastern United States: Automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies. Atmos. Chem. Phys. 2015, 15, 11667–11682. [Google Scholar] [CrossRef] [Green Version]
- Fattore, E.; Paiano, V.; Borgini, A.; Tittarelli, A.; Bertoldi, M.; Crosignani, P.; Fanelli, R. Human health risk in relation to air quality in two municipalities in an industrialized area of Northern Italy. Environ. Res. 2011, 111, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Debone, D.; Leirião, L.F.L.; Miraglia, S.G.E.K. Air quality and health impact assessment of a truckers’ strike in Sao Paulo state, Brazil: A case study. Urban Clim. 2020, 34, 100687. [Google Scholar] [CrossRef]
- Garnica-Monroy, R.; Garibay-Bravo, V.; Gonzalez-Gonzalez, A.; Martínez Salgado, H.; Hernández-Reyes, M. Spatial Analysis of Exposure to Traffic-Related Air Pollution in Mexico: Implications for Urban Planning to Improve Public Health. Appl. Spat. Anal. Policy 2021. [Google Scholar] [CrossRef]
- Toro, R.; Kvakić, M.; Klaić, Z.B.; Koračin, D. Exploring atmospheric stagnation during a severe particulate matter air pollution episode over complex terrain in Santiago, Chile. Environ. Pollut. 2019, 244, 705–714. [Google Scholar] [CrossRef]
- Englert, N. Fine particles and human health—A review of epidemiological studies. Toxicol. Lett. 2004, 149, 235–242. [Google Scholar] [CrossRef]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. J. Environ. Sci. Health Part C 2008, 26, 339–362. [Google Scholar] [CrossRef]
- EPA. How Does PM Affect Human Health? Available online: https://www3.epa.gov/region1/airquality/pm-human-health.html (accessed on 9 September 2021).
- Gao, P.; Lei, T.; Jia, L.; Song, Y.; Lin, N.; Du, Y.; Feng, Y.; Zhang, Z.; Cui, F. Exposure and health risk assessment of PM 2.5 -bound trace metals during winter in university campus in Northeast China. Sci. Total Environ. 2017, 576, 628–636. [Google Scholar] [CrossRef]
- Chen, P.; Bi, X.; Zhang, J.; Wu, J.; Feng, Y. Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China. Particuology 2015, 20, 104–109. [Google Scholar] [CrossRef]
- Mascarelli, A.L. How green is your campus? Nature 2009, 461, 154–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stafford, S.L. How green is your campus? An Analysis of the factors that drives universities to embrace Sustainability. Contemp. Econ. Policy 2011, 29, 337–356. [Google Scholar] [CrossRef] [Green Version]
- Anenberg, S.C.; Horowitz, L.W.; Tong, D.Q.; West, J.J. An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling. Environ. Health Perspect. 2010, 118, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Rui, G.; Liang, Y. Study on PM2.5 pollution and the mortality due to lung cancer in China based on geographic weighted regression model. BMC Public Health 2018, 18, 925. [Google Scholar] [CrossRef]
- Chowdhury, S.; Dey, S. Cause-specific premature death from ambient PM2.5 exposure in India: Estimate adjusted for baseline mortality. Environ. Int. 2016, 91, 283–290. [Google Scholar] [CrossRef]
- Pope III, C.A. Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, A. Neurological Disorders from Ambient (Urban) Air Pollution Emphasizing UFPM and PM2.5. Curr. Pollut. Rep. 2016, 2, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Ailshire, J.A.; Crimmins, E.M. Fine Particulate Matter Air Pollution and Cognitive Function Among Older US Adults. Am. J. Epidemiol. 2014, 180, 359–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, L.G.; Cole, T.B.; Coburn, J.; Chang, Y.-C.; Dao, K.; Roque, P. Neurotoxicants Are in the Air: Convergence of Human, Animal, and In Vitro Studies on the Effects of Air Pollution on the Brain. Biomed Res. Int. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.; Yung, K.K.L. The association between PM2.5 exposure and neurological disorders. In Air Pollution, Climate, and Health; Elsevier: Amsterdam, The Netherlands, 2021; pp. 229–245. [Google Scholar]
- Kilian, J.; Kitazawa, M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease—Evidence from epidemiological and animal studies. Biomed. J. 2018, 41, 141–162. [Google Scholar] [CrossRef]
- Zhou, Y.-M.; Fan, Y.-N.; Yao, C.-Y.; Xu, C.; Liu, X.-L.; Li, X.; Xie, W.-J.; Chen, Z.; Jia, X.-Y.; Xia, T.-T.; et al. Association between short-term ambient air pollution and outpatient visits of anxiety: A hospital-based study in northwestern China. Environ. Res. 2021, 197, 111071. [Google Scholar] [CrossRef]
- Ranzani, O.T.; Milà, C.; Kulkarni, B.; Kinra, S.; Tonne, C. Association of Ambient and Household Air Pollution With Bone Mineral Content Among Adults in Peri-urban South India. JAMA Netw. Open 2020, 3, e1918504. [Google Scholar] [CrossRef]
- Massachusetts Institute of Technology. Designing the Zero-Carbon Campus of the Future. Available online: https://sustainability.mit.edu/topic/zero-carbon-campus#!introduction (accessed on 22 July 2021).
- University of Leeds. Living Lab for Air Quality. Available online: https://sustainability.leeds.ac.uk/the-living-lab/airquality/ (accessed on 6 July 2021).
- BBC. Smoking More Toxic than Car Fumes. Available online: http://news.bbc.co.uk/2/hi/health/3590578.stm (accessed on 8 July 2021).
- Muller, R.A.; Muller, E.A. Air Pollution and Cigarette Equivalence. Available online: http://berkeleyearth.org/air-pollution-and-cigarette-equivalence/ (accessed on 15 July 2021).
- King Abdulaziz University. King Abdulaziz University: Competition to Design “A Smoking-free University” Logo. Available online: https://www.kau.edu.sa/Content-0-EN-36146 (accessed on 5 July 2021).
- Lincoln University. Clean Air Policy. Available online: https://www.lincoln.ac.nz/assets/PoliciesAndProcedures/Clean-Air-Policy-.pdf (accessed on 9 July 2021).
- Express Web Desk. Hyderabad University Launches E-Rickshaws for Campus. Available online: https://indianexpress.com/article/cities/hyderabad/hyderabad-university-launches-e-rickshaws-for-campus-6162327/ (accessed on 12 July 2021).
- Columbia Central University. Red de Monitoreo de Calidad del Aire. Available online: https://www.ucentral.edu.co/noticentral/red-monitoreo-calidad-del-aire (accessed on 21 October 2021).
- Times News Network. Chandigarh: Air Quality Improves to ‘Moderate’. Available online: https://timesofindia.indiatimes.com/city/chandigarh/air-quality-improves-to-moderate/articleshow/71929952.cms (accessed on 5 July 2021).
- Grundfos. Green Energy Fuels Smart Campus in Western China. Available online: https://www.grundfos.com/solutions/learn/cases/green-energy-fuels-smart-campus-in-western-china (accessed on 22 August 2021).
- Monash University Air Pollution. Available online: https://www.monash.edu/future-without-change/air-pollution (accessed on 22 July 2021).
- University of Victoria. Campus Cycling Plan; University of Victoria: Victoria, BC, Canada, 2019. [Google Scholar]
- Surgeon General Step It Up! The Surgeon General’s Call to Action to Promote Walking and Walkable Communities. Available online: https://www.hhs.gov/surgeongeneral/reports-and-publications/physical-activity-nutrition/index.html (accessed on 18 July 2021).
- Bopp, M.; Kaczynski, A.; Wittman, P. Active Commuting Patterns at a Large, Midwestern College Campus. J. Am. Coll. Health 2011, 59, 605–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, A. How Colleges Are Stepping Up Campus Walkability. Available online: https://www.citylab.com/life/2015/12/how-colleges-are-stepping-up-campus-walkability/419220/ (accessed on 15 July 2021).
- Scott, A.; Nwadike, N.; Seibel, L.; Dosch, G.; Uchendu, N. Creating a Car Free Campus. Available online: http://umanitoba.ca/campus/sustainability/media/Creating_a_Car_Free_Campus.pdf (accessed on 11 July 2021).
- Páez, A.; Wheeler, D.C. Geographically Weighted Regression. In International Encyclopedia of Human Geography; Elsevier: Amsterdam, The Netherlands, 2009; pp. 407–414. [Google Scholar]
- Sheehan, K.R.; Strager, M.P.; Welsh, S.A. Advantages of Geographically Weighted Regression for Modeling Benthic Substrate in Two Greater Yellowstone Ecosystem Streams. Environ. Model. Assess. 2013, 18, 209–219. [Google Scholar] [CrossRef]
- Lin, G.; Fu, J.; Jiang, D.; Hu, W.; Dong, D.; Huang, Y.; Zhao, M. Spatio-Temporal Variation of PM2.5 Concentrations and Their Relationship with Geographic and Socioeconomic Factors in China. Int. J. Environ. Res. Public Health 2013, 11, 173–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, D.; Su, X.; Zhang, Q.; Peters, G.P.; Liu, Z.; Lei, Y.; He, K. The socioeconomic drivers of China’s primary PM2.5 emissions. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Liu, Y.-M. The influential factors of urban PM2.5 concentrations in China: A spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar] [CrossRef]
- Pateraki, S.; Asimakopoulos, D.N.; Flocas, H.A.; Maggos, T.; Vasilakos, C. The role of meteorology on different sized aerosol fractions (PM10, PM2.5, PM2.5–10). Sci. Total Environ. 2012, 419, 124–135. [Google Scholar] [CrossRef]
- Onat, B.; Stakeeva, B. Personal exposure of commuters in public transport to PM2.5 and fine particle counts. Atmos. Pollut. Res. 2013, 4, 329–335. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Lin, Z.-S. Interactive Effects of the Influencing Factors on the Changes of PM2.5 Concentration Based on GAM Model. Huan Jing Ke Xue Huanjing Kexue 2017, 38, 22–32. [Google Scholar] [CrossRef]
- Jiang, M.; Sun, W.; Yang, G.; Zhang, D. Modelling Seasonal GWR of Daily PM2.5 with Proper Auxiliary Variables for the Yangtze River Delta. Remote Sens. 2017, 9, 346. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Lang, Y.; Christakos, G. High-resolution spatiotemporal mapping of PM2.5 concentrations at Mainland China using a combined BME-GWR technique. Atmos. Environ. 2018, 173, 295–305. [Google Scholar] [CrossRef]
- Zhai, L.; Li, S.; Zou, B.; Sang, H.; Fang, X.; Xu, S. An improved geographically weighted regression model for PM2.5 concentration estimation in large areas. Atmos. Environ. 2018, 181, 145–154. [Google Scholar] [CrossRef]
- Hajiloo, F.; Hamzeh, S.; Gheysari, M. Impact assessment of meteorological and environmental parameters on PM2.5 concentrations using remote sensing data and GWR analysis (case study of Tehran). Environ. Sci. Pollut. Res. 2019, 26, 24331–24345. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Luo, L.; Wang, S.; Wang, Y.; Sharma, S.; Shimadera, H.; Wang, X.; Bressi, M.; de Miranda, R.M.; Jiang, J.; et al. Status and characteristics of ambient PM2.5 pollution in global megacities. Environ. Int. 2016, 89–90, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Wang, Y.; Zheng, L.; Li, J.; Xie, S. Can industrial agglomeration promote pollution agglomeration? Evidence from China. J. Clean. Prod. 2020, 246, 118960. [Google Scholar] [CrossRef]
- Lou, C.-R.; Liu, H.-Y.; Li, Y.-F.; Li, Y.-L. Socioeconomic Drivers of PM2.5 in the Accumulation Phase of Air Pollution Episodes in the Yangtze River Delta of China. Int. J. Environ. Res. Public Health 2016, 13, 928. [Google Scholar] [CrossRef] [Green Version]
- Gu, K.; Zhou, Y.; Sun, H.; Dong, F.; Zhao, L. Spatial distribution and determinants of PM2.5 in China’s cities: Fresh evidence from IDW and GWR. Environ. Monit. Assess. 2021, 193, 15. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, H. Spatial Distribution Patterns and Influencing Factors of PM2.5 Pollution in the Yangtze River Delta: Empirical Analysis Based on a GWR Model. Asia-Pacific J. Atmos. Sci. 2021, 57, 63–75. [Google Scholar] [CrossRef]
- Barabesi, L.; Fattorini, L. Random versus stratified location of transects or points in distance sampling: Theoretical results and practical considerations. Environ. Ecol. Stat. 2013, 20, 215–236. [Google Scholar] [CrossRef]
- Mansfield, E.R.; Helms, B.P. Detecting Multicollinearity. Am. Stat. 1982, 36, 158–160. [Google Scholar] [CrossRef]
- Grekousis, G. Spatial Analysis Methods and Practice; Cambridge University Press: Cambridge, UK, 2020; ISBN 9781108614528. [Google Scholar]
- Oshan, T.; Li, Z.; Kang, W.; Wolf, L.; Fotheringham, A. mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo Inf. 2019, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.P. The t test for the simple regression coefficient. In Understanding Regression Analysis; Springer: Boston, MA, USA, 1997; pp. 66–70. [Google Scholar]
- Harrison, B. Tips for quicker focused evaluation. In Data Room Management for Mergers and Acquisitions in the Oil and Gas Industry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 145–167. [Google Scholar]
- Morgan, J.A.; Tatar, J.F. Calculation of the Residual Sum of Squares for all Possible Regressions. Technometrics 1972, 14, 317–325. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.-L. A corrected akaike information criterion for vector autoregressive model selection. J. Time Ser. Anal. 1993, 14, 271–279. [Google Scholar] [CrossRef]
- Ishiguro, M.; Sakamoto, Y.; Kitagawa, G. Bootstrapping Log Likelihood and EIC, an Extension of AIC. Ann. Inst. Stat. Math. 1997, 49, 411–434. [Google Scholar] [CrossRef]
- Miles, J. R -Squared, Adjusted R -Squared. In Encyclopedia of Statistics in Behavioral Science; John Wiley & Sons, Ltd.: Chichester, UK, 2005. [Google Scholar]
- Khodeir, M.; Shamy, M.; Alghamdi, M.; Zhong, M.; Sun, H.; Costa, M.; Chen, L.-C.; Maciejczyk, P. Source apportionment and elemental composition of PM2.5 and PM10 in Jeddah City, Saudi Arabia. Atmos. Pollut. Res. 2012, 3, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, J.; Laden, F.; Zanobetti, A. The concentration-response relation between PM2.5 and daily deaths. Environ. Health Perspect. 2002, 110, 1025–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayebare, S.R.; Aburizaiza, O.S.; Siddique, A.; Carpenter, D.O.; Arden Pope, C.; Mirza, H.M.; Zeb, J.; Aburiziza, A.J.; Khwaja, H.A. Fine particles exposure and cardiopulmonary morbidity in Jeddah: A time-series analysis. Sci. Total Environ. 2019, 647, 1314–1322. [Google Scholar] [CrossRef]
Variables | Min. | Max. | Mean | Std. Dev. | VIF | |
---|---|---|---|---|---|---|
Dependent Variables | PM2.5 off-peak 7 am (Model-1) | 17 | 37 | 24.1 | 4.8 | - |
PM2.5 peak 9 am (Model-2) | 19 | 68 | 35.3 | 10.3 | - | |
PM2.5 peak 11 am (Model-3) | 18 | 65 | 33.3 | 8.7 | - | |
PM2.5 peak 2 pm (Model-4) | 21 | 70 | 36.6 | 9.2 | - | |
Independent Variables | Number of cars | 25 | 6989 | 1022.0 | 1452.4 | 2.9 |
Windspeed | 12 | 21 | 18.2 | 2.4 | 1.4 | |
Temperature | 27 | 34 | 30.5 | 1.8 | 2.2 | |
Humidity | 28 | 33 | 30.4 | 1.3 | 1.3 | |
Distance from construction sites | 74 | 937 | 312.1 | 201.4 | 2.5 | |
Distance from trees | 51 | 650 | 215.7 | 163.0 | 1.9 |
OLS Model | GWR Model | ||||||
---|---|---|---|---|---|---|---|
Est. | SE | T (Est/SE) | p-Value | p ≤ 0.05 | + (%) | − (%) | |
Intercept | 0.001 | 0.051 | 0.019 | 1.000 | 0 | 0 | 0 |
Number of cars | 0.915 | 0.058 | 15.809 | 0.000 | 100 | 100 | 0 |
Wind speed | −0.049 | 0.053 | −0.920 | 0.357 | 0 | 0 | 0 |
Temperature | −0.084 | 0.056 | −1.503 | 0.133 | 0 | 0 | 0 |
Humidity | −0.122 | 0.055 | −2.227 | 0.026 | 29.41 | 0 | 100.0 |
Distance from construction | 0.032 | 0.056 | 0.579 | 0.563 | 0 | 0 | 0 |
Distance from trees | −0.032 | 0.060 | −0.530 | 0.596 | 0 | 0 | 0 |
OLS Model | GWR Model | ||||||
---|---|---|---|---|---|---|---|
Est. | SE | T (Est/SE) | p-Value | p ≤ 0.05 | + (%) | − (%) | |
Intercept | 0.000 | 0.045 | 0.000 | 1.000 | 0 | 0 | 0 |
Number of cars | 0.953 | 0.056 | 17.167 | 0.000 | 100 | 100 | 0 |
Wind speed | −0.037 | 0.048 | −0.782 | 0.434 | 0 | 0 | 0 |
Temperature | 0.010 | 0.051 | 0.195 | 0.846 | 0 | 0 | 0 |
Humidity | 0.003 | 0.052 | 0.066 | 0.947 | 0 | 0 | 0 |
Distance from construction | −0.090 | 0.043 | −2.097 | 0.036 | 0 | 0 | 0 |
Distance from trees | −0.027 | 0.046 | −0.581 | 0.561 | 0 | 0 | 0 |
OLS Model | GWR Model | ||||||
---|---|---|---|---|---|---|---|
Est. | SE | T (Est/SE) | p-Value | p ≤ 0.05 | + (%) | − (%) | |
Intercept | 0.000 | 0.069 | 0.000 | 1.000 | 0 | 0 | 0 |
Number of cars | 0.855 | 0.076 | 11.285 | 0.000 | 100 | 100 | 0 |
Wind speed | −0.029 | 0.071 | −0.405 | 0.685 | 0 | 0 | 0 |
Temperature | 0.120 | 0.073 | 1.650 | 0.099 | 0 | 0 | 0 |
Humidity | −0.003 | 0.076 | −0.040 | 0.968 | 0 | 0 | 0 |
Distance from construction | −0.78 | 0.070 | −1.124 | 0.261 | 0 | 0 | 0 |
Distance from trees | −0.34 | 0.072 | −0.475 | 0.635 | 0 | 0 | 0 |
OLS Model | GWR Model | ||||||
---|---|---|---|---|---|---|---|
Est. | SE | T (Est/SE) | p-Value | p ≤ 0.05 | + (%) | − (%) | |
Intercept | 0.000 | 0.066 | 0.000 | 1.000 | 0 | 0 | 0 |
Number of cars | 0.868 | 0.073 | 11.886 | 0.000 | 100 | 100 | 0 |
Wind speed | 0.046 | 0.071 | 0.648 | 0.517 | 0 | 0 | 0 |
Temperature | −0.072 | 0.068 | −1.061 | 0.288 | 0 | 0 | 0 |
Humidity | −0.089 | 0.068 | −1.313 | 0.189 | 0 | 0 | 0 |
Distance from construction | 0.067 | 0.065 | 1.040 | 0.298 | 0 | 0 | 0 |
Distance from trees | 0.045 | 0.067 | 0.67 | 0.562 | 0 | 0 | 0 |
Model-1 | Model-2 | Model-3 | Model-4 | |||||
---|---|---|---|---|---|---|---|---|
OLS | GWR | OLS | GWR | OLS | GWR | OLS | GWR | |
RSS | 6.214 | 5.475 | 4.830 | 4.526 | 11.272 | 6.476 | 10.113 | 8.640 |
Log-likelihood | −18.688 | −15.459 | −12.263 | −10.607 | −33.874 | −31.107 | −19.741 | −27.091 |
Adjusted R2 | 0.871 | 0.868 | 0.893 | 0.897 | 0.760 | 0.844 | 0.784 | 0.795 |
AICc | 54.89 | 51.285 | 45.594 | 38.435 | 81.658 | 66.094 | 73.581 | 72.213 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, A.; Aljoufie, M. Modeling Spatial Distribution and Determinant of PM2.5 at Micro-Level Using Geographically Weighted Regression (GWR) to Inform Sustainable Mobility Policies in Campus Based on Evidence from King Abdulaziz University, Jeddah, Saudi Arabia. Sustainability 2021, 13, 12043. https://doi.org/10.3390/su132112043
Tiwari A, Aljoufie M. Modeling Spatial Distribution and Determinant of PM2.5 at Micro-Level Using Geographically Weighted Regression (GWR) to Inform Sustainable Mobility Policies in Campus Based on Evidence from King Abdulaziz University, Jeddah, Saudi Arabia. Sustainability. 2021; 13(21):12043. https://doi.org/10.3390/su132112043
Chicago/Turabian StyleTiwari, Alok, and Mohammed Aljoufie. 2021. "Modeling Spatial Distribution and Determinant of PM2.5 at Micro-Level Using Geographically Weighted Regression (GWR) to Inform Sustainable Mobility Policies in Campus Based on Evidence from King Abdulaziz University, Jeddah, Saudi Arabia" Sustainability 13, no. 21: 12043. https://doi.org/10.3390/su132112043
APA StyleTiwari, A., & Aljoufie, M. (2021). Modeling Spatial Distribution and Determinant of PM2.5 at Micro-Level Using Geographically Weighted Regression (GWR) to Inform Sustainable Mobility Policies in Campus Based on Evidence from King Abdulaziz University, Jeddah, Saudi Arabia. Sustainability, 13(21), 12043. https://doi.org/10.3390/su132112043