The Framework for Measuring Port Resilience in Korean Port Case
Abstract
:1. Introduction
2. Literature Review
2.1. Definitions of Resilience
2.2. Literatures on Port Resilience
2.3. Literatures on Supply Chain and Infrastructural System Resilience
2.4. Contribution to the Literature
3. Materials and Methods
3.1. Overview of Research Dedign
3.2. Data Collection
3.3. Data Analysis
4. Results and Discussion
4.1. Exploratory Factor Analysis
4.2. Confirmatory Factor Analysis
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, S.-K.; Kim, C.-H. Analysis of the Impact of COVID-19 on Port Operation. J. Navig. Port Res. 2021, 45, 155–164. [Google Scholar] [CrossRef]
- Shin, N.; Park, S. Evidence-Based Resilience Management for Supply Chain Sustainability: An Interpretive Structural Modelling Approach. Sustainability 2019, 11, 484. [Google Scholar] [CrossRef] [Green Version]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.H.; Quaddus, M. Supply chain resilience: Conceptualization and scale development using dynamic capability theory. Int. J. Prod. Econ. 2017, 188, 185–204. [Google Scholar] [CrossRef]
- Kang, D.; Kim, S. Conceptual Model Development of Sustainability Practices: The Case of Port Operations for Collaboration and Governance. Sustainability 2017, 9, 2333. [Google Scholar] [CrossRef] [Green Version]
- Asprone, D.; Manfredi, G. Linking disaster resilience and urban sustainability: A glocal approach for future cities. Disasters 2014, 39, s96–s111. [Google Scholar] [CrossRef] [Green Version]
- Vugrin, E.D.; Warren, D.E.; Ehlen, M.A.; Camphouse, R.C. A Framework for Assessing the Resilience of Infrastructure and Economic Systems. In Sustainable and Resilient Critical Infrastructure Systems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 77–116. [Google Scholar] [CrossRef]
- Rice, J.B.; Caniato, F. Building a secure and resilient supply network. SUPPLY Chain Manag. Rev. 2003, 7, 53–61. [Google Scholar]
- Christopher, M.; Peck, H. Building the Resilient Supply Chain. Int. J. Logist. Manag. 2004, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gaonkar, R.S.; Viswanadham, N. Analytical Framework for the Management of Risk in Supply Chains. IEEE Trans. Autom. Sci. Eng. 2007, 4, 265–273. [Google Scholar] [CrossRef]
- Ponomarov, S.Y.; Holcomb, M.C. Understanding the concept of supply chain resilience. Int. J. Logist. Manag. 2009, 20, 124–143. [Google Scholar] [CrossRef]
- Pettit, T.J.; Fiksel, J.; Croxton, K.L. Ensuring supply chain resilience: Development of a conceptual framework. J. Bus. Logist. 2010, 31, 1–21. [Google Scholar] [CrossRef]
- Ponis, S.; Koronis, E. Supply Chain Resilience: Definition Of Concept And Its Formative Elements. J. Appl. Bus. Res. 2012, 28, 921–930. [Google Scholar] [CrossRef]
- Ivanov, D.; Sokolov, B. Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty. Eur. J. Oper. Res. 2013, 224, 313–323. [Google Scholar] [CrossRef]
- Kim, Y.; Chen, Y.-S.; Linderman, K. Supply network disruption and resilience: A network structural perspective. J. Oper. Manag. 2014, 33–34, 43–59. [Google Scholar] [CrossRef] [Green Version]
- Kamalahmadi, M.; Parast, M.M. A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. Int. J. Prod. Econ. 2016, 171, 116–133. [Google Scholar] [CrossRef]
- Starr, R.; Newfrock, J.; Delurey, M. Enterprise resilience: Managing risk in the networked economy. Strateg. Bus. 2003, 30, 70–79. [Google Scholar]
- Lam, J.S.L.; Su, S. Disruption risks and mitigation strategies: An analysis of Asian ports. Marit. Policy Manag. 2015, 42, 415–435. [Google Scholar] [CrossRef]
- Gou, X.; Lam, J.S.L. Risk analysis of marine cargoes and major port disruptions. Marit. Econ. Logist. 2018, 21, 497–523. [Google Scholar] [CrossRef]
- Nair, R.; Avetisyan, H.; Miller-Hooks, E. Resilience Framework for Ports and Other Intermodal Components. Transp. Res. Rec. J. Transp. Res. Board 2010, 2166, 54–65. [Google Scholar] [CrossRef]
- Rice, J.; Trepte, K. The MIT CTL Port Resilience Survey Report; MIT Cent. Transp. Logist.: Cambridge, MA, USA, 2012; Available online: https://ctl.mit.edu/sites/default/files/Port%20resilience%20survey%20report%20v27%20sans%20SEM.pdf (accessed on 14 September 2021).
- Lam, J.S.L.; Bai, X. A quality function deployment approach to improve maritime supply chain resilience. Transp. Res. Part E: Logist. Transp. Rev. 2016, 92, 16–27. [Google Scholar] [CrossRef]
- Justice, V.; Bhaskar, P.; Pateman, H.; Cain, P.; Cahoon, S. US container port resilience in a complex and dynamic world. Marit. Policy Manag. 2016, 43, 179–191. [Google Scholar] [CrossRef]
- Shaw, D.R.; Grainger, A.; Achuthan, K. Multi-level port resilience planning in the UK: How can information sharing be made easier? Technol. Forecast. Soc. Chang. 2017, 121, 126–138. [Google Scholar] [CrossRef]
- Shang, X.T.; Cao, J.X.; Ren, J. A robust optimization approach to the integrated berth allocation and quay crane assignment problem. Transp. Res. Part E Logist. Transp. Rev. 2016, 94, 44–65. [Google Scholar] [CrossRef]
- Iris, Ç.; Lam, J.S.L. Recoverable robustness in weekly berth and quay crane planning. Transp. Res. Part B Methodol. 2019, 122, 365–389. [Google Scholar] [CrossRef]
- Iris, C.; Christensen, J.; Pacino, D.; Røpke, S. Flexible ship loading problem with transfer vehicle assignment and scheduling. Transp. Res. Part B Methodol. 2018, 111, 113–134. [Google Scholar] [CrossRef] [Green Version]
- Venturini, G.; Iris, C.; Kontovas, C.A.; Larsen, A. The multi-port berth allocation problem with speed optimization and emission considerations. Transp. Res. Part D Transp. Environ. 2017, 54, 142–159. [Google Scholar] [CrossRef] [Green Version]
- Tongzon, J.L.; Nguyen, H.-O. Effects of port-shipping logistics integration on technical and allocative efficiency. Asian J. Shipp. Logist. 2021, 37, 109–116. [Google Scholar] [CrossRef]
- Omer, M.; Mostashari, A.; Nilchiani, R.; Mansouri, M. A framework for assessing resiliency of maritime transportation systems. Marit. Policy Manag. 2012, 39, 685–703. [Google Scholar] [CrossRef]
- Pant, R.; Barker, K.; Ramirez-Marquez, J.E.; Rocco, C.M. Stochastic measures of resilience and their application to container terminals. Comput. Ind. Eng. 2014, 70, 183–194. [Google Scholar] [CrossRef]
- Chen, H.; Cullinane, K.; Liu, N. Developing a model for measuring the resilience of a port-hinterland container transportation network. Transp. Res. Part E Logist. Transp. Rev. 2017, 97, 282–301. [Google Scholar] [CrossRef]
- Cho, H.; Park, H. Constructing resilience model of port infrastructure based on system dynamics. Int. J. Saf. Secur. Eng. 2017, 7, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Touzinsky, K.F.; Scully, B.M.; Mitchell, K.N.; Kress, M. Using Empirical Data to Quantify Port Resilience: Hurricane Matthew and the Southeastern Seaboard. J. Waterw. Port Coastal Ocean Eng. 2018, 144, 05018003. [Google Scholar] [CrossRef]
- Pettit, T.J.; Croxton, K.L.; Fiksel, J. Ensuring Supply Chain Resilience: Development and Implementation of an Assessment Tool. J. Bus. Logist. 2013, 34, 46–76. [Google Scholar] [CrossRef]
- Jüttner, U.; Maklan, S. Supply chain resilience in the global financial crisis: An empirical study. Supply Chain Manag. Int. J. 2011, 16, 246–259. [Google Scholar] [CrossRef]
- Hohenstein, N.-O.; Feisel, E.; Hartmann, E.; Giunipero, L. Research on the phenomenon of supply chain resilience: A systematic review and paths for further investigation. Int. J. Phys. Distrib. Logist. Manag. 2015, 45, 90–117. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Ertz, M. Managing supply chain resilience to pursue business and environmental strategies. Bus. Strat. Environ. 2019, 29, 1215–1246. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; von Winterfeldt, D. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Adjetey-Bahun, K.; Birregah, B.; Châtelet, E.; Planchet, J.L.; Laurens-Fonseca, E. A simulation-based approach to quantifying resilience indicators in a mass transportation system. In ISCRAM 2014 Conference Proceedings Book of Papers–11th International Conference on Information Systems for Crisis Response and Management; The Pennsylvania State University: State College, PA, USA, 2014; pp. 75–79. [Google Scholar]
- Shirali, G.; Mohammadfam, I.; Ebrahimipour, V. A new method for quantitative assessment of resilience engineering by PCA and NT approach: A case study in a process industry. Reliab. Eng. Syst. Saf. 2013, 119, 88–94. [Google Scholar] [CrossRef]
- Francis, R.; Bekera, B. A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliab. Eng. Syst. Saf. 2014, 121, 90–103. [Google Scholar] [CrossRef]
- Yu, S.; Kim, S.-W.; Oh, C.-W.; An, H.; Kim, J.-M. Quantitative assessment of disaster resilience: An empirical study on the importance of post-disaster recovery costs. Reliab. Eng. Syst. Saf. 2015, 137, 6–17. [Google Scholar] [CrossRef]
- Nan, C.; Sansavini, G. A quantitative method for assessing resilience of interdependent infrastructures. Reliab. Eng. Syst. Saf. 2017, 157, 35–53. [Google Scholar] [CrossRef]
- Erol, O.; Sauser, B.J.; Mansouri, M. A framework for investigation into extended enterprise resilience. Enterp. Inf. Syst. 2010, 4, 111–136. [Google Scholar] [CrossRef]
- Scholten, K.; Schilder, S. The role of collaboration in supply chain resilience. Supply Chain Manag. Int. J. 2015, 20, 471–484. [Google Scholar] [CrossRef]
- Purvis, L.; Spall, S.; Naim, M.; Spiegler, V. Developing a resilient supply chain strategy during ‘boom’ and ‘bust’. Prod. Plan. Control. 2016, 27, 579–590. [Google Scholar] [CrossRef]
- Jain, V.; Benyoucef, L.; Deshmukh, S. A new approach for evaluating agility in supply chains using Fuzzy Association Rules Mining. Eng. Appl. Artif. Intell. 2008, 21, 367–385. [Google Scholar] [CrossRef]
- Wu, I.-L.; Chuang, C.-H.; Hsu, C.-H. Information sharing and collaborative behaviors in enabling supply chain performance: A social exchange perspective. Int. J. Prod. Econ. 2014, 148, 122–132. [Google Scholar] [CrossRef]
- Norrman, A.; Jansson, U. Ericsson’s proactive supply chain risk management approach after a serious sub-supplier accident. Int. J. Phys. Distrib. Logist. Manag. 2004, 34, 434–456. [Google Scholar] [CrossRef]
- Brandon-Jones, E.; Squire, B.; Autry, C.W.; Petersen, K. A Contingent Resource-Based Perspective of Supply Chain Resilience and Robustness. J. Supply Chain Manag. 2014, 50, 55–73. [Google Scholar] [CrossRef] [Green Version]
- Wieland, A.; Wallenburg, C.M. Dealing with supply chain risks. Int. J. Phys. Distrib. Logist. Manag. 2012, 42, 887–905. [Google Scholar] [CrossRef] [Green Version]
- Zsidisin, G.A.; Wagner, S.M. Do perceptions become reality? the moderating role of supply chain resiliency on disruption occurrence. J. Bus. Logist. 2010, 31, 1–20. [Google Scholar] [CrossRef]
- Mandal, S.; Sarathy, R.; Korasiga, V.R.; Bhattacharya, S.; Dastidar, S.G. Achieving supply chain resilience. Int. J. Disaster Resil. Built Environ. 2016, 7, 544–562. [Google Scholar] [CrossRef]
- Altay, N.; Gunasekaran, A.; Dubey, R.; Childe, S.J. Agility and resilience as antecedents of supply chain performance under moderating effects of organizational culture within the humanitarian setting: A dynamic capability view. Prod. Plan. Control. 2018, 29, 1158–1174. [Google Scholar] [CrossRef]
- Liu, C.-L.; Shang, K.-C.; Lirn, T.-C.; Lai, K.-H.; Lun, Y.H. Supply chain resilience, firm performance, and management policies in the liner shipping industry. Transp. Res. Part A Policy Pr. 2018, 110, 202–219. [Google Scholar] [CrossRef]
- Kim, J. Development and Validation of the Career Adaptability Scale for Undergraduates in Korea. Sustainability 2021, 13, 11004. [Google Scholar] [CrossRef]
- Abdulahi, E.W.; Fan, L. Exploring and Validating Container Operational Risk Scale in Container Shipping: The Case of Ethiopian Shipping and Logistics Service Enterprise. Sustainability 2021, 13, 9248. [Google Scholar] [CrossRef]
- Fermani, A.; Sergi, M.; Carrieri, A.; Crespi, I.; Picconi, L.; Saggino, A. Sustainable Tourism and Facilities Preferences: The Sustainable Tourist Stay Scale (STSS) Validation. Sustainability 2020, 12, 9767. [Google Scholar] [CrossRef]
- Maskey, R.; Fei, J.; Nguyen, H.-O. Use of exploratory factor analysis in maritime research. Asian J. Shipp. Logist. 2018, 34, 91–111. [Google Scholar] [CrossRef]
- Hurley, A.E.; Scandura, T.A.; Schriesheim, C.A.; Brannick, M.T.; Seers, A.; Vandenberg, R.J.; Williams, L.J. Exploratory and Confirmatory Factor Analysis: Guidelines, Issues, and Alternatives. J. Organ. Behav. 1997, 18, 667–683. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Factor analysis. Multivariate data analysis. NJ Prentice-Hall 1998, 3, 98–99. [Google Scholar]
- Osborne, J.W.; Costello, A.B.; Kellow, J.T. Exploratory factor analysis (EFA) is rightly described as both an art and a science, whereresearchers follow a series of analytic steps involving judgments more reminiscent of qualitative inquiry, an interesting irony given the mathematical sophisticati. Best Pract. Quant. Methods 2008, 86. [Google Scholar] [CrossRef]
- Lu, C.-S.; Shang, K.-C.; Lin, C.-C. Examining sustainability performance at ports: Port managers’ perspectives on developing sustainable supply chains. Marit. Policy Manag. 2016, 43, 909–927. [Google Scholar] [CrossRef]
- Van Driel, O.P. On various causes of improper solutions in maximum likelihood factor analysis. Psychometrika 1978, 43, 225–243. [Google Scholar] [CrossRef]
- Chen, F.; Bollen, K.A.; Paxton, P.; Curran, P.J.; Kirby, J.B. Improper Solutions in Structural Equation Models: Causes, Consequences, and Strategies. Sociol. Methods Res. 2001, 29, 468–508. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Análisis Multivariante; Prentice Hall Madrid: Madrid, Spain, 1999; Volume 491. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2015; ISBN 1462523358. [Google Scholar]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Brusset, X. Does supply chain visibility enhance agility? Int. J. Prod. Econ. 2016, 171, 46–59. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Ha, M.-H.; Yang, Z.; Lam, J.S.L. Port performance in container transport logistics: A multi-stakeholder perspective. Transp. Policy 2018, 73, 25–40. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, C.-W.; Tee, K.F.; Lam, J.S.L. Optimal sustainable life cycle maintenance strategies for port infrastructures. J. Clean. Prod. 2017, 142, 1693–1709. [Google Scholar] [CrossRef]
Reference | Main Construct | |
---|---|---|
Port resilience | [25] | robustness |
[26] | robustness, response, recovery | |
[27] | flexibility | |
[28] | collaboration, information sharing | |
[29] | collaboration | |
[24] | information sharing | |
[33] | Robustness, agility | |
Supply chain resilience | [12,35] | flexibility, efficiency, visibility, recovery, collaboration |
[36] | vulnerability, flexibility, velocity, visibility, collaboration | |
[37] | flexibility, visibility, capacity, collaboration, redundancy, agility | |
[4] | flexibility, redundancy, integration, efficiency, market strength, financial soundness, readiness, response, recovery | |
[38] | anticipation (robustness, redundancy, design), resistance (collaboration, agility), recovery, response | |
[45] | redundancy, recovery, vulnerability, agility, flexibility, opacity, collaboration, visibility | |
[46] | Flexibility, velocity, collaboration | |
Infrastructure resilience | [39,40] | robustness, redundancy, resourcefulness, rapidity |
[41] | commitment, culture, awareness, opacity, preparedness, flexibility | |
[7] | absorptive capability (robustness, redundancy), adaptive capability (contingency, substitutability), restorative capability (resources, procurement) |
Factor | Definition | Source |
---|---|---|
Robustness | The ability to resist change without adapting its initial stable configuration | [47] |
Redundancy | Ability to respond to sudden changes through multiple suppliers and slack resources | [37] |
Visibility | The extent to which actors have access which they consider as being key or useful to their operations | [36] |
Flexibility | The ability of a system to adapt to the changing requirements of its environment with minimum time and effort | [45] |
Collaboration | The level of joint decision making at a tactical, operational or strategic level between two or more partners | [46] |
Agility | The ability to rapidly respond to changes in market and customer demands | [48] |
Information Sharing | The degrees of communication, trust, and interdependence for their willingness to work together in a joint manner | [49] |
Response | The required reaction to an incident or emergency to assess the level of containment and to control activity | [50] |
Recovery | Ability to return to normal operational state rapidly | [12] |
Construct | Measurement Variables | Source |
---|---|---|
Robustness (ROB) | (rob1) Port performance would not deviate significantly from targets. | [51] |
(rob2) The port would be able to carry out its regular functions in any situation. | ||
(rob3) The port retains the same stable situation as it had before changes occur. | [52] | |
(rob4) Without adaptations being necessary, the port performs well over a wide variety of possible scenarios | ||
Redundancy (RED) | (red1) The port maintains reserve capacity for physical supports such as equipment and workforce. | [4] |
(red2) The port has backup energy and utility sources for contingency. | ||
(red3) The port has reserve capacity to handle unexpected fluctuations in demands. | [53] | |
Visibility (VIS) | (vis1) The port has an information system that accurately track all operations. | [35] |
(vis2) The port manages real-time data on equipment, workforce, etc. | ||
(vis3) The port has an effective business intelligence program for data analysis. | ||
Flexibility (FLE) | (fle1) The port can adjust its delivery schedules to mitigate disruptions. | [54] |
(fle2) The port can adjust work capacity in response to disruptions. | ||
(fle3) The port’s collaboration partners can flexibly adjust supply capacity to mitigate disruptions. | ||
Collaboration (COL) | (col1) The port jointly works with its key partners for mutual managerial goals. | [54] |
(col2) The port develops strategic objectives jointly with partners. | ||
(col3) The port jointly works with its key partners for mutual benefits. | ||
Agility (AGI) | (agi1) The port is capable of responding to unexpected requests by partners. | [55] |
(agi2) The port operation model is capable of quickly responding to rapid changes in environment. | ||
(agi3) The port’s employees have capabilities to perform multiple works and quickly switch between them. | [56] | |
Information Sharing (IMS) | (ims1) The port exchanges relevant information with partners. | [51] |
(ims2) The port exchanges timely information with partners. | ||
(ims3) The port exchanges accurate information with partners. | ||
Response (RES) | (res1) The port can quickly respond to disruptions. | [4] |
(res2) The port can undertake adequate respond to crises. | ||
(res3) The port has a contingency for mitigating crisis. | ||
Recovery (REC) | (rec1) The port has the ability to absorb significant losses. | [4] |
(rec2) The port can recover from crises at less costs. | ||
(rec3) The port can reduce impact of loss by its ability to handle crisis. |
Characteristic | Number of Respondents | Percentage of Respondents | |
---|---|---|---|
Type | Shipping company | 94 | 47.2% |
Operator | 85 | 42.7% | |
Port authority | 20 | 10.1% | |
Work experience | 1–5 years | 34 | 17.1% |
6–10 years | 38 | 19.1% | |
11–15 years | 36 | 18.1% | |
16–20 years | 33 | 16.6% | |
Over 20 years | 58 | 29.1% |
Variable | ROB | RED | VIS | FLE | COL | AGI | IMS | RES | REC | Communality |
---|---|---|---|---|---|---|---|---|---|---|
rob1 | 0.27 | 0.03 | 0.26 | 0.08 | 0.25 | 0.04 | 0.24 | 0.09 | 0.04 | 0.28 |
rob2 | 0.57 | 0.06 | 0.11 | 0.17 | 0.17 | 0.13 | 0.08 | 0.04 | 0.07 | 0.43 |
rob3 | 0.93 | 0.22 | 0.11 | 0.02 | 0.04 | 0.06 | 0.06 | 0.16 | 0.19 | 1 |
rob4 | 0.52 | 0.28 | 0.24 | 0.03 | 0.03 | 0.14 | 0.13 | 0.19 | 0.25 | 0.55 |
red1 | 0.19 | 0.51 | 0.21 | 0.09 | 0.02 | 0.13 | 0.23 | 0.16 | 0.12 | 0.45 |
red2 | 0.24 | 0.74 | 0.23 | 0.15 | 0.06 | 0.12 | 0.21 | 0.12 | 0.2 | 0.8 |
red3 | 0.11 | 0.45 | 0.22 | 0.19 | 0.17 | 0.32 | 0.16 | 0.17 | 0.11 | 0.49 |
vis1 | 0.13 | 0.26 | 0.62 | 0.09 | 0.14 | 0.12 | 0.17 | 0.14 | 0.12 | 0.58 |
vis2 | 0.11 | 0.07 | 0.9 | 0.12 | 0.09 | 0.15 | 0.23 | 0.05 | 0.04 | 0.93 |
vis3 | 0.16 | 0.21 | 0.58 | 0.05 | 0.11 | 0.08 | 0.11 | 0.08 | 0.22 | 0.5 |
fle1 | 0.13 | 0.18 | 0.13 | 0.66 | 0.2 | 0.16 | 0.12 | 0.13 | 0.04 | 0.6 |
fle2 | 0.1 | 0.08 | 0.11 | 0.93 | 0.16 | 0.15 | 0.15 | 0.17 | 0.09 | 1 |
fle3 | 0.07 | 0.19 | 0.06 | 0.03 | 0.15 | 0.09 | 0.37 | 0.14 | −0.03 | 0.23 |
col1 | 0.07 | 0.05 | 0.14 | 0.15 | 0.54 | 0.27 | 0.36 | 0.15 | −0.02 | 0.57 |
col2 | 0.13 | 0.08 | 0.13 | 0.13 | 0.79 | 0.17 | 0.26 | 0.18 | 0.1 | 0.83 |
col3 | 0.09 | 0.06 | 0.12 | 0.21 | 0.71 | 0.13 | 0.32 | 0.08 | 0.14 | 0.72 |
agi1 | 0.12 | 0.2 | 0.18 | 0.24 | 0.26 | 0.78 | 0.18 | 0.16 | 0.08 | 0.87 |
agi2 | 0.25 | 0.14 | 0.16 | 0.16 | 0.17 | 0.56 | 0.21 | 0.19 | 0.23 | 0.61 |
agi3 | 0.14 | 0.17 | 0.13 | 0.08 | 0.2 | 0.4 | 0.41 | 0.2 | 0.15 | 0.51 |
ims1 | 0.09 | 0.07 | 0.13 | 0.11 | 0.19 | 0.12 | 0.86 | 0.06 | 0.11 | 0.85 |
ims2 | 0.01 | 0.1 | 0.21 | 0.11 | 0.2 | 0.08 | 0.82 | 0.12 | 0.13 | 0.82 |
ims3 | 0.13 | 0.18 | 0.2 | 0.1 | 0.24 | 0.12 | 0.79 | 0.23 | 0.07 | 0.85 |
res1 | 0.16 | 0.12 | 0.15 | 0.22 | 0.14 | 0.26 | 0.32 | 0.63 | 0.17 | 0.73 |
res2 | 0.17 | 0.22 | 0.15 | 0.21 | 0.18 | 0.25 | 0.32 | 0.66 | 0.22 | 0.83 |
res3 | 0.18 | 0.24 | 0.09 | 0.16 | 0.34 | 0.06 | 0.35 | 0.52 | 0 | 0.63 |
rec1 | 0.26 | 0.37 | 0.2 | 0.1 | 0.13 | 0.13 | 0.03 | 0.36 | 0.52 | 0.69 |
rec2 | 0.18 | 0.12 | 0.2 | 0.06 | 0.02 | 0.15 | 0.16 | 0.03 | 0.92 | 1 |
rec3 | 0.22 | 0.16 | 0.05 | 0.09 | 0.24 | 0.06 | 0.06 | 0.32 | 0.42 | 0.42 |
Variable | ROB | RED | VIS | FLE | COL | AGI | IMS | RES | REC | Communality |
---|---|---|---|---|---|---|---|---|---|---|
rob2 | 0.57 | 0.06 | 0.12 | 0.17 | 0.16 | 0.13 | 0.07 | 0.04 | 0.07 | 0.43 |
rob3 | 0.93 | 0.21 | 0.11 | 0.02 | 0.05 | 0.06 | 0.05 | 0.17 | 0.19 | 1 |
rob4 | 0.52 | 0.28 | 0.23 | 0.04 | 0.03 | 0.15 | 0.12 | 0.2 | 0.25 | 0.54 |
red1 | 0.19 | 0.51 | 0.21 | 0.09 | 0.02 | 0.14 | 0.2 | 0.17 | 0.12 | 0.45 |
red2 | 0.25 | 0.74 | 0.24 | 0.14 | 0.08 | 0.12 | 0.18 | 0.13 | 0.2 | 0.8 |
red3 | 0.11 | 0.46 | 0.23 | 0.19 | 0.18 | 0.32 | 0.13 | 0.17 | 0.11 | 0.5 |
vis1 | 0.13 | 0.24 | 0.66 | 0.1 | 0.15 | 0.11 | 0.15 | 0.15 | 0.11 | 0.61 |
vis2 | 0.11 | 0.08 | 0.85 | 0.12 | 0.09 | 0.15 | 0.24 | 0.05 | 0.04 | 0.85 |
vis3 | 0.16 | 0.2 | 0.61 | 0.06 | 0.11 | 0.08 | 0.11 | 0.08 | 0.22 | 0.53 |
fle1 | 0.12 | 0.17 | 0.14 | 0.66 | 0.21 | 0.16 | 0.11 | 0.14 | 0.04 | 0.6 |
fle2 | 0.09 | 0.09 | 0.1 | 0.93 | 0.17 | 0.15 | 0.15 | 0.17 | 0.09 | 1 |
col1 | 0.07 | 0.06 | 0.14 | 0.15 | 0.55 | 0.27 | 0.34 | 0.16 | −0.02 | 0.56 |
col2 | 0.13 | 0.07 | 0.14 | 0.13 | 0.82 | 0.16 | 0.22 | 0.19 | 0.1 | 0.85 |
col3 | 0.09 | 0.06 | 0.12 | 0.21 | 0.71 | 0.13 | 0.3 | 0.09 | 0.13 | 0.71 |
agi1 | 0.12 | 0.2 | 0.19 | 0.24 | 0.27 | 0.77 | 0.15 | 0.16 | 0.08 | 0.86 |
agi2 | 0.25 | 0.14 | 0.16 | 0.16 | 0.18 | 0.57 | 0.19 | 0.19 | 0.23 | 0.62 |
agi3 | 0.14 | 0.17 | 0.13 | 0.08 | 0.21 | 0.41 | 0.39 | 0.22 | 0.14 | 0.5 |
ims1 | 0.09 | 0.1 | 0.13 | 0.11 | 0.21 | 0.14 | 0.84 | 0.09 | 0.09 | 0.84 |
ims2 | 0.01 | 0.12 | 0.22 | 0.11 | 0.22 | 0.09 | 0.81 | 0.15 | 0.11 | 0.82 |
ims3 | 0.12 | 0.2 | 0.19 | 0.1 | 0.27 | 0.13 | 0.77 | 0.26 | 0.05 | 0.86 |
res1 | 0.16 | 0.12 | 0.16 | 0.22 | 0.15 | 0.26 | 0.29 | 0.65 | 0.17 | 0.73 |
res2 | 0.17 | 0.22 | 0.15 | 0.21 | 0.19 | 0.26 | 0.28 | 0.67 | 0.21 | 0.83 |
res3 | 0.17 | 0.24 | 0.09 | 0.16 | 0.36 | 0.06 | 0.31 | 0.53 | −0.01 | 0.63 |
rec1 | 0.26 | 0.36 | 0.21 | 0.1 | 0.14 | 0.13 | 0.01 | 0.36 | 0.52 | 0.69 |
rec2 | 0.19 | 0.12 | 0.21 | 0.06 | 0.02 | 0.15 | 0.18 | 0.03 | 0.92 | 1 |
rec3 | 0.22 | 0.16 | 0.05 | 0.09 | 0.24 | 0.06 | 0.05 | 0.32 | 0.42 | 0.42 |
Variables | ROB | RED | VIS | FLE | COL | AGI | IMS | RES | REC |
---|---|---|---|---|---|---|---|---|---|
ROB | 0.584 | ||||||||
RED | 0.430 | 0.542 | |||||||
VIS | 0.208 | 0.428 | 0.627 | ||||||
FLE | 0.104 | 0.252 | 0.166 | 0.754 | |||||
COL | 0.118 | 0.206 | 0.211 | 0.285 | 0.682 | ||||
AGI | 0.265 | 0.473 | 0.319 | 0.346 | 0.453 | 0.558 | |||
IMS | 0.113 | 0.312 | 0.284 | 0.179 | 0.437 | 0.368 | 0.819 | ||
RES | 0.295 | 0.460 | 0.266 | 0.352 | 0.393 | 0.547 | 0.450 | 0.691 | |
REC | 0.442 | 0.526 | 0.288 | 0.170 | 0.187 | 0.378 | 0.154 | 0.472 | 0.560 |
Index | Χ2 | df | p-Value | CFI | TLI | RMSEA |
---|---|---|---|---|---|---|
Value | 564.556 | 288 | 0.000 | 0.916 | 0.905 | 0.069 |
Latent Variables | Measurement Variables | Loadings | CR | AVE |
---|---|---|---|---|
Robustness | rob2 | 0.627 | 0.805 | 0.584 |
rob3 | 0.887 | |||
rob4 | 0.756 | |||
Redundancy | red1 | 0.683 | 0.778 | 0.542 |
red2 | 0.830 | |||
red3 | 0.685 | |||
Visibility | vis1 | 0.813 | 0.834 | 0.627 |
vis2 | 0.829 | |||
vis3 | 0.729 | |||
Flexibility | fle1 | 0.833 | 0.859 | 0.754 |
fle2 | 0.902 | |||
Collaboration | col1 | 0.737 | 0.865 | 0.682 |
col2 | 0.885 | |||
col3 | 0.849 | |||
Agility | agi1 | 0.837 | 0.860 | 0.558 |
agi2 | 0.787 | |||
agi3 | 0.704 | |||
Information Sharing | ims1 | 0.893 | 0.750 | 0.819 |
ims2 | 0.893 | |||
ims3 | 0.928 | |||
Response | res1 | 0.841 | 0.869 | 0.691 |
res2 | 0.928 | |||
res3 | 0.711 | |||
Recovery | rec1 | 0.867 | 0.789 | 0.560 |
rec2 | 0.744 | |||
rec3 | 0.611 | |||
Absorptive Capability | Robustness | 0.710 | 0.827 | 0.618 |
Redundancy | 0.916 | |||
Visibility | 0.714 | |||
Adaptive Capability | Flexibility | 0.659 | 0.849 | 0.587 |
Collaboration | 0.763 | |||
Agility | 0.888 | |||
Information Sharing | 0.737 | |||
Restorative Capability | Response | 0.892 | 0.826 | 0.705 |
Recovery | 0.784 | |||
Port Resilience | Absorptive Capability | 0.895 | 0.954 | 0.875 |
Adaptive capability | 0.914 | |||
Restorative Capability | 0.994 |
Constructs | Mean of Measurement Variables | Mean of Latent Variables | ||
---|---|---|---|---|
Robustness | rob2 | 3.42 | 3.27 | 3.26 |
rob3 | 3.2 | |||
rob4 | 3.2 | |||
Redundancy | red1 | 3.48 | 3.27 | |
red2 | 3.2 | |||
red3 | 3.12 | |||
Visibility | vis1 | 3.26 | 3.25 | |
vis2 | 3.42 | |||
vis3 | 3.06 | |||
Flexibility | fle1 | 3.36 | 3.36 | 3.30 |
fle2 | 3.35 | |||
Collaboration | col1 | 3.59 | 3.42 | |
col2 | 3.25 | |||
col3 | 3.41 | |||
Agility | agi1 | 3.07 | 3.11 | |
agi2 | 3.1 | |||
agi3 | 3.16 | |||
Information Sharing | ims1 | 3.48 | 3.47 | |
ims2 | 3.48 | |||
ims3 | 3.45 | |||
Response | res1 | 3.26 | 3.36 | 3.14 |
res2 | 3.32 | |||
res3 | 3.51 | |||
Recovery | rec1 | 2.85 | 2.92 | |
rec2 | 2.7 | |||
rec3 | 3.2 |
Constructs | Activities to Improve Resilience |
---|---|
Robustness | Situational (natural disasters, terrorism, strike, etc.) operation manuals. Identifying vulnerabilities and developing regular inspection plans. |
Redundancy | Securing and managing reserve unloading and transportation equipment. Emergency workforce mobilization plans. |
Visibility | Advancing and visualizing port operation information systems. Introducing advanced technologies such as digital twins. |
Flexibility | Developing contingency operation plans using big data, AI, etc. |
Collaboration | Organizing a port operation council centering on stakeholders. Sharing the port’s strategic targets. |
Agility | Identifying customer needs on a regular basis. Training staff on how to cope with crises. |
Information Sharing | Risk information sharing through the port operation council. Information sharing to develop joint response systems. |
Response | Developing crisis-specific contingency organizations and reporting structures and appoint persons in charge. Carrying out crisis response training to improve the capabilities of the contingency organization. |
Recovery | Developing plans to finance port function restoration in emergency situations. Measuring the effectiveness of the contingency plans through simulation. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Choi, S.; Kim, C. The Framework for Measuring Port Resilience in Korean Port Case. Sustainability 2021, 13, 11883. https://doi.org/10.3390/su132111883
Kim S, Choi S, Kim C. The Framework for Measuring Port Resilience in Korean Port Case. Sustainability. 2021; 13(21):11883. https://doi.org/10.3390/su132111883
Chicago/Turabian StyleKim, Sungki, Sanggyun Choi, and Chanho Kim. 2021. "The Framework for Measuring Port Resilience in Korean Port Case" Sustainability 13, no. 21: 11883. https://doi.org/10.3390/su132111883
APA StyleKim, S., Choi, S., & Kim, C. (2021). The Framework for Measuring Port Resilience in Korean Port Case. Sustainability, 13(21), 11883. https://doi.org/10.3390/su132111883