Research on Precipitation Forecast Based on LSTM–CP Combined Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. LSTM–CP Combined Model Framework
2.2. Feature Extraction Based on LSTM Network
2.2.1. Basic Idea
2.2.2. Forgetting Gate
2.2.3. Input Gate and Unit Status
2.2.4. Output Gate
2.3. Convert Sequence Features into Target Output
2.3.1. CP Combined with BP Neural Network
- Condition 1:
- Condition 2: and the first non-0 element of is positive.
2.3.2. LSTM Combined with BP Neural Network
2.4. Parameter Analysis/Complexity Analysis
3. Results
3.1. LSTM Parameter Setting
3.2. LSTM–CP Parameter Setting
3.3. Comparative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Yu, G.; Zhang, J. A three-stage stochastic model for emergency relief planning considering secondary disasters. Eng. Optim. 2021, 53, 551–575. [Google Scholar] [CrossRef]
- Seager, R.; Naik, N.; Baethgen, W.; Robertson, A.; Kushnir, Y.; Nakamura, J.; Jurburg, S. Tropical Oceanic Causes of Interannual to Multidecadal Precipitation Variability in Southeast South America over the Past Century. J. Clim. 2010, 23, 5517–5539. [Google Scholar] [CrossRef]
- Bishop, D.A.; Williams, A.P.; Seager, R.; Fiore, A.M.; Cook, B.I.; Mankin, J.S.; Singh, D.; Smerdon, J.E.; Rao, M.P. Investigating the Causes of Increased Twentieth-Century Fall Precipitation over the Southeastern United States. J. Clim. 2019, 32, 575–590. [Google Scholar] [CrossRef]
- Hodnebrog, Ø.; Myhre, G.; Forster, P.M.; Sillmann, J.; Samset, B.H. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nat. Commun. 2016, 7, 11236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Liu, X. A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis. Energy Build. 2018, 174, 293–308. [Google Scholar] [CrossRef]
- Tien, T.-L. A research on the grey prediction model GM(1,n). Appl. Math. Comput. 2012, 218, 4903–4916. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P.; Kirshner, S. Daily rainfall projections from general circulation models with a downscaling nonhomogeneous hidden Markov model (NHMM) for south-eastern Australia. Hydrol. Process. 2013, 27, 3663–3673. [Google Scholar] [CrossRef]
- Wang, D.; Borthwick, A.G.; He, H.; Wang, Y.; Zhu, J.; Lu, Y.; Xu, P.; Zeng, X.; Wu, J.; Wang, L.; et al. A hybrid wavelet de-noising and Rank-Set Pair Analysis approach for forecasting hydro-meteorological time series. Environ. Res. 2018, 160, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Mao, S.; Liu, Y. Big data: A survey. Mob. Netw. Appl. 2014, 19, 171–209. [Google Scholar] [CrossRef]
- Wong, T.Y.; Bressler, N.M. Artificial Intelligence with Deep Learning Technology Looks Into Diabetic Retinopathy Screening. JAMA J. Am. Med. Assoc. 2016, 316, 2366–2367. [Google Scholar] [CrossRef]
- Lee, J. Physical modeling of charge transport in conjugated polymer field-effect transistors. J. Phys. D Appl. Phys. 2021, 54, 143002. [Google Scholar] [CrossRef]
- Nanda, T.; Sahoo, B.; Beria, H.; Chatterjee, C. A wavelet-based non-linear autoregressive with exogenous inputs (WNARX) dynamic neural network model for real-time flood forecasting using satellite-based rainfall products. J. Hydrol. 2016, 539, 57–73. [Google Scholar] [CrossRef]
- Kashiwao, T.; Nakayama, K.; Ando, S.; Ikeda, K.; Lee, M.; Bahadori, A. A neural network-based local rainfall prediction system using meteorological data on the Internet: A case study using data from the Japan Meteorological Agency. Appl. Soft Comput. 2017, 56, 317–330. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F. Multi-step ahead forecasting of daily reference evapotranspiration using deep learning. Comput. Electron. Agric. 2020, 178, 105728. [Google Scholar] [CrossRef]
- Granata, F.; Nunno, F.D. Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks. Agric. Water Manag. 2021, 255, 107040. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, L.; Liu, J.; Guo, D.; Li, M. Sine neural network (SNN) with double-stage weights and structure determination (DS-WASD). Soft Comput. 2016, 20, 211–221. [Google Scholar] [CrossRef]
- Tian, C.; Liu, S. Demodulation of two-shot fringe patterns with random phase shifts by use of orthogonal polynomials and global optimization. Opt. Express 2016, 24, 3202–3215. [Google Scholar] [CrossRef]
- Mahmmod, B.M.; Ramli, A.B.D.R.; Baker, T.; Al-Obeidat, F.; Abdulhussain, S.H.; Jassim, W.A. Speech Enhancement Algorithm Based on Super-Gaussian Modeling and Orthogonal Polynomials. IEEE Access 2019, 7, 103485–103504. [Google Scholar] [CrossRef]
- Lin, H.; Cao, D.; Shao, C. An admissible function for vibration and flutter studies of FG cylindrical shells with arbitrary edge conditions using characteristic orthogonal polynomials. Compos. Struct. 2018, 185, 748–763. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, Y.; Guo, D.; Yu, X.; Xiao, L. Cross-validation based weights and structure determination of Chebyshev-polynomial neural networks for pattern classification. Pattern Recognit. 2014, 47, 3414–3428. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, X.; Guo, D.; Yin, Y.; Zhang, Z. Weights and structure determination of multiple-input feed-forward neural network activated by Chebyshev polynomials of Class 2 via cross-validation. Neural Comput. Appl. 2014, 25, 1761–1770. [Google Scholar] [CrossRef]
- Jin, L.; Huang, Z.; Li, Y.; Sun, Z.; Li, H.; Zhang, J. On Modified Multi-Output Chebyshev-Polynomial Feed-Forward Neural Network for Pattern Classification of Wine Regions. IEEE Access 2019, 7, 1973–1980. [Google Scholar] [CrossRef]
- Jin, L.; Huang, Z.; Chen, L.; Liu, M.; Li, Y.; Chou, Y.; Yi, C. Modified single-output Chebyshev-polynomial feedforward neural network aided with subset method for classification of breast cancer. Neurocomputing 2019, 350, 128–135. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall–runoff modelling using long short-term memory (LSTM) networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Yan, J.; Demir, I. A rainfall-runoff model with LSTM-based sequence-to-sequence learning. Water Resour. Res. 2020, 56, e2019WR025326. [Google Scholar] [CrossRef]
- Kang, J.; Wang, H.; Yuan, F.; Wang, Z.; Huang, J.; Qiu, T. Prediction of Precipitation Based on Recurrent Neural Networks in Jingdezhen, Jiangxi Province, China. Atmosphere 2020, 11, 246. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Y.; Jin, J.; Zhou, P.; Zhang, D.; Ning, S.; Cui, Y. Stepwise Identification of Influencing Factors and Prediction of Typhoon Precipitation in Anhui Province Based on the Back Propagation Neural Network Model. Water 2021, 13, 550. [Google Scholar] [CrossRef]
- Zahraei, A.; Hsu, K.; Sorooshian, S.; Gourley, J.J.; Lakshmanan, V.; Hong, Y.; Bellerby, T. Quantitative precipitation nowcasting: A Lagrangian pixel-based approach. Atmos. Res. 2012, 118, 418–434. [Google Scholar] [CrossRef] [Green Version]
- Bowler, N.E.H.; Pierce, C.E.; Seed, A. Development of a precipitation nowcasting algorithm based upon optical flow techniques. J. Hydrol. 2004, 288, 74–91. [Google Scholar] [CrossRef]
- Pham, B.T.; Le, L.M.; Le, T.T.; Bui, K.T.T.; Le, V.M.; Ly, H.B.; Prakash, I. Development of advanced artificial intelligence models for daily rainfall prediction. Atmos. Res. 2020, 237, 104845. [Google Scholar] [CrossRef]
- Banadkooki, F.B.; Ehteram, M.; Ahmed, A.N.; Fai, C.M.; Afan, H.A.; Ridwan, W.M.; Sefelnasr, A.; Elshafie, A. Precipitation forecasting using multilayer neural network and support vector machine optimization based on flow regime algorithm taking into account uncertainties of soft computing models. Sustainability 2019, 11, 6681. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, L.; Guan, J.; Zhang, M. Evaluation of combined satellite and radar data assimilation with POD-4DEnVar method on rainfall forecast. Appl. Sci. 2020, 10, 5493. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Z.; Kong, D.; Han, H.; Zhao, Y. EA-LSTM: Evolutionary attention-based LSTM for time series prediction. Knowl.-Based Syst. 2019, 181, 104785. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, X.; Lu, M.; Wang, H.; Choe, Y. Attention augmentation with multi-residual in bidirectional LSTM. Neurocomputing 2020, 385, 340–347. [Google Scholar] [CrossRef]
- Liu, J.; Gong, X. Attention mechanism enhanced LSTM with residual architecture and its application for protein-protein interaction residue pairs prediction. BMC Bioinform. 2019, 20, 609. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks. Sensors 2017, 17, 273. [Google Scholar] [CrossRef]
- Ahmadian, A.; Salahshour, S.; Chan, C.S. Fractional Differential Systems: A Fuzzy Solution Based on Operational Matrix of Shifted Chebyshev Polynomials and Its Applications. IEEE Trans. Fuzzy Syst. 2017, 25, 218–236. [Google Scholar] [CrossRef]
- Cui, K.; Qin, X. Virtual reality research of the dynamic characteristics of soft soil under metro vibration loads based on BP neural networks. Neural Comput. Appl. 2018, 29, 1233–1242. [Google Scholar] [CrossRef]
- Su, Z.; Wang, J.; Lu, H.; Zhao, G. A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting. Energy Convers. Manag. 2014, 85, 443–452. [Google Scholar] [CrossRef]
- Juang, C.F.; Hsieh, C.D. TS-fuzzy system-based support vector regression. Fuzzy Set Syst. 2009, 160, 2486–2504. [Google Scholar] [CrossRef]
- Ölmez, T.; Dokur, Z. Classification of heart sounds using an artificial neural network. Pattern Recognit. Lett. 2003, 24, 617–629. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, W.; Wu, X.; Chen, P.C.Y.; Liu, J. LSTM network: A deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst. 2017, 11, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Zhang, Y.; Chen, W. Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform. Energy 2019, 187, 115804. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, L.; Mao, M.; Tai, H.M.; Wan, Y. An Optimized Heterogeneous Structure LSTM Network for Electricity Price Forecasting. IEEE Access 2019, 7, 108161–108173. [Google Scholar] [CrossRef]
- Wu, P.; Lei, Z.; Zhou, Q.; Zhu, R.; Chang, X.; Sun, J.; Zhang, W.; Guo, Y. Multiple premises entailment recognition based on attention and gate mechanism. Expert Syst. Appl. 2020, 147, 113214. [Google Scholar] [CrossRef]
- Murayama, Y.; Uhlmann, F. DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism. Cell 2015, 163, 1628–1640. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, L.; Guo, Q.; Yi, Z. Recurrent Neural Networks with Auxiliary Memory Units. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 1652–1661. [Google Scholar] [CrossRef]
- Schwarzenbach, H.; da Silva, A.M.; Calin, G.; Pantel, K. Data Normalization Strategies for MicroRNA Quantification. Clin. Chem. 2015, 61, 1333–1342. [Google Scholar] [CrossRef]
- Berrone, S.; Borio, A. Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method. Finite Elem. Anal. Des. 2017, 129, 14–31. [Google Scholar] [CrossRef] [Green Version]
- Hecht-Nielsen, R. Theory of the backpropagation neural network. IEEE IJCNN 1989, 1, 593–605. [Google Scholar]
- Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
- Rougier, J. Ensemble Averaging and Mean Squared Error. J. Clim. 2016, 29, 8865–8870. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors. Comput. Sci. 2012, 3, 212–223. [Google Scholar]
- Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar] [CrossRef]
- Liu, R.; Gillies, D.F. Overfitting in linear feature extraction for classification of high-dimensional image data. Pattern Recognit. 2016, 53, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037. [Google Scholar]
- Takase, T.; Oyama, S.; Kurihara, M. Effective neural network training with adaptive learning rate based on training loss. Neural Netw. 2018, 101, 68–78. [Google Scholar] [CrossRef]
- Chandra, B.; Sharma, R.K. Deep learning with adaptive learning rate using laplacian score. Expert Syst. Appl. 2016, 63, 1–7. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Xu, M. DeepMTT: A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network. Inf. Fusion 2020, 53, 289–304. [Google Scholar] [CrossRef]
- Oehmcke, S.; Zielinski, O.; Kramer, O. Input quality aware convolutional LSTM networks for virtual marine sensors. Neurocomputing 2018, 275, 2603–2615. [Google Scholar] [CrossRef]
- Liu, R.; Liu, S.C.; Cicerone, R.J.; Shiu, C.J.; Li, J.; Wang, J.; Zhang, Y. Trends of Extreme Precipitation in Eastern China and Their Possible Causes. Adv. Atmos. Sci. 2015, 32, 1027–1037. [Google Scholar] [CrossRef] [Green Version]
- Granich, R.M.; Gilks, C.F.; Dye, C.; De Cock, K.M.; Williams, B.G. Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: A mathematical model. Lancet 2009, 373, 48–57. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef]
Structure | Parameter Quantity |
---|---|
forgetting gate | |
input gate | |
output gate | |
memory unit | |
LSTM | |
CP | |
LSTM–CP |
Structure | Parameter |
---|---|
forgetting gate | |
input gate | |
output gate | |
LSTM | |
CP | |
LSTM–CP |
Structure | Parametric Function Derivative |
---|---|
LSTM | |
LSTM–CP |
Model | Training Error | Prediction Error | Running Speed |
---|---|---|---|
LSTM | 0.0078 | 0.0091 | 4.95 |
LSTM–BP (Sigmoid) | 0.0079 | 0.0090 | 3.19 |
LSTM–CP | 0.0076 | 0.0090 | 4.62 |
Model | MAE | MSE | MAPE |
---|---|---|---|
ARMIA | 0.0836 | 0.0120 | 55.051 |
SVR | 0.0925 | 0.0172 | 65.731 |
MLP | 0.1101 | 0.0191 | 75.210 |
LSTM–CP | 0.0601 | 0.0090 | 53.121 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Tang, W.; Hou, G.; Pan, F.; Wang, Y.; Wang, W. Research on Precipitation Forecast Based on LSTM–CP Combined Model. Sustainability 2021, 13, 11596. https://doi.org/10.3390/su132111596
Guo Y, Tang W, Hou G, Pan F, Wang Y, Wang W. Research on Precipitation Forecast Based on LSTM–CP Combined Model. Sustainability. 2021; 13(21):11596. https://doi.org/10.3390/su132111596
Chicago/Turabian StyleGuo, Yan, Wei Tang, Guanghua Hou, Fei Pan, Yubo Wang, and Wei Wang. 2021. "Research on Precipitation Forecast Based on LSTM–CP Combined Model" Sustainability 13, no. 21: 11596. https://doi.org/10.3390/su132111596
APA StyleGuo, Y., Tang, W., Hou, G., Pan, F., Wang, Y., & Wang, W. (2021). Research on Precipitation Forecast Based on LSTM–CP Combined Model. Sustainability, 13(21), 11596. https://doi.org/10.3390/su132111596