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Abstract: Air pollution is fatal. Fine particles, such as PM2.5, in ambient air might be the cause of
many physical and psychological disorders, including cognitive decline. This is why educational
policymakers are adopting sustainable mobility, and other policy measures, to make their campuses
carbon-neutral; however, car-dependent cities and their university campuses are still lagging behind
in this area. This study attempts to model the spatial heterogeneity and determinants of PM2.5 at
the King Abdulaziz University campus in Jeddah, which is ranked first among the Saudi Arabian
universities, as well as in the MENA region. We developed four OLS and GWR models of different
peak and off-peak periods during weekdays in order to estimate the determinants of the PM2.5

concentration. The number of cars, humidity, temperature, windspeed, distance from trees, and
construction sites were the estimators in our analysis. Because of a lack of secondary data at a finer
scale, we collected the samples of all dependent and independent variables at 51 locations on the
KAU campus. Model selection was based on RSS, log-likelihood, adjusted R2, and AICc, and a
modal comparison shows that the GWR variant of Model-2 outperformed the other models. The
results of the GWR model demonstrate the geographical variability of the PM2.5 concentration on the
KAU campus, to which the volume of car traffic is the key contributor. Hence, we recommend using
the results of this study to support the development of a car-free and zero-carbon campus at KAU;
furthermore, this study could be exploited by other campuses in Saudi Arabia and the Gulf region.

Keywords: King Abdulaziz University; PM2.5; GWR; zero-carbon campus; spatial heterogeneity

1. Introduction

Contaminated air is an issue of serious concern worldwide and causes one out of
every nine deaths. It is also frightening to consider that exposure to PM2.5 has lowered the
average life expectancy by one year, according to 2016 data [1]. The UNEP data further
shows that fine particle pollution caused 17,795 deaths in 2019; this can be translated into
500 fatalities per 1 million people. There is no doubt that clean air is a boon for public health
and an essential prerequisite for the healthy living of all human beings [2]. There are many
root causes of air pollution, including several voluntary and nonvoluntary human activities,
such as fossil-fuel-based vehicular transportation, manufacturing, and construction [3].
Furthermore, rapid urbanization and population growth have made the problem of air
pollution even worse in both developed and developing countries [4–6]. Automobiles
are the major source of fine particle air pollution—a study in Sao Paulo confirmed that a
trucker’s strike was associated with potential economic and health benefits [7]. A study
in Mexico showed that people living in spatial proximity to high-traffic roads are highly
exposed to traffic-related air pollution, which is a matter of grave concern for urban
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planners and public health professionals, while another study in Santiago, Chile, identified
three distinct episodes of fine particle air pollution, which is helpful in the mitigation of
PM2.5 and PM10 pollutants in urban settings [8,9].

In the past few decades, several studies, including those of Englert [10] and Valavani-
dis et al. [11], have confirmed that air pollution damages the physical and neurological
health of urban residents, increases economic costs, and aggravates the unpleasant impacts
of climate change. According to the EPA [12], outdoor air pollution encompasses a diverse
blend of chemical, physical, and biological substances; however, this study considers solely
the concentration of PM2.5 (fine particles with a diameter of less than 2.5 µm), as these fine
particles pose serious threats to human health.

University campuses worldwide are faced with fine particle pollution, mainly PM2.5,
and this is negatively affecting the health of university attendants [13,14]. We chose
King Abdulaziz University (KAU) campus for our study for two reasons: firstly, the
university mimics a small city and, secondly, campuses are a hub of innovation and
sustainable development. In addition, universities have realized that pollution and resource
consumption have increased on their campuses and in classrooms in the past few decades.
This has compelled university administrations to consider devoting their best efforts to
achieving sustainability in their indoor and outdoor environments [15,16].

Although several studies have modeled the determinant factors of PM2.5 levels and
their spatial heterogeneity through GWR, there is a lack of studies performed at the micro
level of the local geographical region, particularly at the level of a university campus.
This gap is due to the unavailability of fine data at micro geographical scales, such as
university campuses. Therefore, this study attempts to model the spatial distribution
and determinants of PM2.5 at the campus of King Abdulaziz University, utilizing primary
data collected by the authors. This paper is further organized into the following sections:
Literature Review, Material and Methods, Results, Discussions, and Conclusions.

2. Literature Review
2.1. Health Consequences of Particulate Matter (PM2.5)

A number of epidemiological studies have been carried out to date demonstrating the
impacts of deteriorated ambient air quality on human health, although the health effects of
fine particulate matter depend on four factors: the source and composition of particulate
matter, the time of exposure, its depth of travel inside the human body, and the age of
the affected person. Persistent exposure to human-induced PM2.5 is positively associated
with a series of pulmonary and cardiovascular diseases. For instance, in children, chronic
exposure to PM2.5 poses risks for acute lung respiratory infections (ALRI), while in adults, it
can generate chronic obstructive pulmonary disease (COPD), ischemic heart disease (IHD),
cardiopulmonary disorders, lung cancer, and stroke [17–19]. Pope et al. [20] highlight
that there is a 4–6% increased risk of cardiovascular and lung cancer mortality with each
10 mg/m3 increase in fine particulate matter in the air.

Ambient air pollutants might not only harm physical health, but can also cause dam-
age to people’s nervous systems and cognitive abilities, leading to neurological disorders of
different magnitudes, ranging from headaches and migraines, to strokes and various types
of dementia [21]. In addition, a few studies have stated that the PM2.5 in the air contains
certain neurotoxicants that can either produce or accelerate neurodegenerative diseases
related to cognitive decline, schizophrenia, and brain damage. These studies strongly
suggest that persistent exposure to the fine particulate matters present in ambient air might
harm the central nervous system [22–26]. A recent study by Ranzani et al. [27] reported that
adult human lungs have the capacity to purify 10,000 liters of air daily; however, increasing
levels of pollutants could reduce immunity, resulting in increased inflammation and poor
bone health.
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2.2. Campus Response to Challenges of Poor Ambient Air Quality

Educational administrators have launched several initiatives to tackle toxic particulate
matter and the other pollutants present in ambient air. The low-carbon campus project
at the Massachusetts Institute of Technology [28] is an endeavor of the MIT Office of
Sustainability (MITOS) to establish a healthy and low-carbon campus by exploiting the
competence and experience of prestigious MIT alumni to create the testbed for expandable
solutions. Four core components were explored to accomplish the goal of carbon neutrality
at the MIT campus, including mobility, building, climate, and energy. Under the mobility
theme, the students, faculty, and staff members of MIT are encouraged to select flexible,
affordable, and low-impact modes of transportation, including walking and bicycle riding,
with only a small number of members commuting by car.

Similarly, the University of Leeds [29] launched a living lab for their air quality project
in 2017 that uses the inhouse air quality and pollution to enhance the environment and
health of the community’s members. The living lab regularly helps to diminish emissions
from vehicles and curb exposure to poor air quality. In a recent related project, the Institute
for Transport Studies has been investigating pollution exposure to university staff, faculty,
and students via commuter routes. Volunteers carry air quality monitoring devices while
walking, using public transport, or driving; the results are used to make comparisons on
the levels of pollution exposure between different transport modes and routes.

It is also noteworthy that smoking emits 10 times more air pollutants into the ambient
air than a car. The smoking of one cigarette daily produces an equivalent PM2.5 level of
22 µg/m3 [30,31]. Considering this, universities, including KAU [32], have formulated
strategies to create smoking-free campuses. In compliance with the Smoke Free Envi-
ronments Act, 1990, of New Zeeland, which prohibits smoking in workplaces, Lincoln
University [33] accepted the “Clean Air Policy”, aimed at providing a healthy and safe
smoke-free working and learning environment on their campus.

Moreover, universities in developing economies are the worst affected by PM2.5
exposure and are struggling to transform their campuses towards carbon neutrality. Ac-
cording to Express Web Desk [34], the University of Hyderabad in India has recently
introduced e-rickshaw services on weekdays from 8:00 a.m. to 6:00 p.m. This afford-
able (USD 0.14 per trip) and zero-emission commuting service might improve ambient
air quality inside the university campus. Some other universities are trying to increase
awareness about air pollution by disseminating and displaying information on air quality.
The Central University of Columbia at Bogota has established an Air Quality Monitoring
Network (Red de monitoreo de calidad del aire) that is equipped with low-cost sensors
and Internet of Things technology [35]. The Times News Network [36] reported on Punjab
University at Chandigarh (India) as an excellent example of this, as they have set up a
Continuous Ambient Air Quality Monitoring Station (CAAQMS) that offers hourly data in
real time. Air quality information is thus available to everyone through large electronic
display panels. Xi’an Jiao Tong University in China is transforming its campus into a
green energy-fueled smart campus, aiming to enhance ambient air quality for the academic
community [37].

Furthermore, Monash University [38] has suggested that a future without change will
be dismal; on the dangers of air pollution, they state, “We don’t believe in a future where
people can’t go outside”.

If the current trends of air pollution continue, then breathing in ambient oxygen might
significantly risk the health of people. The Monash Climate and Air Quality Research
Group (CARE) maintain that the fine-particulate matter in ambient air can significantly
accelerate the risk of miscarriage among pregnant women, and the group also found a
robust association between air pollution and autism. In their plan to combat air pollution,
Monash set the goal of attaining net zero emissions on Australian campuses by 2030. In
Canada, the University of Victoria [39] has developed a Campus Cycling Plan to make their
campus bicycle-friendly, with the goal of maximizing cycling, walking, public transit use,
and carpooling up to 70% by expanding facilities for cycling by 10%. To promote bicycle
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riding in and around the campus, the university plans to improve the cycling network,
the safety of bike-users in shared spaces, bicycle parking, bicycle sharing, and end-of-trip
amenities for users of all age groups.

The Surgeon General [40] of the USA has urged American universities to construct
walkable campuses, suggesting that walking is a win–win strategy for community health,
as increased physical activity offers significant health benefits. Bopp, Kaczynski, and
Wittman [41] suggest that colleges and universities should become the ultimate locations
for walking. Policies related to walkable campuses may not only inspire students, faculty
members, and personnel to embrace active living, but may also encourage students to
consider future roles as public health professionals, urban planners, urban designers,
transport planners, and architects. Stevens [42] reported that the University of Kentucky has
installed a large amount of signage on their campus, with QR codes in collaboration with
the WALK [Your City] app, which helps university students approximate the time required
for traveling by foot as an alternative to driving. This also helps university researchers in
their investigations into how university attendees use information technology to plan their
day. Scott et al. [43] state that Canadian universities are working to make their campuses
car-free. The University of British Columbia [39] has been successfully implementing its
Transport Strategic Plan (TSP) since 1999 (reviewed in 2005). UBC has a large cycling and
pedestrian network and is aspiring towards sustainable campus transit by 2040.

2.3. PM2.5 Modeling and Geographically Weighted Regression

Several studies before now have investigated the spatial heterogeneity and spatial
dependence of PM2.5 on the associated socioeconomic and environmental factors, using
geographically weighted regression (GWR). GWR permits the exploration of spatially
varying relationships [44]. Nearly all the studies have validated that GWR addresses
the implicit spatial attributes of PM2.5 data, and improves upon the outcomes offered by
traditional OLS regression, which is nonspatial in nature [45].

Lin et al. [46] emphasize the urban green belt area, population density, and economic
growth as the key factors affecting the concentration of PM2.5 in Chinese cities. Guan
et al. [47] stressed that China’s foreign trade is responsible for most of the PM2.5 pollution.
According to Hao and Liu [48], motor vehicles and industrial activities are the factors of
PM2.5 exposure. Zhang et al. [49] deployed the enhanced vegetation index (EVI) with
GWR, and concluded that meteorological parameters, together with fused aerosol optical
depth (AOD) products, explain nearly 87% of the spatial variance in PM2.5 concentrations.
Similarly, Pateraki et al. [50] concluded that humidity and temperature fluctuations were
strongly correlated with PM2.5 concentration, while Onat and Stakeeva [51] affirmed that
accelerated wind speed (>2m/s) might significantly lower the intensity of PM2.5.

In recent years, researchers have frequently used GWR models to understand PM2.5
exposure in various cities and regions. Through a generalized additive model (GAM),
He and Lin [52] confirmed that the PM2.5 concentration change in Nanjing was strongly
correlated with air pressure, water vapor pressure, and temperature. The seasonal and daily
variability in PM2.5 levels was modeled by several spatial scientists in the Yangtze River
delta region via GWR, while the spatiotemporal mapping of fine particle concentrations in
mainland China was carried out by combining Bayesian maximum entropy (BME) with
GWR [53,54].

Many types of GWR models have been effectively employed to quantify the spa-
tiotemporal heterogeneity of PM2.5 pollution in Chinese cities. Zhai et al. [55] developed
an enhanced-subset regression model, which combines Principal Component Analysis
(PCA) and GWR to predict the independent variables responsible for spatial variations in
the levels of PM2.5. Hajiloo, Hamzeh, and Gheysari [56] developed models to understand
the impacts of metrological and environmental parameters on the intensity of PM2.5 using
satellite data and GWR analysis. Other GWR-based studies by Cheng et al. [57], Dong
et al. [58], and Lou et al. [59] demonstrated the various determinant factors responsible for
the geographical heterogeneity of PM2.5.
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A recent study by Gu et al. [60] suggested that PM2.5 increases in Chinese cities are
positively associated with people’s income; growths in income in certain geographical
areas have aggravated PM2.5 emissions. Wang and Wang [61] observed that the density of
the population, the proportions of industrial land uses, car ridership, and the amount of
foreign direct investment (FDI) all contribute significantly to the level of PM2.5, and show
qualities of spatial heterogeneity. There were also significant variations in the levels of
influence of these factors between different time periods and locations.

3. Material and Methods
3.1. Study Area

King Abdulaziz University, Jeddah, is a renowned public university in Saudi Arabia.
The main campus of the university is situated between Prince Majid Road and Al-Haramin
Expressway, spread over 6.35 square kilometers (Figure 1). It was set up in 1964 as a
private university and, later, in 1974, became a public university by royal order. There
are 77,000 full time students in the university at present, with 4059 academic faculty staff
members, 4000 administrative staff members, and an additional 4200 support staff. The
Vice Presidency for Projects KAU data show that the number of total daily trips through all
six gates is approximately 56,000 during the academic semester.
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Figure 1. Location of study area: (a) Kingdom of Saudi Arabia; (b) Jeddah City; and (c) King
Abdulaziz University campus.

The university has five main gates through which one can enter and exit the campus
and sample locations near these gates capture the attributes of adjacent districts. In the
north, where Gates no. 2, 3 and 4 are located, the Al-Sulaymaniyah district is residential.
The Al-Jamia district is in the south; it is residential, with some commercial streets, and is
accessed via Gate no.6. The main gate, or Gate no. 1 (The Eagle Gate), opens into the west
towards Al-Fahya district, which is also residential with some commercial streets. Gate no.
5 opens onto a service road next to Al-Haramin highway (Abruq Ar Rughama district) in
the east. More than 90% of the traffic around the campus is directed towards or away from
the university.

3.2. Methods

We chose our independent variables from previous studies that are relevant to the
KAU campus, including the number of cars, the windspeed, the temperature, the humidity,
distance from trees, and distance from construction sites [46,56,61]. In addition to the
dependent variable, PM2.5, the data on the independent variables were collected at 51
locations inside the KAU campus, including the six entry and exit gates. The sampling
period was from 29 September 2019 to 31 October 2019, with four distinct time points
during weekdays (from Sunday to Thursday), inclusive of both peak and nonpeak traffic,
and hourly data were recorded at 7 a.m., 9 a.m., 11 a.m., and 2 p.m. All of the independent
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variables were tested for multicollinearity. To ensure the representativeness of the sample
locations, we employed the stratified random sampling technique in the QGIS environment,
which has been found to be reliable in numerous ecological studies [62].

Multicollinearity may adversely affect the quality of estimators in a GWR model; hence,
the detection of multicollinearity is a prerequisite when developing statistical models. The
variance inflation factor (VIF) is a popular measure for detecting multicollinearity among
independent variables [63]. We confirmed the absence of multicollinearity, as the VIF value
for each predictor among the parameters was lower than 4 [64] (Table 1).

Table 1. VIF and descriptive statistics for the variables.

Variables Min. Max. Mean Std. Dev. VIF

Dependent
Variables

PM2.5 off-peak 7 am (Model-1) 17 37 24.1 4.8 -
PM2.5 peak 9 am (Model-2) 19 68 35.3 10.3 -
PM2.5 peak 11 am (Model-3) 18 65 33.3 8.7 -
PM2.5 peak 2 pm (Model-4) 21 70 36.6 9.2 -

Independent
Variables

Number of cars 25 6989 1022.0 1452.4 2.9
Windspeed 12 21 18.2 2.4 1.4

Temperature 27 34 30.5 1.8 2.2
Humidity 28 33 30.4 1.3 1.3

Distance from construction sites 74 937 312.1 201.4 2.5
Distance from trees 51 650 215.7 163.0 1.9

Thereafter, four OLS and GWR models were developed to assess the contributory
factors for the PM2.5 concentration on the KAU campus.

Ordinary least squares (OLS) is a linear least squares method for assessing the un-
known parameters in a linear regression model. The OLS equation could be expressed as:

yi=

m

∑
j=0

βi+εi, i = 1, 2, ..., n (1)

where m is the total number of predictors, while n denotes the number of observations, βi
shows the coefficient to be estimated, and εi is used for random errors.

A GWR model is a special type of regression model that considers geographically
varying parameters. The GWR4 software was used to calibrate the GWR models [65]. A
conventional GWR equation is:

yi = Σk βk (ui,vi) xki + εi (2)

where yi, xki, and εi are the dependent variable, the kth independent variable, and the
Gaussian error at location i, respectively; (ui,vi) is the x–y coordinate of the ith location; and
the coefficients, βk (ui,vi), are the varying conditionals for the location.

We developed four models to understand the spatial variability and the determinants
of PM2.5 at the KAU campus. The OLS and GWR alternatives of each model were compared
to choose the best fit, as suggested by Grekousis [64].

To test the significance of the regression coefficient in our models, we used a t-test
under the set of assumptions called the Gauss–Markov conditions [66]. The equation for
the t-scores is:

tβ1 =
β1
S β1

(3)

where t is the t-score for the regression estimate, β1, and S is the standard error. The null
hypothesis for the t-test states that the t-score for the regression coefficient β1 is 0. For
better visualization of the local t-scores (and local R2), we drew Voronoi polygons around
sample locations. In general, Voronoi or Thiessen polygons help in mapping the influence
area of an individual data point [67].

AICc estimates prediction errors. By default, GWR 4 facilitates comparisons of the
relative quality of statistical models for a given dataset.
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4. Results
4.1. OLS and GWR Regression Results

As mentioned earlier, we developed four different geographically weighted regression
models to understand the key predictors that explain the levels of PM2.5 in the ambient air
of the KAU campus.

The results of the OLS regression and GWR are summarized in Tables 2–6. The results
in all four models are quite similar. However, the GWR models performed better than the
OLS regression models.

The results of Model-1 reveal that the two environmental parameters of wind speed
and temperature, along with the distances from trees and construction sites, were not
significant (p-value > 0.5) in either the OLS or GWR models (Table 2). The OLS results
indicate that the number of cars and the humidity were significant predictors (p-value ≤ 0.5)
in Model-1. Additionally, the regression coefficient suggests that a 1 unit increase in the
number of cars increases the PM2.5 concentration by 0.915 units, and a 1 unit increase
in humidity decreases the PM2.5 concentration by 0.122 units. The GWR models show
that humidity was a significant parameter at 29.41% of the locations with a negative sign
(Figure 2), while the number of cars was a significant predictor at 100% of the locations
with a positive sign (Figure 3a).
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The results of Models -2, -3, and -4 were not very dissimilar; however, the number
of cars was the sole significant predictor (p-value ≤ 0.5) in all three models, while other
parameters were found to be statically insignificant (p-value >0.5) in both the OLS and
GWR models (Tables 3–5).

In comparison to the OLS model, the benefit of the GWR models is that they facilitate
the coefficient estimation of the predictor parameter for each geographical location. The
spatial distribution of the local coefficient estimates from the GWR models are shown in
Figures 2 and 3.
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Table 2. OLS and GWR estimates (Model-1).

OLS Model GWR Model

Est. SE T
(Est/SE) p-Value p ≤ 0.05 + (%) − (%)

Intercept 0.001 0.051 0.019 1.000 0 0 0
Number of cars 0.915 0.058 15.809 0.000 100 100 0

Wind speed −0.049 0.053 −0.920 0.357 0 0 0
Temperature −0.084 0.056 −1.503 0.133 0 0 0

Humidity −0.122 0.055 −2.227 0.026 29.41 0 100.0
Distance from
construction 0.032 0.056 0.579 0.563 0 0 0

Distance from trees −0.032 0.060 −0.530 0.596 0 0 0

Table 3. OLS and GWR estimates (Model-2).

OLS Model GWR Model

Est. SE T
(Est/SE) p-Value p ≤ 0.05 + (%) − (%)

Intercept 0.000 0.045 0.000 1.000 0 0 0
Number of cars 0.953 0.056 17.167 0.000 100 100 0

Wind speed −0.037 0.048 −0.782 0.434 0 0 0
Temperature 0.010 0.051 0.195 0.846 0 0 0

Humidity 0.003 0.052 0.066 0.947 0 0 0
Distance from
construction −0.090 0.043 −2.097 0.036 0 0 0

Distance from trees −0.027 0.046 −0.581 0.561 0 0 0

Table 4. OLS and GWR estimates (Model-3).

OLS Model GWR Model

Est. SE T
(Est/SE) p-Value p ≤ 0.05 + (%) − (%)

Intercept 0.000 0.069 0.000 1.000 0 0 0
Number of cars 0.855 0.076 11.285 0.000 100 100 0

Wind speed −0.029 0.071 −0.405 0.685 0 0 0
Temperature 0.120 0.073 1.650 0.099 0 0 0

Humidity −0.003 0.076 −0.040 0.968 0 0 0
Distance from
construction −0.78 0.070 −1.124 0.261 0 0 0

Distance from trees −0.34 0.072 −0.475 0.635 0 0 0

Table 5. OLS and GWR estimates (Model-4).

OLS Model GWR Model

Est. SE T
(Est/SE) p-Value p ≤ 0.05 + (%) − (%)

Intercept 0.000 0.066 0.000 1.000 0 0 0
Number of cars 0.868 0.073 11.886 0.000 100 100 0

Wind speed 0.046 0.071 0.648 0.517 0 0 0
Temperature −0.072 0.068 −1.061 0.288 0 0 0

Humidity −0.089 0.068 −1.313 0.189 0 0 0
Distance from
construction 0.067 0.065 1.040 0.298 0 0 0

Distance from trees 0.045 0.067 0.67 0.562 0 0 0
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4.2. Model Comparison

We used the residual sum of squares (RSS), log-likelihood, adjusted R-squared, and
corrected Akaike information criterion indices to estimate the suitability of the models.
RSS, or the sum of the squared estimate of error (SEE), which is used to quantify the
variance in a dataset, remained unexplained by the regression model [68]. Additionally,
the corrected Akaike information criterion (AICc) is an estimator of estimation error, and
thereby an indicator of the quality of the regression models for a given dataset. By default,
GWR 4 facilitates comparisons between the relative quality of statistical models for a given
dataset [69]. AICc facilitates a better model fit if the AICc value declines [64].

In effect, the lower values of RSS and AICc indicate the better fit of the model. Ad-
ditionally, the log-likelihood function is a measure of how well a specific model fits the
data. This function explains the suitability of a parameter for explaining an observed
value [70]. Furthermore, R-squared is a coefficient of determination, and a modified ver-
sion of R-squared is adjusted for the number of predictors in the model. This assesses
the explanatory power of the linear regression models [71]. As regards the log-likelihood
function-adjusted R-squared, comparatively higher values suggest a better fit.
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The model comparison demonstrates (in Table 6 and Figure 4) that the RSS values in
all four models are lower for the GWR variants than for OLS. For GWR, the RSS value is
lowest (4.526) in Model-2, and highest (8.640) in Model-4. Similarly, the AICc value in all
four models is again lower for the GWR variants, and the lowest AICc (38.435) is present
in the GWR variant of Model-2. Next, the log-likelihood values are higher in all four
GWR models than in OLS, and the GWR variant of Model-2 has the highest log-likelihood
value (−10.667). Furthermore, the adjusted R2 values are higher in all GWR models in
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comparison to the OLS models. The highest adjusted R2 value (0.897) was reported in the
GWR variant of Model-2. In brief, Model-2 has a better fit in all four models.

Table 6. Goodness of fit comparison for all four OLS and GWR models.

Model-1 Model-2 Model-3 Model-4

OLS GWR OLS GWR OLS GWR OLS GWR

RSS 6.214 5.475 4.830 4.526 11.272 6.476 10.113 8.640
Log-likelihood −18.688 −15.459 −12.263 −10.607 −33.874 −19.741 −31.107 −27.091

Adjusted R2 0.871 0.868 0.893 0.897 0.760 0.844 0.784 0.795
AICc 54.89 51.285 45.594 38.435 81.658 66.094 73.581 72.213
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5. Discussion

This study investigates the effects of various independent variables on the PM2.5
concentration at the KAU campus through OLS and GWR models. We showed that car
traffic is the single most significant factor contributing to the presence of fine particles in
the ambient air of KAU at the ground level.

This study has certain limitations related to sampling. We collected samples from
51 locations at four distinct times of the day for one month; however, extending the time of
data collection to one year or more may capture seasonal variations in PM2.5 concentrations,
resulting in more sophisticated models.

An earlier study by Khodeir et al. [72] confirmed that the main source of PM2.5 at the
KAU campus is dense vehicular traffic; however, this study does not provide any evidence
regarding the spatial variability of PM2.5 within the campus. A higher concentration of
PM2.5 during peak hours (68–70 µg/m3) is a frightening result.

As mentioned earlier, prolonged exposure to fine particles might result in a higher
prevalence of diseases, and even premature casualties. In general, ambient air quality at
the KAU campus is the worst for pedestrians during peak hours. This makes a robust case
for policymakers to make the campus car-free, as curbing sources of fine particle emissions
might reduce deadly health consequences [73]. Our study reinforces the findings of Ruben
Garnica-Monroy et al. [8], which suggest that the exposure of a population to roads with
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heavy traffic exposes it to higher health risks and necessitates changes in urban planning
and public health policies.

Health consequences associated with fine particles have been well-researched in
the global north and the global south, but there are very few studies in the Middle East
region, particularly in Saudi Arabia. An important study by Nayebare et al. [73] noted
that the PM2.5 concentration in Jeddah City is increasing the risk of cardiopulmonary and
respiratory morbidity.

Through GWR models, we have specified the locations on the KAU campus that are
at the greatest risk of PM2.5 exposure because of car use for on-campus mobility.

We recommend addressing the PM 2.5 concentration on the KAU campus through
policies promoting walkability and bicycle riding, which will help to discourage car traffic,
similar to other universities in the global north that are trying to make their campuses
car-free and carbon-neutral.

6. Conclusions

Higher concentrations of PM2.5 at the ground level might accelerate many physical
and cognitive diseases. In this study, we assembled data on dependent and independent
variables at 51 locations on the KAU campus, and developed OLS- and GWR-based regres-
sion models to explain the spatial variability and determinants of PM2.5 exposure at the
micro geographical scale. Unlike other studies, we used primary data to develop four OLS
and GWR models, suggesting that car traffic is a significant factor in PM2.5 concentration
on the KAU campus, while environmental factors and other activities (construction) are
not significant at this scale. We compared all four models based on RSS, log-likelihood,
adjusted R-squared, and AICc, and concluded that all the GWR estimates are better than
the traditional OLS estimates, with Model-2 (attributing peak hour traffic in the morning)
representing the best fit. On the basis of our findings, we recommend adopting sustainable
mobility policies on the KAU campus in order to improve the general health of KAU
students and staff.
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